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1 Abstract
In this paper, we describe experiments with techniques for lo-
cating foods and recognizing food states in cooking videos.
We describe production of a new data set that provides an-
notated images for food types and food states. We compare
results with two techniques for detecting food types and food
states, and then show that recognizing type and state with sep-
arate classifiers improves recognition results. We then use
this to provide detection of composite activation maps for
food types. The results provide a promising first step towards
construction of narratives for cooking actions.
Keywords— Object localization, Weakly supervised learning

2 Introduction
This paper reports on experiments with detection and local-
ization of food types and food states. This is a first step to-
ward automatic construction of cooking narratives (causal se-
quences of events) for food preparation that can be used to
explain how food was prepared. This is a challenging prob-
lem for computer vision given the large variety of appearance
for food, and the semi-structured nature of manipulation ac-
tions.
Most work on recognition of cooking activities has concen-
trated on recognizing actions and activities from the spatio-
temporal patterns of hands motion [1]. While some cooking
activities may be directly recognized from motion, the result-
ing description is incomplete, as it does not describe the state
of the ingredients, and how these have been transformed by
cooking actions. We believe that a fuller description requires
a description of how food ingredients have been transformed
during the cooking process.
We propose to address the construction of cooking narratives
by first detecting and locating ingredients and tools, then rec-
ognizing actions that involve transformations of ingredients,
such as "dicing tomatoes", and use these transformations to
segment the video stream into visual events. We can then
interpret detected events as a causal sequence of voluntary
actions, providing a narrative for the implementation of the
recipe.
We use the term "food type" to refer to specific foods such as
tomatoes or cucumbers. We use the term "food state" to refer
to the shape and/or physical appearance of a food type as it
undergoes preparation. For example, sliced, diced and peeled
are food states.
Many common food types may have a variety of shapes.
Changes in food state can also entail dramatic change in vi-
sual appearances, as well as changes to geometry and even
topology. This introduces an inter and intra variability to in-
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gredients which in turn adds complexity to the recognition
task.
Recent progress in machine learning [2] has provided tech-
niques that can be used to detect and locate tools and food.
However, such techniques require a large number of anno-
tated images. Unfortunately, none of the commonly available
data sets for food provides images or annotations for differ-
ent food states. To remedy this situation, we have created a
new annotated dataset from Google Images, using food types
and food states as keywords for queries. We use this dataset
to fine-tune a pre-trained model with the weakly-supervised
learning technique of Zhou et al. [3]. We use the resulting
activation maps to train a new layer which recognizes food
states and food types simultaneously.
Section 2 discusses the problem of recipe recognition and
reviews previous work on recognition of cooking activities,
as well as available data sets, and discusses the problem of
weakly supervised learning of techniques for food localiza-
tion. Section 3 describes the problem of learning food con-
cepts. We discuss two methods for combining concepts for
localization and derive two competing techniques. In section
4 we present the results of experiments showing that learning
separate layers for food types and food states results in im-
proved detection and localization of composite food classes.

3 Related work
In this section, we review existing methods for cooking action
recognition, existing datasets of cooking videos and recipes,
and existing methods for weakly-localizing objects in images.

3.1 Recipe recognition
Recipe recognition can refer to at least two different prob-
lems. In image analysis, recipe recognition refers to the prob-
lem of recognizing recipes from images of the final dish. This
is an object recognition problem that requires recognizing the
ingredients used in the recipe from images of the final food
state. Methods have been proposed to address this problem
using multi-modal data (image and text in [4], context infor-
mation [5]) and by multi-labeling visible ingredients for each
dish [6]. In video analysis, recipe recognition is the prob-
lem of recognizing cooking activities involved in the prepara-
tion of a dish. This is commonly considered to be an action
recognition problem where the task is to recognize the state-
changing ingredients and the instructions in the recipe from
spatio-temporal action recognition.
Recipes are sequence of instructions that can be performed
in chronological order or simultaneously. Recipes are typ-
ically represented as semi-structured sequences of instruc-
tions, each of which consists of an operation that transforms
an ingredient to a different state. This can be done using de-
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(A) after dicing lettuce (B) after dicing tomato (C) after peeling cucumber

Figure 1: Examples of food localization in key-frames of 50 salads dataset. Better viewed in colors.

