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Abstract. This paper investigates a first-order and a second-order approximation technique
for the shallow water equation with topography using continuous finite elements. Both methods
are explicit in time and are shown to be well-balanced. The first-order method is invariant domain
preserving and satisfies local entropy inequalities when the bottom is flat. Both methods are positivity
preserving. Both techniques are parameter free, work well in the presence of dry states, and can be
made high order in time by using strong stability preserving time stepping algorithms.
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1. Introduction. The objective of this paper is to develop an invariant do-
main preserving well-balanced approximation of the shallow water equation with
bathymetry using continuous finite elements. There are many finite volume and dis-
continuous Galerkin (DG) techniques available in the literature that can solve this
problem efficiently up to second and higher order in space. Examples of schemes that
are well balanced at rest and robust in the presence of dry states can be found, for
example, in Audusse and Bristeau [1], Audusse et al. [2], Bollermann, Noelle, and
Lukáčová-Medvidová [6], Gallardo, Parés, and Castro [14], Kurganov and Petrova
[23], Perthame and Simeoni [27], Ricchiuto and Bollermann [28]. We refer the reader
to the book of Bouchut [7] for a review on this topic, to the paper of Xing and Shu
[32] for a survey on finite volume and DG methods, and to the paper [23] for a survey
of central-upwind schemes. However, to the best of our knowledge, these types of
approximations are not developed in the context of continuous finite elements. Or
we should say that no robust continuous finite element technique is yet available in
the literature that guarantees second-order accuracy, works properly in every regime
(subcritical, transcritical, transcritical with hydraulic jumps, wet, and dry regions)
and is well-balanced at rest. We propose such a method in the present paper. Two
variants of the method are discussed: one variant is first-order accurate in space,
positivity preserving, and preserves every convex invariant domain of the system in
the absence of bathymetry; the other variant is second-order accurate in space and
positivity preserving. Both variants are explicit in time and use continuous finite
elements on unstructured meshes.
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The first building block of the method consists of using the methodology intro-
duced in Guermond and Popov [16]. The second building block consists of making the
schemes well-balanced with respect to rest states by using the so-called hydrostatic
reconstruction from [2, section 2.1] and variations thereof. The technique from [16] is
a loose extension of Lax’s scheme [24, p. 163] to continuous finite elements; it solves
general hyperbolic systems in any space dimension using forward Euler time step-
ping and continuous finite elements on nonuniform grids. The artificial dissipation
is defined so that any convex invariant set containing the initial data is an invariant
domain for the method. The solution thus constructed satisfies a discrete entropy in-
equality for every admissible entropy of the system. The accuracy in space is formally
first order and the accuracy in time can be made high order by using strong stability
preserving Runge–Kutta time stepping. Some ideas of the method are rooted in the
work of Hoff [20, 21], and Frid [13]. The method is made second order and positivity
preserving by using techniques introduced in Guermond and Popov [17].

The paper is organized as follows. The model problem and the finite element
setting are introduced in section 2. The first-order variant of the method is described
in section 3. The main results of this section are Propositions 3.9 and 3.11. The
second-order variant of the method is described in section 4. The key results of this
section are Propositions 4.2 and 4.4. The performances of the algorithms introduced
in the paper are numerically illustrated in section 5 on standard benchmark problems.

2. Preliminaries. In this section we introduce the model problem, the finite
element setting, and we define (recall) the concept of well-balancing at rest.

2.1. The model problem. Let D be a polygonal domain in Rd with d ∈ {1, 2},
occupied by a body of water evolving in time under the action of gravity. Assuming
that the deformations of the free surface are small compared to the water elevation and
the bottom topography z varies slowly, the problem can be well represented by Saint-
Venant’s shallow water model. This model describes the time and space evolution
of the water height h and flow rate, or discharge, q in the direction parallel to the
bottom. Using u = (h, q)T as a dependent variable the model is as follows:

∂tu +∇·f(u) + b(u,∇z) = 0, x ∈ D, t ∈ R+,(2.1)

f(u) :=
(

qT

1
hq⊗q + 1

2gh
2Id

)
∈ R(1+d)×d, b(u,∇z) :=

(
0

gh∇z

)
.(2.2)

The quantity q is related to the horizontal component of the water velocity v by
q = vh. The function z : D 3 x 7→ z(x) ∈ R is the given topography.

We assume that either the boundary conditions are periodic or the initial data u0
and the bottom topography are constant outside a compact set in D and the solution
to (2.1) is constant outside this compact set over some time interval [0, T ].

