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Follicular lymphoma (FL) is an incurable B-cell malignancy
characterized by advanced stage disease and a hetero-
geneous clinical course, with high-risk groups including

those that transform to an aggressive lymphoma, or progress
early (within 2 years) following treatment. Recent sequen-
cing studies have established the diverse genomic landscape
and the temporal clonal dynamics of FL [1–7]; however,
our understanding of the degree of spatial or intra-tumor
heterogeneity (ITH) that exists within an individual patient
is limited. In contrast, multi-site profiling in solid organ
malignancies has demonstrated profound ITH impacting
mechanisms of drug resistance and compromising
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precision-medicine-based strategies to care [8]. In FL, the
rise in trials adopting targeted therapies such as EZH2,
PI3K, and BTK inhibitors reflects this paradigm shift in
cancer care and with the development of biomarker-driven
studies highlights the need to accurately define genomic
alterations with clinical relevance. As most FL patients
manifest disseminated tumor involvement, we sought
to uncover the extent and clinical importance of spatial
heterogeneity in FL by using a combination of whole-
exome and targeted deep sequencing (Supplementary
methods).

Our study cohort comprised nine patients (SP1–SP9)
each with two spatially separated synchronous biopsies
including two patients (SP3 and SP4) with spatial samples
at two timepoints (FL and transformation), yielding a total
of 22 tumor samples (Table S1). To improve the sensitivity
for variant detection, fluorescence-activated cell sorting

(FACS) was performed on cell suspensions where available
(15 of 22 tumors) (Supplementary methods and Tables S2,
S3). Exome sequencing of both the tumor and paired
germline DNA was performed (median depth 131×)
(Table S3) and we identified between 35 and 130 non-
synonymous somatic variants (SNVs) per sample corre-
sponding to 659 coding genes comprising missense (81%),
indels (10%), nonsense (7%), and splice site (2%) changes
(Tables S4, S5). We verified 195/198 (98%) SNVs using an
orthogonal platform (Haloplex HS), with a high con-
cordance of variant allele frequencies (VAFs) (r= 0.91)
(Table S6). The tumor purity was predicted across samples
using the mclust algorithm (Supplementary methods and
Figure S1), demonstrating a mean purity of 92% in FACS-
sorted samples and 66% in non-sorted samples.

Although the spatially separated tumors shared identical
BCL2-IGH breakpoints, we observed variable degrees of

Fig. 1 Patterns of intra-tumor heterogeneity in spatially separated
tumors. a Proportion of shared and site-specific somatic SNVs in each
case. The Jaccard Similarity Coefficient (JSC) is given above each bar.
Site 1 is LN and site 2 BM with the following exceptions: SP1 site 2:
skin (SK), SP4 site 1: LN1, site 2: LN2, SP4-T site 2: skin, SP5 site 2:
pleural effusion (PE), SP6 site 1: ascites (AS), site 2: spleen (SP) (T:
transformed). b Pairwise mean cluster cellular prevalence plots.
Derived mutation clusters represent the mean cellular prevalence of all
mutations within a cluster. Each cluster is denoted by a circle with the
size of the circle equivalent to the number of mutations within the

cluster. The letter in each circle relates to the specific cluster within the
clonal phylogenies in Figure S3. Mutations in known FL-associated
genes are highlighted to show their locations within clusters. ^Site-
specific variant, although the mean cluster cellular prevalence is
reported as marginally subclonal. c (i) Variant allele frequency (VAF)
plot of all somatic mutations in case SP2. VAFs for selected mutations
from three highlighted subclones in purple, orange, and green are
shown in the horizontal bar graphs. c (ii) Mean cluster cellular pre-
valence plot and c (iii) clonal phylogeny of SP2 confirming the distinct
subclones (purple, orange, green) seen in the VAF plot
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ITH, with on average 82% (range 50–99%) of variants
shared between sites. To quantify this heterogeneity, we
calculated the Jaccard Similarity Coefficient (JSC) [9] for
each patient, which represents the ratio of shared to total
(shared and discordant) variants for two samples, with
values closer to 1 representing greater similarity between
samples. This demonstrated a range of JSCs with the
highest JSC observed in SP3 (0.92) and the lowest in SP8
(JSC= 0.41) where a higher proportion of variants were
confined to only one spatial biopsy (Fig. 1a, S2). Further-
more, the majority of our cases consisted of paired nodal/
extra-nodal sites, and the extent of genetic heterogeneity
may be more profound if additional nodal and extra-nodal
sites of disease were profiled. The higher levels of genetic
ITH in our study did not translate to a more adverse out-
come nor was it associated with a specific clinical pheno-
type, although this can only be addressed with a larger
series.

