Generalized compressible flows and solutions of the H(div) geodesic problem - Archive ouverte HAL
Article Dans Une Revue Archive for Rational Mechanics and Analysis Année : 2020

Generalized compressible flows and solutions of the H(div) geodesic problem

Résumé

We study the geodesic problem on the group of diffeomorphism of a domain M⊂Rd, equipped with the H(div) metric. The geodesic equations coincide with the Camassa-Holm equation when d=1, and represent one of its possible multi-dimensional generalizations when d>1. We propose a relaxation à la Brenier of this problem, in which solutions are represented as probability measures on the space of continuous paths on the cone over M. We use this relaxation to prove that smooth H(div) geodesics are globally length minimizing for short times. We also prove that there exists a unique pressure field associated to solutions of our relaxation. Finally, we propose a numerical scheme to construct generalized solutions on the cone and present some numerical results illustrating the relation between the generalized Camassa-Holm and incompressible Euler solutions.
Fichier principal
Vignette du fichier
RelaxationCamassaHolm_final2.pdf (1.14 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01815531 , version 1 (26-06-2018)
hal-01815531 , version 2 (04-09-2018)
hal-01815531 , version 3 (07-10-2019)

Identifiants

Citer

Thomas Gallouët, Andrea Natale, François-Xavier Vialard. Generalized compressible flows and solutions of the H(div) geodesic problem. Archive for Rational Mechanics and Analysis, 2020, 235, pp.1707-1762. ⟨10.1007/s00205-019-01453-x⟩. ⟨hal-01815531v3⟩
498 Consultations
310 Téléchargements

Altmetric

Partager

More