2.2. The finite element space. We approximate the solution of (2.2) with
continuous finite elements. Let (Th)h>0 be a shape-regular family of matching meshes.
(Here we slightly abuse notation by denoting the mesh size by h. For instance we
are going to denote by hh the finite element approximation of the water height.) The
elements in Th are assumed to be generated from a finite number of reference elements
denoted {K̂r}1≤r≤$. For example, the mesh Th could be composed of a combination
of triangles and quadrangles ($ = 2 in this case). Given a set of reference finite
elements in the sense of Ciarlet {(K̂r, P̂r, Σ̂r)}1≤r≤$ (the index r ∈ {1:$} is omitted
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in the rest of the paper to simplify the notation) we introduce the finite element space

(2.3) P (Th) :=
{
v ∈ C0(D; R) | v|K◦TK ∈ P̂ , ∀K ∈ Th

}
,

where for any K ∈ Th, TK : K̂ → K is the geometric bijective transformation that
maps the reference element K̂ to the current element K. We do not assume that
TK is affine. The exact nature of the degrees of freedom in Σ̂r is not essential, but
the reader who is not familiar with finite elements can think of Lagrange elements
or Bernstein elements. The reference space P̂ is assumed to be composed of scalar-
valued functions (these are polynomials usually). The reference shape functions are
denoted {θ̂i}i∈{1:nsh}; recall that they form a basis of P̂ . We assume that the basis
{θ̂i}i∈{1:nsh} has the partition of unity property:

∑
i∈{1:nsh} θ̂i(x̂) = 1 for all x̂ ∈ K̂.

The approximation in space of u in (2.2) will be done in P (Th) := [P (Th)]1+d. The
approximation of the bathymetry map will be done in P (Th). The global shape
functions in P (Th) are denoted by {ϕi}i∈{1:I}; the set {ϕi}i∈{1:I} is a basis of P (Th).
The partition of unity property on the reference shape functions implies that∑

i∈{1:I}

ϕi(x) = 1 ∀x ∈ D.(2.4)

Let Di be the support of ϕi and |Di| be the measure of Di, i ∈ {1:I}. For any
union of cells E ⊂ Th, we define I(E) := {j ∈ {1:I} | |Dj ∩ E| 6= 0} to be the set
that contains the indices of all the shape functions whose support on E is of nonzero
measure. We are going to regularly invoke I(K) and I(Di) and the partition of unity
property

∑
i∈I(K) ϕi(x) = 1 for all x ∈ K.

Let M be the consistent mass matrix with entries mij :=
∫
D
ϕi(x)ϕj(x) dx, and

let ML be the diagonal lumped mass matrix with entries mi :=
∫
D
ϕi(x) dx. The

partition of unity property implies that mi =
∑
j∈I(Di)mij . One key assumption

that we use in the rest of the chapter is that

(2.5) mi > 0 ∀i ∈ {1:I}.

The identities (2.4) are satisfied by all the standard finite elements and (2.5) is satisfied
by many Lagrange elements and by the Bernstein–Bezier elements of any degree.

Upon denoting by ‖ · ‖`2 the Euclidean norm in Rd, we introduce the following
two quantities which will play an important role in the rest of the paper:

(2.6) cij :=
∫
D

ϕi∇ϕj dx, nij :=
cij
‖cij‖`2

, i, j ∈ {1:I}.

Note that (2.4) implies
∑
j∈{1:I} cij = 0. Furthermore, if either ϕi or ϕj is zero on

∂D, then cij = −cji. In particular we have
∑
i∈{1:I} cij = 0 if ϕj is zero on ∂D.

This property will be used to establish conservation.

Lemma 2.1. Let k ∈ C1(R1+d; R(1+d)×d). Let uh =
∑
j∈{1:I}Ujϕj ∈ P (Th).

Then
∑
j∈I(Di) k(Uj)·cij is a second-order approximation of

∫
D
∇·(k(uh))ϕi dx.

Proof. Since we have
∫
Di
∇·(k(uh))ϕi dx =

∑
j∈{1:I} k(Uj)

∫
Di
ϕi∇ϕj dx when

k is linear, the quantity
∑
j∈I(Di) k(Uj)·cij is a second-order approximation in space

of
∫
D
∇·(k(uh))ϕi dx, i.e., the error scales like O(h2)‖cij‖`2 .
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Definition 2.2 (centrosymmetry). The mesh Th is said to be centrosymmetric
if the following conditions hold true: (i) For all i ∈ {1:I}, there is a permuta-
tion σi : I(Di) → I(Di) such that cij = −ciσi(j); (ii) if the function Di 3 x →∑
j∈I(Di) αjϕj(x) ∈ R is linear over Di then αi = 1

2 (αj + ασi(j)) for all j ∈ I(Di).