To understand the clonal substructure of these spatially
separated tumors, PyClone[16], a model-based clustering
algorithm (Supplementary methods) was used to derive
pairwise sub(clonal) clusters and reconstruct clonal phylo-
genies for each case (Fig. 1b, c and S3). This demonstrated
tumors consisting of multiple subclones (mean 3, range
2–6), with the proportion of variants comprising the major
clone (Fig. 1b) ranging from 6 to 68% (mean 40%). The
non-linear distribution of subclones on the mean cluster
cellular prevalence plots suggests differential subclonal
dominance between spatial sites (Fig. 1b) and was best
exemplified in SP2 where tumor cells from both compart-
ments were FACS-purified. In this case, a variant cluster
(Cluster 1) that included mutations in ATP6V1B2 (p.
R400Q), BCL2 (p.G47V), and KMT2D (p.P867fs) were
clonal in the bone marrow (BM) but subclonal in the lymph
node, whereas the reverse was true for Cluster 2, consisting
of mutations in KMT2D (p.G1387D and p.R5501*). We
could also resolve a third cluster, including an EZH2
mutation (p.Y646S), with corrected VAFs ranging from 21
to 31% in the lymh node (LN) and 0.6–2.6% in the BM
(Fig. 1c).

Strikingly, in cases SP3 and SP4, where spatially sepa-
rated biopsies were profiled at two timepoints (at FL and
transformation), the spatial biopsies displayed strong
genetic concordance pre-transformation; however, the
degree of spatial heterogeneity markedly increased at
transformation, with the JSC reducing from 0.92 to 0.61 and
0.68 to 0.50 in SP3 and SP4, respectively. Patient SP3 was
treated with chemo-immunotherapy at diagnosis and
relapsed 3 years later with transformed disease. Here, all
four biopsies (spatial and temporal) shared mutations in
ARID1A, CREBBP, KMT2D, 1p36 loss, and 17p gain
(Fig. 2a, S4, and Table S7). There was evidence of devo-
lution of specific genetic alterations at progression, with
previously identified mutations in ATP6V1B2 and
TNFRSF14 not observed, indicating that the transformed
biopsies expanded from an ancestral population rather than
directly from the dominant diagnostic clone. At transfor-
mation, shared temporal changes included acquisition of
REL amplification, an EZH2 mutation, and clonal expansion
of a CD79A mutation that was present as a rare subclone at
diagnosis. Spatial heterogeneity at transformation was illu-
strated by specific alterations in the transformed LN (tLN)
including 6p copy neutral loss-of-heterozygosity (cnLOH)
(encompassing the region encoding HLA genes) and
mutations in TNFAIP3, PRKCB (p.R22H), and DDX3×.
Following the same pattern as SP3, SP4 exhibited a core set
of ubiquitous mutations in all biopsies (CREBBP, EP300,
KMT2D, and TNFRSF14) with temporal loss of subclonal
mutations in PIK3CD and RRAGC. There was a clear
increase in ITH at transformation with both site-specific
CNAs (Figure S4 and Table S7) and mutations in EBF1,
S1PR2, CCND3 (tLN), and SPIB (transformed skin (tSK))
(Fig. 2b). Interestingly, targeted sequencing of 13 selected
variants in the circulating tumor DNA (ctDNA) sample at
transformation detected mutations that were clonal and
shared between the spatial biopsies (CREBBP, KMT2D,
EP300, and TNFRSF14), but failed to recover all the site-
specific variants in the tLN (e.g., EBF1 and S1PR2 cor-
rected VAFs: 21.7% and 38.7%, respectively), indicating
that different tumor subpopulations dynamically circulate in
the plasma and that ctDNA may not invariably capture the
entire genetic spectrum, and warrants further exploration
(Figure S5).