Dataset Recipes Actions Food types Food states

MPII Cooking v2[10] 36 activities Yes None None
50 Salads[11] 2 salads Yes None None
Breakfast[12] non-scripted Yes None None
KUSK[13] 20 recipes Yes 23 None
YouCook2[14] 89 recipes Yes 33 None
EPIC-Kitchens[15] non-scripted Yes 163 None

Table 1: Available annotated cooking video datasets.

pendency trees [7], work-flow graphs [8], or action graphs
[9]. Most work on this problem take ingredients into account
by representing cooking actions as events that transform in-
gredients. We postulate that this problem can be simplified by
including information about the location of food ingredients
and the transformations of food.

3.2 Cooking datasets
Recent advances in object and action recognition have been
facilitated by the increased availability of large-scale anno-
tated datasets. In the cooking domain, this is more challeng-
ing due to the rich vocabulary of objects and activities, and
their large inter and intra variability of food types and tools.
Table 1 summarizes the size and content of several popular
cooking video datasets, showing that while action annotations
are widely available, food types are rarely annotated, and food
states are never annotated. This observation motivates our de-
cision to learn to localize foods and their states in a weakly
supervised manner.

3.3 Locating food objects
Training deep neural network architecture on different im-
age categories shows that bottleneck features can be used
to describe images. Recently, some well-known neural net-
works pre-trained on large scale images datasets [16] have
been shown to be useful for resolving problems like object
detection and localization.
Convolutional Neural Networks (CNN) preserve the coarse
grained spatial location of the network activations. Those net-
work activations can be traced back in order to find a coarse
estimation of the image region that triggered the network acti-
vation. Recent work has proposed to use network activations
for modeling network attention to different images classes
[17].
Adding a Global Average Pooling (GAP) on the last con-
volutional layer gives the network a limited ability to lo-
cate objects class. This has been proposed by Zhou et al.
[3] as Class Activation Maps (CAM) that can be trained in
a weakly-supervised manner using only image-level labels.

CAMs have shown to perform well on the tasks of discrimi-
native localization of classes [3] and visual questioning [18].

4 Learning food concepts
Describing food transformations requires combining recogni-
tion of food type and food state. We refer to these as "compos-
ite classes". For example, "diced tomato" or "sliced cucum-
ber" are obtained by composing food type concepts (tomato,
cucumber) with food state concepts (sliced, diced). Each
composite class can be learned directly by using training ex-
amples from that class, or indirectly as a result of concept
composition. The first method can be implemented using the
previous work of Zhou et al. [3]. In this section, we explain
the second method which uses food concept composition.

4.1 Concepts activation maps
We use Class Activation Maps (CAMs) [3] as an indicator of
the image region occupied by a class member. When different
classes share the same concept, their CAMs are combined
to learn a concept activation map. Concepts activation maps
are extracted from activation maps of the combined classes
(CAMs). Here, we study 2 separate concepts: food type and
food state. The goal of this layer is to decouple localization
of food type and food state from the combined examples. In
practice, we used a depth-wise convolutional layer on top of
CAMs layer that separates spatial and depthwise information
of CAMs. The number of filters of this layer is equal to the
number of values a concept can take.
We study this problem as a multi-label classification prob-
lem. In training phase, we compute a separate cross-entropy
loss function for each concept as well as for CAMs. Concept
Activation Maps are the resulting network activation of this
layer. The training architecture is explained in Figure 2.

4.2 Concept composition
We consider a composite class to be composed of more than
one concept. A region in the image is considered to belong to
a specific composite class if it belongs to all of its concepts
(Figure 3).
Here, we explain two ways of composing concepts:

Product Concept Composition where each pixel in the
corresponding concept maps is element-wisely multiplied.
This is defined as

Pcc(x, y) =

n∏
c=1

Ac(x, y)

where Ac(x, y) is the network activation value for the cth

concept activation map at the pixel (x, y), and n is the number



Figure 2: During training, we learn food concept maps for food types and food states from labeled examples.

of concepts.

Average Concept Composition where each composite
concept map is the element-wise average prediction over the
number of concepts. In practice, we define average composi-
tion of concepts as

Pcc(x, y) =

∑n
c=1 Ac(x, y)

n

The number of resulted composite concept maps = C1×C2×
· · · × Cn where Cn is the number of different classes of the
nth concept.

4.3 Food localization
We compute the location of a food type in a specific state from
its corresponding composite map (Pcc). Figure 3 summarizes
the process of food localization on test images. Firstly, in-
put test images are transformed to multiple scales and passed
to the network. Each of the output predicted concept maps
is resized to the size of the original test image. Secondly,
composite concept maps are computed for all different com-
bination of concepts. Thirdly, composite concept maps are
normalized and filtered as follows:

Pcc(x, y) =

{
Pcc(x, y), if Pcc(x, y) >= Threshold

background, otherwise

The threshold is set to 80% of overall activation maps. There-
fore, the predicted label of pixel (x, y) is

Pl(x, y) = argmax
cc

(Pcc(x, y))

We compute the surface of connected components from
Pl(x, y) image for objects localization. We also compute the
pixel-wise detection accuracy.