For instance, in the context of Lagrange elements, the centrosymmetric assump-
tion holds if for any i ∈ {1:I} the set of the Lagrange nodes with indices in I(Di)
can be partitioned into pairs that are symmetric with respect to the Lagrange node
of index i. Although at some point in the paper we will invoke centrosymmetry of the
mesh to establish formal consistency of some terms, we do not assume that the mesh
is centrosymmetric in the rest of the paper.

2.3. Well-balancing properties. The concept of well-balancing originates in
the seminal work of Bermudez and Vazquez [4] and Greenberg and Leroux [15]. The
idea is that the scheme should at the very least preserve steady states at rest. Of
course, it could be desirable to preserve general steady solutions, i.e., not necessarily
at rest, but this is beyond the scope of the present paper. We refer the reader to
Noelle, Xing, and Shu [26] where this question is addressed. Since at rest q = 0 the
balance of momentum reduces to 0 = g∇( 1

2h
2)+gh∇z = gh∇(h+z), one should have

either h+z is constant (so-called wet state) or h is zero (so-called dry state). Hence a
well-balanced scheme in the context of the shallow water equation is one such that, at
rest, dry states remain dry and h+z remains constant for wet states. This property is
not easy to satisfy for approximation techniques that are second order and higher in
space. We refer the reader to Bouchut [7] for a concise account and further references
on well-balanced schemes. In this paper we are going to adapt to continuous finite
elements a methodology proposed in Audusse and Bristeau [1], Audusse et al. [2]
known as the “hydrostatic reconstruction” technique.

Let zh =
∑I
i=1 Ziϕi ∈ P (Th) be the approximation of the bathymetry map.

Let hh =
∑I
i=1 Hiϕi ∈ P (Th) be the approximation of the water height. Let qh =∑I

i=1 Qiϕi be the approximation of the flow rate. Let us now define the rest state.
Curiously, defining a rest state is not as trivial as it sounds. We are going to use two
definitions. One of them makes use of the following quantity which is known in the
literature as the hydrostatic reconstruction of the water height:

(2.7) H∗,ji := max(0,Hi + Zi −max(Zi,Zj)) ∀i ∈ {1:I}, j ∈ I(Di).

To better understand this definition, assume that the water is at rest and consider
for instance a dry node j in the neighborhood of a wet node i, i.e., j ∈ I(Di), see
the left panel of Figure 1. In this case Hj = 0 and Zj ≥ Hi + Zi, which then implies
H∗,ji = H∗,ij . Similarly if both i and j are dry states we have H∗,ji = H∗,ij , and if both
i and j are wet states and are such that Hj + Zj = Hi + Zi we also have H∗,ji = H∗,ij .
These observations motivate the following definition.

Definition 2.3 (rest at large). A numerical state (hh, qh, zh) is said to be at
rest at large if the approximate momentum qh is zero, and if the approximate water
height hh and the approximate bathymetry map zh satisfy the following property, for
all i ∈ {1:I}: H∗,ji = H∗,ij for all j ∈ I(Di).

Definition 2.4 (exact rest). A numerical state (hh, qh, zh) is said to be at exact
rest (or exactly at rest) if qh is zero, and if the approximate water height hh and the
approximate bathymetry map zh satisfy the following alternative, for all i ∈ {1:I}:
for all j ∈ I(Di), either Hj = Hi = 0 or Hj + Zj = Hi + Zi.
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(a) (b) (c)

Fig. 1. Configuration (a) is not an exact rest state according to Definition 2.4 whereas config-
uration (b) is. Both states are at rest at large. Panel (c) shows a typical steady state at rest with
wet and dry areas.

The existence of an exact rest state is a compatibility condition between the mesh
and the initial data. This compatibility condition is not satisfied by the configuration
depicted in the left panel of Figure 1 whereas it is satisfied by the configuration in the
center panel. Exact rest implies rest at large. Note in passing that the zone where
h+ z is constant may not be connected; that is to say, it is possible to have different
free surface heights in disconnected wet zones as shown in the right panel of Figure 1.

Definition 2.5 (well-balancing at large). (i) A function K : P (Th)→RI×(RI)d
is said to be a well-balanced flux approximation at large if K(uh) = 0 when uh is a
rest state at large according to Definition 2.3. (ii) A mapping S : P (Th)→ P (Th) is
a well-balanced scheme at large if S(uh) = uh when uh is a rest state at large.

Definition 2.6 (exact well-balancing). (i) A function K : P (Th) → RI×(RI)d
is said to be an exactly well-balanced flux approximation if K(uh) = 0 when uh is an
exact rest state according to Definition 2.4. (ii) A mapping S : P (Th)→ P (Th) is an
exactly well-balanced scheme if S(unh) = unh when unh is an exact rest state.

