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Introduction

When each quantitative observation of a dataset or a part of them has been measured with an uncertainty described by a known probability distribution and a known variance parameter value (but unknown mean parameter), the induced learning set is more informative than a classical learning set used by ensemble methods. To deal with this supplementary information, this work proposes to extend the ensemble methods to this kind of learning set. According to the literature [START_REF] Genuer | Arbres CART et Forêts aléatoires, Importance et sélection de variables[END_REF][START_REF] Gey | Bornes de risque, détection de ruptures, boosting: trois thèmes statistiques autour de CART en régression[END_REF][START_REF] Louppe | Understanding random forests: From theory to practice[END_REF], several algorithms for the construction of a tree are available, but they are all based on the minimization of a risk function and can be summarized into two tasks: a split rule and a prediction rule. For that purpose, each data instance is supposed to belong to a subset of the input variables space. However, in our context of uncertainty, each data instance is associated with a latent instance data. Thus, the construction process of a tree has to take into account the probability that the underlying latent instance belongs to each other disjoint regions. This is made by the knowledge available in the learning set, meaning, probability distributions and their variance parameter values. The induced model and notations are introduced in Section 2. To illustrate the contribution of this work, Section 3 presents the risk function, the prediction rule and the split rule for the CART algorithm and then, a new tree formula, which takes into account the uncertainty, is proposed in Section 4. The risk function formula modified is presented, and the induced split and prediction rules are demonstrated. To conclude, we present a discussion on a set of perspectives of this work in Section 5.

Model and notations

Let (X, Y ) be a concatenation of variables taking values in X × R, where X = (X 1 , • • • , X p ), X = R p is the input space2 , and R is the output space. We assume we have access to a set (x i , y i ) 1≤i≤n of size n of independent past cases of (X, Y ) taken from a universe Ω and a set of probability distributions with their respective variance parameter values. The learning set L n is then defined by

L n = (x 1 i , • • • , x p i , y i ) 1≤i≤n , (P j , σ j ) 1≤j≤p , P Y , σ Y (1) 
where P j is the probability distribution associated to the input variable X j for j ∈ {1, • • • , p} and σ 2 j is its associated variance (the corresponding mean is unknown), and similarly P Y is the probability distribution associated to the output variable Y i and σ 2 Y is its associated variance (and the corresponding mean is unknown).

Each observation is independent and identically distributed from the other. Then, probability distributions defined by (P j ) 1≤j≤p , P Y and (σ 2 j ) 1≤j≤p , σ 2 Y do not depend on the index i of the observations and are fixed through the learning set L n .

In the uncertainty measure case, we assume that, for every i ∈ {1, • • • , n}, each observed value x j i is coming from a random variable X j , for j ∈ {1, • • • , p}, which corresponds to a latent variable U j with a measurement error j : formally, each observation (input and output) is defined such as, for

1 ≤ j ≤ p,    Y = f (X) + , X j = U j + j Y = U Y + Y , (2) 
where j ∼ P j σ 2 j , Y i ∼ P Y σ 2 Y
, given X is a zero mean measurement error with a variance parameter σ 2 and f is the unknown regression function. The joint probability distribution of (X, Y ) is unknown, then our goal is to learn the function f : X → R from L n . This supervised learning task can be realized by the construction of a regression tree T , providing an estimator f and then a prediction ŷ = f (x) for a new observation x. The estimator f is constructed by minimizing the empirical quadratic risk:

F n (f, f , L m ) = 1 n K k=1 {1≤i≤m:(x i ,y i )∈R k } (y i -f (x i )) 2 . (3) 
In this work, we propose to extend the popular CART construction (restricted to the regression case) to the uncertainty measures case. To tackle this issue, we take into account the supplementary knowledge given by ((P j , σ j ) 1≤j≤p ) in the learning set. The knowledge given by (P Y , σ Y ) is not taken into account in this project, but is part of our perspectives.

Regression decision tree: classical case

In this section, the main steps to construct a regression decision tree without uncertainty measures are described. The learning set in this case is defined by

L * n = (x 1 i , • • • , x p i , y i ) 1≤i≤n .
Binary tree is considered. The set X is associated to the root. Then, a node t represents a subset of input observations, which belong to a certain region, the corresponding learning set is denoted by L * n|t and similarly the corresponding estimator is denoted f|t . The construction of the tree is done by induction: we subdivide every node t (or the corresponding region) into two nodes t L and t R (or two subregions) with respect to a split which needs to be defined. In the end, we get a partition of the input space X into K regions (R k ) 1≤k≤K , and then, for 1 ≤ k ≤ K, a prediction γ k is assigned to each region R k . In this work, the regions (R k ) 1≤k≤K are generated by splits (hyper-planes from X ) with split zones (boundaries of R k ) parallel to the axes formed by the input variables: we focus on hyperrectangles. Thus, a tree is defined by its parameters Θ = {(R k , γ k ) 1≤k≤K }, and we estimate the function f by f (x) = T (x; Θ) :

= K k=1 γ k 1 {x∈R k } .
Parameters are estimated by minimizing the quadratic risk (3). It consists of a minimization problem over two multivariate variables, and we decompose this optimization problem into two steps: the split rule and the predictive rule described in the next subsections. Those steps are iterated until a stopping rule (to be defined). It leads to construct a maximal tree, which should be pruned.