To determine the clinical relevance of this spatial het-
erogeneity, we focused on known recurrently altered genes
with putative biological, prognostic, or therapeutic rele-
vance in FL (Fig. 2c). Notably, CREBBP was mutated in all
nine patients, accompanied by cnLOH (seven cases) and
was clonally maintained throughout spatially separated
biopsies. This is in keeping with previous reports [2] and
reaffirms CREBBP mutations as early events in the patho-
genesis of FL. KMT2D was also affected by mutations or
cnLOH in all cases, with a tendency for patients to possess

Fig. 2 : Spatial heterogeneity at transformation and in genes with
putative biological, prognostic, or therapeutic relevance. a Mean
cluster cellular prevalence plot for SP3 at diagnosis (top) and trans-
formation (bottom) to DLBCL. b Mean cluster cellular prevalence plot
for SP4 at FL (top) and transformation (bottom) to DLBCL. ^Site-
specific variant, although the mean cluster cellular prevalence is
reported as marginally subclonal. c Heatmap demonstrating degree of
spatial heterogeneity (mutations and copy number changes) in driver
genes. At the top, alterations such as those in CREBBP and KMT2D
are found in all cases. Gene names listed in green always had spatially
concordant variants, while genes listed in blue demonstrate at least one
instance of spatial discordance
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multiple mutations with variations in clonality and evidence
of genetic convergence with distinct mutations across spa-
tial sites (Fig. 2c). In addition, CXCR4 (SP5, SP9), STAT6
(SP1, SP8), and VMA21 (SP4, SP6, SP7, SP9) mutations
were always spatially concordant. Aside from these genes,
all others demonstrated spatial discordance in at least one
case, with notable examples, including, site-specific muta-
tions in TNFAIP3 (SP3 and SP9), TNFRSF14 (SP1),
PIK3CD (SP4), EP300 (SP9), XBP1 (SP9), and copy
number loss of PTEN (SP8) (Fig. 2c and S6). Of note, most
discordant mutations were detected at a subclonal level
(mean corrected VAF 27%; range 3.4–89%). We verified
the site-specific and temporal-specific nature of these driver
mutations identified from our exome data by performing
ultra-deep sequencing of 25 selected variants (mean cov-
erage 8,000×; Table S8 and Figure S7). All variants were
confirmed to be truly spatially discordant at VAF sensitiv-
ities approaching 0.4%, apart from CBX8 (SP5) confirming
their bona fide site-specific nature.

Importantly, even accounting for the rarity of spatial
sampling, reflecting the seldom nature spatially involved
tumors are procured in routine clinical practice, the sub-
clonal diversity and spatial heterogeneity observed in our
case series has potential clinically relevant ramifications for
the development of precision-based strategies, particularly
in the context of emergent prognostic and predictive bio-
markers. This is illustrated by examples of spatially dis-
cordant mutations in genes such as EZH2 and EP300 that
are integral to the m7-FLIPI prognostic scoring model [10].
Furthermore, the heterogeneity of actionable driver events
between sites may mean patients are precluded from
adopting the relevant targeted therapy due to failure in the
detection of the corresponding predictive biomarker in the
solitary tumor biopsy profiled. A potentially attractive
treatment paradigm is one whereby we specifically target
highly recurrent and truncal gene mutations, such as
CREBBP and KMT2D, particularly given their role in FL
pathogenesis [11–14], as they may indeed prove to be the
Achilles’ heel of these tumors.

In summary, this proof-of-principle study answers an
important clinical question that a sole biopsy inadequately
captures a patient’s genetic heterogeneity and prompts us
to consider integrating multimodal genomic strategies
(multiregion, ctDNA, and temporal profiling) into pro-
spective clinical trials, as is currently being performed in
the TRACERx study in lung cancer [15], especially as
we begin to consider current and future actionable
biomarkers.
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