Definition 2.7 (conservation). We say that unh → un+1
h is a conservative fi-

nite element approximation of (2.1) if
∑
i∈{1:I}miHni =

∑
i∈{1:I}miHn+1

i and if∑
i∈{1:I}miQ

n
i =

∑
i∈{1:I}miQ

n+1
i when the topography map is constant.

3. First order scheme. We describe in this section a time and space approx-
imation of (2.2). The scheme is well-balanced at large but approximates the flux to
first order in space only. This scheme satisfies local invariant domain properties and
local discrete entropy inequalities when the bottom is flat. It is an adaptation of
the method presented in Audusse et al. [2] to the continuous finite element setting
developed in Guermond and Popov [16]. To the best of our knowledge, this is the
first result of this type for continuous finite elements.

3.1. Flux approximation. Just like in [2, (2.13)], the key is to consider the
hydrostatic reconstruction (2.7) and to observe that

∑
j∈I(Di)

1
2 ((H∗,ij )2 − (H∗,ji )2)cij

is a well-balanced first-order approximation of the flux
∫
Di

(∇( 1
2h

2) + h∇z)ϕi dx.

Lemma 3.1 (consistency/well-balancing). (i) Assume that {θ̂n}n∈{1:nsh} con-
sists of Lagrange or Bernstein functions. Then

∑
j∈I(Di)

1
2 ((H∗,ij )2 − (H∗,ji )2)cij is

a first-order approximation of the flux
∫
Di

(∇( 1
2h

2) + h∇z)ϕi dx. (ii) The mapping
uh → (0,

∑
j∈I(Di)

1
2 ((H∗,ij )2 − (H∗,ji )2)cij)i∈{1:I} is well-balanced at large.

Proof. (i) Let us fix i ∈ {1:I}. We slightly abuse the notation by using h to
denote the mesh size. For the consistency analysis we assume that the water height
and the bathymetry map are smooth and the water height is nonnegative. More
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precisely, we assume that there is Cz such that for all i ∈ {1:I}, |Zi − Zj | ≤ Czh for
all j ∈ I(Di).

Assume first that Zj ≥ Zi. We immediately get H∗,ij = Hj . If, in addition,
Hi ≥ Czh, then H∗,ji = max(0,Hi + (Zi − Zj)) = Hi + (Zi − Zj), and we have
1
2 ((H∗,ij )2 − (H∗,ji )2) = 1

2H2
j − 1

2 (Hi + (Zi − Zj))2 = 1
2H2

j − 1
2H2

i + Hi(Zj − Zi) +O(h2).
Similarly, if Hi ≤ Czh, then H∗,ji = O(h) and we again have 1

2 ((H∗,ij )2 − (H∗,ji )2) =
1
2H2

j − 1
2H2

i + Hi(Zj − Zi) + O(h2). On the other hand, if Zi ≤ Zj , we obtain
1
2 ((H∗,ij )2−(H∗,ji )2) = 1

2H2
j− 1

2H2
i +Hj(Zj−Zi)+O(h2). But since Hj = Hi+O(h) (we

are using continuous finite elements and the water height is assumed to be smooth),
we also have 1

2 ((H∗,ij )2 − (H∗,ji )2) = 1
2H2

j − 1
2H2

i + Hi(Zj − Zi) +O(h2) in this case.
Using Lemma 2.1 we infer that

∑
j∈I(Di)(

1
2H2

j − 1
2H2

i )cij is a second-order ap-
proximation of

∫
D

(∇( 1
2h

2))ϕi dx. Similarly,
∑
j∈I(Di)(Hi(Zj − Zi))cij is a second-

order approximation of Hi
∫
D

(∇z)ϕi dx. If z is linear over Di (which is a sufficient
assumption for the consistency analysis), then Hi

∫
D

(∇z)ϕi dx = ∇z|DiHi
∫
D
ϕi dx.

Since Hi
∫
D
ϕi dx can be shown to be a second-order approximation of

∫
Di
hϕi dx

(at least for Lagrange and Bernstein basis functions), we conclude that∑
j∈I(Di)(Hi(Zj − Zi))cij is a second-order approximation of

∫
D

(h∇z)ϕi dx. Com-
bining these observations with the above argument and upon observing that
‖cij‖`2O(h2) = miO(h), we conclude that

∑
j∈I(Di)

1
2 ((H∗,ij )2 − (H∗,ji )2)cij is a first-

order approximation of
∫
D

(∇( 1
2h

2) + h∇z)ϕi dx.
(ii) Let us prove the well-balancing at large. Assuming that uh is a rest state at

large, according to Definition 2.3 we have H∗,ij = H∗,ji , hence (H∗,ij )2 − (H∗,ji )2 = 0.
The conclusion follows immediately.