Predictive rule

For 1 ≤ k ≤ K, a constant γ k has to be assigned to each region R k such that the predictive rule for a new observation x becomes:

x ∈ R k ⇒ f (x) = γ k .
Each constant is computed by minimizing the empirical quadratic risk defined in (3): for all 1 ≤ k ≤ K, γk =argmin

γ k ∈R F n (f, γ k 1 {x i ∈R k } , L * n ) = 1 | {i : x i ∈ R k } | i:x i ∈R k y i . (4) 

Split rule

To define the regions, we have to define the variable with respect to which we are splitting, and the splitting value. To select the best variable to split, we compute the best split for every variable, and then, among all those splits, we define the variable which minimizes the quadratic risk. As the construction is done by induction, we fix a node t which corresponds to a region R, and we split it into two disjoint child nodes t L and t R corresponding to the regions R ∩ {X j < ŝj t } and R ∩ {X j ≥ ŝj t }. Fix the variable index 1 ≤ j ≤ p. The split ŝj t is chosen to minimize the impurity in both t L and t R :

ŝj t = argmin {(t L ,t R ):t=t L ∪t R } F n (f, f|t L , L * n|t L ) + F n (f, f|t R , L * n|t R ) (5) 
To speed up the computation, we are looking for splits in the set of observed values: we are testing every possible values in the finite set S j = {(x j i ) 1≤i≤n }. Then, we select the index j minimizing the quadratic risk, where the split has been defined beforehand.

Regression decision tree with uncertainty measures

In this section, uncertainty measures are taken into account through the learning set defined in (1) to construct a tree, in order to be as close as possible to the expected tree that would be constructed on the unknown set {((U j i ) 1≤j≤p , U Y i ) 1≤i≤n }. Some intuition to understand the differences between the construction of the two trees is first given. For an observation x i belonging to a region R k , the underlying latent observation of the variable U i can be in a different region R k . Indeed, the measurement error can be large enough to modify the regionbelonging. Thus, given the value x i , the construction of the estimator f has to take into account the probability of

U i ∈ R k for each region k ∈ {1, • • • , K}. We are then interested in P(U i ∈ R k |X i = x i ).
In this work, we assume that the variables are independent, then this probability is decomposed as follows:

P i,k := P(U i ∈ R k |X i = x i ) = p j=1 P(U j i ∈ R j k |X j i = x j i ).
This probability can be computed in some specific cases, e.g. when P j is normal and X is normally distributed. In general, assuming a parametric family, the distribution of X j can be estimated from the observations; one could then obtain the distribution of U j |X j using Fourier transforms (an explicit formula may be obtained when the marginal and conditional distributions are related). We plan to rely on numerical approximations to compute the above probabilities in the general case. We assume in the following that we can compute those probabilities. P denotes the corresponding matrix of size n × K, with coefficients P i,k . Thus, to estimate the function f , we propose a new tree formula f (x) = T (x; Θ) :

= K k=1 γ k P(U ∈ R k |X = x) defined by its parameters Θ = {(R k , γ k ) 1≤k≤K }.

Predictive rule

For 1 ≤ k ≤ K, constant γ k has to be assigned to each region R k such that the predictive rule for a new observation x becomes:

X = x ⇒ f (x) = K k=1 γ k P(U ∈ R k |X = x).
Each constant is computed by minimizing the empirical quadratic risk defined in (3): for all 1 ≤ k ≤ K, γk =argmin

γ k ∈R {F n (f, γ k P(U i ∈ R k |X i = x i ), L * n )} = P T P -1 P T y, (6) 

Split Rule

In the case of the learning set (1) and the model (2), the better split ŝj t for a node t minimizes the impurity in both child nodes t L and t R :

ŝj t = argmin {(t L ,t R ):t=t L ∪t R } F n (f, f|t L , L n|t L ) + F n (f, f|t R , L n|t R ) (7) 
= argmin

{(t L ,t R ):t=t L ∪t R }   1 n K k=1 {i:x i ∈t L } y i -P i (P T P ) -1 P T • y 2 + 1 n K k=1 {i:x i ∈t R } y i -P i (P T P ) -1 P T • y 2  
Then, it minimizes the residual error in each child nodes t L and t R .

Discussion

From this proposed construction process, we are planning to move to the random forest [START_REF] Breiman | Random forests[END_REF][START_REF] Louppe | Understanding random forests: From theory to practice[END_REF] or to Gradient Boosted Trees (GBT) [START_REF] Ridgeway | Generalized Boosted Models: A guide to the gbm package[END_REF][START_REF] Freund | A short introduction to boosting[END_REF] to improve the performances. Further, we plan to extend Quantile Regression Forests [START_REF] Meinshausen | Quantile regression forests[END_REF] to manage the uncertainty measures from the output data and to take into account the information (P Y , σ Y ) available in the learning set (1). In the end, this approach will be extended to quantile regression GBT [START_REF] Fenske | Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression[END_REF][START_REF] Kriegler | Boosting the quantile distribution: A cost-sensitive statistical learning procedure[END_REF][START_REF] Kriegler | Small area estimation of the homeless in Los Angeles: An application of cost-sensitive stochastic gradient boosting[END_REF] to benefit from both aspects. To this end, we plan to define a pruning step to be available to select the better constructed tree among the sub-trees available via the maximal tree. Thus, the obtained set of classifiers will be better and their weighted vote will be better again. We plan also to extend this work to the classification trees construction.
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In order to avoid heavy formulas, we present the reduced case X = R p in the sequel, but, with no loss of generality, we can extend this work to X = R p-q × Q q where Q is a finite set of values. Thus, categorical input variables can be managed by this approach. Then, we can also extend this case to some quantitative input observations without uncertainty. For this purpose, one just has to manage these input both categorical and without uncertainty observations classically such as in CART.
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