Recognition and Localization of Food in Cooking Videos
Résumé
In this paper, we describe experiments with techniques for locating foods and recognizing food states in cooking videos. We describe production of a new data set that provides annotated images for food types and food states. We compare results with two techniques for detecting food types and food states, and then show that recognizing type and state with separate classifiers improves recognition results. We then use this to provide detection of composite activation maps for food types. The results provide a promising first step towards construction of narratives for cooking actions.
Fichier principal
paper-cea18-hal.pdf (826.38 Ko)
Télécharger le fichier
Recognition and localization of food in Cooking Videos.pdf (5.49 Mo)
Télécharger le fichier
annotation_json.zip (184.24 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|