Let us introduce the gas dynamics flux g(u) := (q, 1
hq ⊗ q)T. We now need

to approximate
∫
Di

g(u)ϕi dx. Since we have seen above that using H∗ is a good
idea to guarantee well-balancing at large, one could imagine working with the pair
(H∗,ji ,Qi)T. The problem with this choice is that if it happens that H∗,ji is zero
(because Hi + Zi ≤ max(Zi,Zj)), there is no reason for the approximate flow rate
Qi to be zero; hence the quantity Qi/H

∗,j
i which approximates the velocity could be

unbounded. To avoid this problem, we proceed as in [2] by working with the quantities

(3.1) Q∗,ji := Qi
H∗,ji
Hi

, U∗,ji :=
(
H∗,ji ,Q∗,ji

)T

with the convention that Q∗,ji := 0 if Hi = 0. Note that we have ‖Q∗,ji ‖`2 ≤ ‖Qi‖`2
since 0 ≤ H∗,ji ≤ Hi by definition. We now face the question of constructing a
consistent approximation of

∫
Di

g(u)ϕi dx using the state variable U∗,ji . To simplify
the notation let us introduce the approximate velocity vh =

∑
i∈{1:I}Viϕi with

(3.2) Vi :=
Qi

Hi
, i ∈ {1:I}.

Definition 3.2 (shoreline). We say that a degree of freedom i is away from the
shoreline if either Hj = 0 for all j ∈ I(Di) or min(Hj ,Hi) > |Zi−Zj | for all j ∈ I(Di).

Note that if the bottom topography is smooth, i.e., there is Cz such that for all
i ∈ {1:I}, |Zi − Zj | ≤ Czh, then any degree of freedom i such that Hj ≥ Czh for
all j ∈ I(Di), is away from the shoreline according to the above definition. Roughly
speaking, a degree of freedom i is said to be away from the shoreline if either all the
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degrees of freedom around i are dry or the water depth around i is at least Czh if the
bottom topography is smooth (h being the mesh size).

Lemma 3.3. The quantity
∑
j∈I(Di)(g(U∗,ij )+g(U∗,ji ))·cij is a first-order approx-

imation of
∫
Di
∇·g(u)ϕi dx away from the shoreline if the mesh is centrosymmetric.

Proof. Let i ∈ {1:I} be a degree of freedom away from the shoreline. The ap-
proximation of the flux is

∑
j∈I(Di)(VjH

∗,i
j + ViH

∗,j
i ))·cij for the mass conservation

equation and
∑
j∈I(Di)((Vj ⊗ Vj)H

∗,i
j + (Vi ⊗ Vi)H

∗,j
i ))·cij for the flow rate conser-

vation. Let us start with the mass conservation equation. We proceed as in the proof
of Lemma 3.1 and again assume that the water height and the bathymetry map are
smooth and the water height is nonnegative. Since the mesh is centrosymmetric by
hypothesis, we can assume without loss of generality that Zj ≥ Zi ≥ Zσi(j). Then
H∗,ij = Hj and since i is away from the shoreline we have either H∗,ji = Hi + Zi − Zj
if Hi 6= 0, or H∗,ji = 0 if Hi = 0. Similarly, H∗,σi(j)i = Hi and since i is away from the
shoreline we have either H∗,iσi(j) = Hσi(j) + Zσi(j) − Zi if Hσi(j) 6= 0, or H∗,iσi(j) = 0 if
Hσi(j) = 0. Hence, if i is a wet state (and all the states in I(Di) are wet since i is
away from the shoreline), we have(

VjH
∗,i
j + ViH

∗,j
i

)
·cij +

(
Vσi(j)H

∗,i
σi(j)

+ ViH
∗,σi(j)
i

)
·ciσi(j)

=
(
VjHj + Vi(Hi + Zi − Zj)− (Vσi(j)(Hσi(j) + Zσi(j) − Zi) + ViHi)

)
·cij

= (VjHj − ViHi)·cij + (Vσi(j)Hσi(j) − ViHi)·ciσi(j)
+ Vi(Zi − Zj)·cij + Vσi(j)(Zσi(j) − Zi)·ciσi(j),

where we have used the centrosymmetry property cij = −ciσi(j). If i is a dry state
(recall that j and σi(j) are also dry states since i is away from the shoreline) then(

VjH
∗,i
j + ViH

∗,j
i

)
·cij +

(
Vσi(j)H

∗,i
σi(j)

+ ViH
∗,σi(j)
i

)
·ciσi(j)

= (VjHj − ViHi)·cij + (Vσi(j)Hσi(j) − ViHi)·ciσi(j).

