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Introduction:  The Sample Analysis at Mars 
(SAM) instrument suite on the Mars Science Labora-
tory (MSL) Curiosity Rover detected both reduced and 
oxidized nitrogen-bearing compounds during the pyro-
lysis of surface materials at Yellowknife Bay in Gale 
Crater. Preliminary detections of nitrogen species 
include NO, HCN, ClCN, CH3CN, and TFMA 
(trifluoro-N-methyl-acetamide). Confirmation of in-
digenous Martian N-bearing compounds requires quan-
tifying N contribution from the terrestrial 
derivatization reagents (e.g. N-methyl-N-tert-
butyldimethylsilyltrifluoroacetamide, MTBSTFA and 
dimethylformamide, DMF) carried for SAM’s wet 
chemistry experiment that contribute to the SAM 
background [1].  Nitrogen species detected in the SAM 
solid sample analyses can also be produced during 
laboratory pyrolysis experiments where these reagents 
are heated in the presence of perchlorate, a compound 
that has also been identified by SAM in Mars solid 
samples [1].   

Methods:  Curiosity’s first drill hole was at John 
Klein (JK), a mudstone in the Sheepbed member of the 
Yellowknife Bay formation in Gale Crater.  The JK 
Evolved Gas Analysis (EGA) experiments consisted of 
one blank, three single-portion (45 ± 18 mg) samples 
[2], and one triple portion sample.  A second hole was 
drilled at Cumberland (CB), ~3 meters from JK.  
Cumberland EGA experiments included two blanks, 
four single portions (CB1, 2, 3, 5), two triple portions 
CB6, CB7), and a run where CB6 residue was pyro-
lyzed after being re-exposed to the Sample Manipula-
tion System (SMS) on SAM, where it would have 
come into contact with MTBSTFA/DMF).  EGA ex-
periments CB1-5 involved pre-heating the sample at 
<70° C for 25 minutes, then ramping the oven to ~835° 
C (sample temperature) in a stream of 30 mb He at 
~0.8 sccm at a ramp rate of 35° C/min.  In experiments 
CB6, CB7, sample was delivered to a hot cup (~285° 
C) and heated for 25 minutes prior to the ramp to 835° 
C  All gas was analyzed by EGA-MS. In each experi-

ment, gases evolved over selected temperature ranges 
were analyzed by GCMS, which was used to positively 
identify N-bearing species by comparison to the NIST 
standard database. 

Preliminary Results:  The most abundant N-
bearing species in all runs was m/z 30, NO, present up 
to ~390 nmol in CB3.  The second most abundant 
compounds are m/z 27, HCN, and m/z 41, CNCH3, 
both present at ~40 nmol.  CNCH3 is consistently pre-
sent as a broad peak in blank runs.  Also present in 
trace amounts are ClCN and TFMA, the latter being a 
decomposition product of MTBSTFA.   

John Klein Experiments: Fig. 1 shows the distribu-
tion of N compounds for each run.  NO comprises the 
largest fraction of N species, and is present at 160 
nmol in single portions JK1 and JK2 and at 390 nmol 
in triple portion JK3.  JK1-3 employed a temperature 
hold at ~325° C for 25 minutes, during which a  sig-
nificant portion of volatile species were removed.  
Most NO is removed during this “boil off,” suggesting 
that it comes from a volatile source, while a smaller 
amount (30-100 nmol) is evolved around 400º C.  
Evolution of NO at these temperatures has been attrib-
uted to thermal decomposition of nitrate [3,4,5]. 

Cumberland Experiments: Midway through the 
Cumberland campaign, the EGA experimental proce-
dure was optimized in order to remove MTSBTFA and 
products of its decomposition, including N-species 

 
Figure 1. Nitrogen bearing compounds evolved during pyroly-
sis of John Klein drilled samples. 
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produced by breakdown of MTBSTFA. Prior to run 
CB6, samples were heated to <70º C (sample tempera-
ture) and held for 25 minutes.  Because of the persis-
tance of MSW, BSW, and TBDMS-F, products of 
MTBSTFA decomposition, samples in experiment 
CB6 and CB7 were delivered to a hot cup (~285° C) to 
avoid transfer of MTBSTFA, then held at this tempera-
ture to “boil off” these and other possible decomposi-
tion products of MTBSTFA.   

This method was successful in reducing MTBSTFA 
contributions to EGA.  Fig. 2 shows total and individ-
ual abundance of N species for each run.  All N com-
pounds decrease in abundance when the hot cup deliv-
ery is employed, suggesting loss of volatile N com-
pounds, including those associated with MTBSTFA. 
However, it is difficult to determine whether some 

species, such as HCN, are no longer present in experi-
ments CB6 and CB7 because they are products of  
MTBSTFA decomposition, or because they are indige-
nous but removed due to their volatility.    

Discussion:   Confirmation of indigenous martian 
nitrogen in solid samples is complicated by the fact 
that pyrolysis of MTBSTFA in the presence of per-
chlorate evolves all of the N-bearing compounds de-
tected. However, we can put constraints on the total 
abundance of MTBSTFA, and thus, the terrestrial N 
contribution, to an experiment.  Total MTBSTFA 
present in a sample can be estimated from quantifying 
the three major decomposition products of MTBSTFA: 
monosilylated water (m/z 127), bisilylated water (m/z 
147), and TBDMS-F. MTBSTFA and DMF molecules 
each contain one N atom.  The MTBSTFA:DMF ratio 
is 4:1, which is used to calculate DMF derived nitro-
gen. Fig. 3 shows the estimated nanomoles of N con-
tributed by MTBSTFA/DMF compared to the total 
nanomoles N as measured by SAM.  The total nano-

molar concentration of all nitrogen species is orders of 
magnitude greater than estimated N contribution from 
MTBSTFA/DMF. Fig. 4 shows the estimated nano-
moles of N contributed by MTBSTFA/DMF compared 
to N from TFMA, a fluorinated compound formed by 
decomposition of MTBSTFA. Based on this quantifi-
cation, it is reasonable to assume that the majority of 
the N contributed by MTBSTFA can be accounted for 
by the formation of TFMA.  This data suggests the 

presence of indigenous martian N-bearing compounds, 
detected as NO in SAM. The presence of indigenous 
volatile N compounds such as HCN cannot be ruled 
out, as they will not be seen in any analysis optimized 
to remove MTBSTFA. 
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Figure 3. Nanomole N calculated from the sum of all 
detected nitrogen-bearing compounds in non-blank sam-
ples is orders of magnitude greater than the nanomole 
nitrogen estimated to be contributed by MTBSTFA/DMF. 

 
Figure 4.  The molar abundance of nitrogen from 
MTBSTFA/DMF in non-blank samples is similar to the molar 
abundance of nitrogen in TFMA.  

 
Figure 2. Figure 2.  Nitrogen compounds evolved during 
pyrolysis of Cumberland drilled samples.  Higher tempera-
ture boil-off reduces abundance of MTBSTFA-derived com-
pounds as well as any other volatile martian N-bearing 
compounds that may be present.   
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