5 Experimental results
This section presents our experimental results for jointly
learning food type and food state during cooking activities.
Those results are compared to results from the work of Zhou
et al. [3] as a baseline. We conduct the experiment on key-
frames from 50 salads dataset.

5.1 Training and testing data
We collected a training set of images from Google Images
using all possible composite concepts as query keywords.

Those keywords are considered to be the image-level la-
bels. We manually filtered irrelevant images to get a total of
468 images for training (in average 39 images per composite
class).
For testing, we extracted key-frames from the 50 salads
dataset [11]. This is a suitable dataset for our purpose be-
cause the same ingredients appear at different places and dif-
ferent states during the videos. The dataset has few number
of ingredient types which facilitates the evaluation, and the
recipes are scripted (the set of ingredients are fixed during
image sequences).
We annotated by 251 key-frames for the following actions:
cut tomato, cut cucumber, cut cheese, peel cucumber, cut let-
tuce. Key-frames have been chosen to be the mid frame of
the _post part of annotated actions; we choose those actions
as they are the moment where an ingredient was transformed
into a new state. This state is expected to remain fixed un-
til the next action. This annotation process results in average
of 116 samples for testing per composite class. Each ingre-
dient is segmented with a polygon using the LabelMe tool 1.
Ground-truth annotations will be made available 2.

5.2 Baseline
We used the CAM implementation [3] as the baseline for lo-
calizing foods for all the different composite classes. Acti-
vation maps of CAM are directly evaluated since composite
classes are separately present in each activation map. We used
similar network configurations for training the baseline and
training our method.

5.3 Food localization results
In this section, we report the results of localizing food in-
gredients using the baseline method [3] and our proposed
method.
We evaluated both methods using the Midpoint hit criteria as
proposed by Rohrbach et al. [10]. The midpoint is computed
as the center of gravity of the prediction values of composed
concept map.
As in [10], a positive hit is considered if the midpoint falls
inside the ground-truth mask, if the fired detection does not
belong to the correct ground-truth label, it is counted as False
Positive.

1https://github.com/wkentaro/labelme
2Please cite this work in case of using the annotation https:

//hal.archives-ouvertes.fr/hal-01815512/file/
annotation_json.zip.
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Figure 3: During testing, we compute the activation maps from unlabeled examples by composing the learned concept maps.

Top 1 Top 3
Composite class Baseline Product Average Baseline Product Average
Cheese_diced 18.75 80.00 77.78 29.41 80.00 87.50
Cheese_whole 100.00 100.00 100.00 100.00 100.00 100.00
Cucumber_diced 61.54 33.33 42.11 81.40 35.71 44.44
Cucumber_peeled 0.00 40.00 40.00 0.00 50.00 50.00
Cucumber_sliced 71.43 93.55 93.94 77.14 94.74 95.00
Cucumber_whole 67.35 64.38 65.56 74.58 65.79 68.37
Lettuce_diced 58.54 91.30 86.21 78.03 92.59 88.89
Lettuce_whole 42.55 65.22 51.52 67.61 70.37 64.29
Tomato_diced 80.34 79.78 74.26 86.45 82.86 79.51
Tomato_sliced 80.00 80.65 83.33 88.10 86.11 89.19
Tomato_whole 5.56 89.80 87.76 5.71 92.06 90.32
Mean (mAP) 53.28 74.36 72.95 62.58 77.29 77.96

Table 2: Food Localization results on key-frames from 50
salads dataset.

Table 2 reports the Average Precision (AP) of each class. The
results show a significant improvement on localization preci-
sion (74% mAP) whereas the baseline achieves (53% mAP)
on classifying composite classes. In our experiments, the two
concept composition methods (product and average) achieve
similar performance and further work is needed to more ac-
curately measure their benefits.
We also computed pixel-wise accuracy of the resulting acti-
vation maps, both for our method (63% without background,
94% with background) and the baseline (23% without back-
ground, 32% with background), again showing a significant
improvement.

6 Conclusion
Locating foods with changing states is a challenging task
where state-of-the-art methods obtain moderate results (53%
mAP). In this paper, we have shown that jointly learning
"type" and "state" concepts from training examples can sig-
nificantly improve those result (74% mAP). More work is
needed to confirm those early results and demonstrate the
possibility of recognizing state-changing cooking actions in
video by detecting food state changes collocated with hand
motion and tool use.
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