Since according to Lemma 2.1,
∑
j∈I(Di)(VjHj − ViHi)·cij =

∑
j∈I(Di) VjHj ·cij

is a second-order approximation of
∫
D
∇·(vhhh)ϕi dx, we have to show that the

contribution of the extra term Vi(Zi − Zj)·cij − Vσi(j)(Zσi(j) − Zi)·cij that arises
when i is a wet state is small. Assuming that the velocity is smooth, we have
Vσi(j) = Vi + O(h), which shows that Vi(Zi − Zj)·cij − Vσi(j)(Zσi(j) − Zi)·cij =
Vi(2Zi − Zj − Zσi(j))·cij + ‖cij‖`2O(h2). The centrosymmetry assumption implies
that 2Zi − Zj − Zσi(j) = O(h2) if the bathymetry map is smooth. In conclusion∑
j∈I(Di)(VjH

∗,i
j + ViH

∗,j
i )·cij =

∑
j∈I(Di) VjHj ·cij + miO(h) away from the shore-

line. Using the same argument one proves that∑
j∈I(Di)

((Vj ⊗ Vj)H
∗,i
j + (Vi ⊗ Vi)H

∗,j
i ))·cij =

∑
j∈I(Di)

(Vj ⊗ Vj)Hj +miO(h).

This concludes the proof.

Remark 3.4 (hydrostatic reconstruction). The lack of consistency of the hydro-
static reconstruction at the shoreline or in the presence of large gradients in the
topography map has been identified in Delestre et al. [10, Prop. 2.1]. Various alter-
natives to the hydrostatic reconstruction have since been proposed like in Berthon
and Foucher [5], Bryson et al. [9], Duran, Liang, and Marche [12], where the authors
propose to work with the free surface elevation instead of the water height.
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3.2. Full time and space approximation. Let u0
h =

∑I
i=1 U0

iϕi ∈ P (Th) be
a reasonable approximation of u0. Let n ∈ N, τ be the time step, tn be the current
time, and let us set tn+1 = tn + τ . Let unh =

∑I
i=1 Un

i ϕi ∈ P (Th) be the space
approximation of u at time tn. Upon denoting H∗,j,ni := max(0,Hni +Zi−max(Zi,Zj)),
we propose to estimate Un+1

i as follows:

(3.3) mi
Un+1
i −Un

i

τ
+
∑

j∈I(Di)

(g(U∗,i,nj ) + g(U∗,j,ni ))·cij

+
(

0
1
2g
(
(H∗,i,nj )2 − (H∗,j,ni )2

)
cij

)
−

∑
i6=j∈I(Di)

dnij(U
∗,i,n
j −U∗,j,ni ) = 0,

where the artificial viscosity coefficient dnij is defined by

dnij := max
(
df ,n
ij , df ,n

ji

)
,(3.4)

df ,n
ij := max

(
λf

max

(
nij ,U

n
i ,U

∗,i,n
j

)
, λf

max

(
nij ,U

n
i ,U

∗,j,n
i

))
‖cij‖`2 ,(3.5)

and λf
max(n,UL,UR) is the maximum wave speed in the Riemann problem:

(3.6) ∂tu + ∂x(f(u)·n) = 0, u(x, 0) = (1−H(x))UL +H(x)UR,

where H(x) is the Heaviside function. Note that dnij ≥ 0 and dnij = dnji for all j 6= i
in I(Di). For convenience we denote dnii := −

∑
i 6=j∈I(Di) d

n
ij . Therefore we have∑

j∈I(Di) d
n
ij =

∑
j∈I(Di) d

n
ji = 0; this property will be used in the rest of the paper.

3.3. Reduction to the one-dimensional Riemann problem. For complete-
ness, we show how the estimation of λf

max(n,UL,UR) can be reduced to estimating
the maximum wave speed in a one-dimensional Riemann problem independent of n.
Similarly to [16], we make a change of basis and introduce t1, . . . , td−1 ∈ Rd so that
{n, t1, . . . , td−1} is an orthonormal basis of Rd. With respect to this basis we have
that q = (q, q⊥), where q := q·n and q⊥ := (q·t1, . . . , q·td−1)T. Then, with the no-
tation v = q/h, the Riemann problem (3.6) can be rewritten in the new orthonormal
basis as follows:

(3.7) ∂tu + ∂x(n·f(u)) = 0, u =

 h
q

q⊥

 , f(u)·n =

 q
vq + g

2h
2

vq⊥


with data UL = (hL, qL, q⊥L )T, UR = (hR, qR, q⊥R)T. The solution to (3.7) is henceforth
denoted u(n,UL,UR)(x, t). Following [16], we introduce the following definition.

Definition 3.5 (invariant set). A convex set A ⊂ A is said to be invariant for the
flat bottom system, i.e., (2.1) with b = 0, if for any admissible pair (UL,UR) ∈ A×A
and any unit vector n ∈ Rd, we have u(n,UL,UR)(x, t) ∈ A for a.e. x ∈ R, t > 0.

Let u(t,n,UL,UR) :=
∫ 1

2
− 1

2
u(n,UL,UR)(x, t) dx. Then, the following result is a

consequence of λf
max(n,UL,UR) being finite; see [16, Lem. 2.1].

Lemma 3.6 (invariant set and average). (i) Let A ⊂ A be an invariant set for
the flat bottom system. If (UL,UR) ∈ A, then u(t,n,UL,UR) ∈ A. (ii) Assume that
2t λmax(n,UL,UR) ≤ 1, then u(t,n,UL,UR) = 1

2 (UL + UR)− t(f(UR)− f(UL))·n.

This lemma is the key motivation for the definition of the viscosity coefficients
df ,n
ij in (3.5) (see [16, section 3.3] for more details).
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The maximum wave speed in the Riemann problem (3.7) is determined by the
one-dimensional shallow water system for the component (h, q)T because the last
component is just passively transported and does not influence the first two equations
of the system. That is to say (3.7) reduces to solving the Riemann problem

(3.8) ∂t(h, q)T + ∂x(f1D(h, q)) = 0

with data uL := (hL, qL), uR := (hR, qR) and flux f1D(h, q) := (q, vq + g
2h

2)T. This
establishes the following result which will be useful to estimate df ,n

ij in (3.5).

Proposition 3.7 (maximum wave speed). Let λf
max(n,UL,UR), λf1D

max(uL,uR)
be the maximum wave speed in the Riemann problems (3.7) and (3.8), respectively.
Then λf

max(n,UL,UR) = λf1D
max(uL,uR).

In order to estimate λf1D
max(uL,uR) from above, we introduce

λ−1 (h∗) := vL −
√
ghL

(
1 +

(
h∗ − hL

2hL

)
+

) 1
2
(

1 +
(
h∗ − hL
hL

)
+

) 1
2

,(3.9)

λ+
2 (h∗) := vR +

√
ghR

(
1 +

(
h∗ − hR

2hR

)
+

) 1
2
(

1 +
(
h∗ − hR
hR

)
+

) 1
2

.(3.10)

The following result is proved in Guermond and Popov [18]:

Lemma 3.8. Let hmin= min(hL, hR), hmax= max(hL, hR), x0 = (2
√

2− 1)2, and

h∗ :=


(vL−vR+2

√
ghL+2

√
ghR)2+

16g if case 1,(
−
√

2hmin +
√

3hmin + 2
√

2hminhmax +
√

2
g (vL − vR)

√
hmin

)2

if case 2,
√
hminhmax

(
1 +

√
2(vL−vR)√

ghmin+
√
ghmax

)
if case 3,

where case 1 is 0 ≤ f(x0hmin), case 2 is f(x0hmin) < 0 ≤ f(x0hmax), and case 3 is
f(x0hmax) < 0. Then λf

max(n,UL,UR) = λf1D
max(uL,uR) ≤ max(|λ−1 (h∗)|, |λ+

2 (h∗)|).

3.4. Stability properties. We collect in this section some remarkable stability
properties of the scheme defined by (3.3)–(3.5).

Proposition 3.9 (well-balancing/conservation). The scheme defined in (3.3) is
well-balanced at large, and it is conservative in the sense of Definition 2.7.

Proof. Let unh be a rest state at large, then H∗,i,nj = H∗,j,ni for all i ∈ {1:I}
and all j ∈ I(Di); this identity implies well-balancing at large. Let us now establish
conservation. Since cij = −cji and dnij = dnji we have∑

i∈{1:I}

∑
j∈I(Di)

cjiαij = 0,
∑

i∈{1:I}

∑
j∈I(Di)

dnjiβij = 0

for any symmetric field αij = αji and any skew-symmetric field βij = −βij . Hence, we
only have to deal with the nonconservative flux in (3.3), 1

2g((H∗,i,nj )2 − (H∗,j,ni )2)cij .
This quantity is zero for a constant topography map. This concludes the proof.

Since the shallow water system makes sense only for nonnegative water heights,
and the water discharge should be zero in dry states, we are led to consider the
following definition for the admissibility of shallow water states.
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Definition 3.10 (admissible water states). A shallow water state U = (H,Q)T

is admissible if H ≥ 0 and Q = 0 if H = 0. The set of admissible states is denoted A.

Note that a convex combination of admissible states is always an admissible state.

Proposition 3.11 (invariant domain). Let un+1
h be given by (3.3)–(3.5), n ≥ 0.

Let ∈ {1:I}. Assume that 1 + 4 τ
mi
dnii ≥ 0. Let Ani be an invariant set of the shallow

water equation that contains {Un
j }j∈I(Di). Then the following properties hold true:

(i) If the bathymetry map is constant then Un+1
i ∈ Ani .

(ii) If the bathymetry is not constant, let

∆Zn
i :=

τ

mi

∑
i 6=j∈I(Di)

g((Hni )2 − (H∗,j,ni )2)cij

and ∆U∗,ni := 2τ
mi

∑
i 6=j∈I(Di) d

n
ij(1−

H∗,j,n
i

Hni
)Un

i then Un+1
i ∈ conv(Ani ,0)+(0,∆Zn

i )T +
∆U∗,ni ; in particular the scheme preserves the nonnegativity of the water height.

(iii) If the states {Un
i } are admissible then the states {Un+1

i } are also admissible.

Proof. Recalling that f(u) = g(u)+(0, 1
2gh

2Id)T, then (3.3) can also be rewritten

mi

τ

(
Un+1
i −Un

i

)
+

∑
j∈I(Di)

f
(
U∗,i,nj

)
·cij − dnijU

∗,i,n
j + f

(
U∗,j,ni

)
·cij − dnijU

∗,j,n
i

+
∑

j∈I(Di)

(
0,−g

(
H∗,j,ni

)2
cij

)T

+ (dnij + dnij)U
∗,j,n
i = 0.

Using conservation, i.e., cii = −
∑
i 6=j∈I(Di) cij , this equation can be recast into

mi

τ

(
Un+1
i −Un

i

)
=

∑
i 6=j∈I(Di)

−
(
f
(
U∗,i,nj

)
− f (Un

i )
)
·cij + dnij

(
U∗,i,nj + Un

i

)
+

∑
i 6=j∈I(Di)

−
(
f
(
U∗,j,ni

)
− f (Un

i )
)
·cij + dnij

(
U∗,j,ni + Un

i

)

+
∑

i 6=j∈I(Di)

(
0, g

(
(Hni )2 −

(
H∗,j,ni

)2
)

cij

)T

−
(
dnij + dnij

) (
U∗,j,ni + Un

i

)
.

Upon introducing the vectors Un
ij ∈ R1+d, Wn

ij ∈ R1+d, and ∆Zn
i ∈ Rd defined by

Un
ij := −‖cij‖`

2

2dnij

(
f
(
U∗,i,nj

)
− f (Un

i )
)
·nij +

1
2

(
U∗,i,nj + Un

i

)
,

Wn
ij := −‖cij‖`

2

2dnij

(
f
(
U∗,j,ni

)
− f (Un

i )
)
·nij +

1
2

(
U∗,j,ni + Un

i

)
,

∆Zn
i :=

∑
i 6=j∈I(Di)

g

(
(Hni )2 −

(
H∗,j,ni

)2
)

cij ,
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we finally obtain

Un+1
i =

1−
∑

i6=j∈I(Di)

4τ
mi

dnij

Un
i +

∑
i 6=j∈I(Di)

2τ
mi

dnij(U
n
ij + Wn

ij)

+
τ

mi
(0,∆Zn

i )T +
2τ
mi

∑
i 6=j∈I(Di)

dnij

(
1− H∗,j,ni

Hni

)
Un
i .

Upon introducing the fake time t = ‖cij‖`2
2dnij

and observing that the definition of dnij
implies that 2tλf

max(nij ,Un
i ,U

∗,i,n
j ) ≤ 1 and 2tλf

max(nij ,Un
i ,U

∗,j,n
i ) ≤ 1, we infer from

Lemma 3.6 that Un
ij ∈ convj∈I(Di)(U

∗,i,n
j ) and Wn

ij ∈ convj∈I(Di)(U
∗,j,n
i ); hence,

Unij+Wn
ij

2 ∈ convj∈I(Di)(U
∗,i,n
j ,U∗,j,ni ). In conclusion, under the CFL condition 1 +

4 τ
mi
dnii ≥ 0, the state Ũ

n+1
i := (1 + 4τ

mi
dnii)U

n
i +
∑
i 6=j∈I(Di)

2τ
mi
dnij(U

n
ij + Wn

ij) belongs
to convj∈I(Di)(U

∗,i,n
j ,U∗,j,ni ). If the bathymetry map is flat then Hni = H∗,j,ni and we

obtain Un+1
i = Ũ

n+1
i ∈ convj∈I(Di)(U

n
j ) ⊂ Ani and this proves (i). If the bathymetry

is not flat, then U∗,i,nj is in the convex hull of Un
j and 0 for all j ∈ I(Di) and U∗,j,ni is

in the convex hull of Un
i and 0 for all j ∈ I(Di); this proves that Ũ

n+1
i ∈ conv(Ani ,0).

Hence, if the bathymetry is not flat we get Un+1
i ∈ conv(Ani ,0) + (0,∆Zn

i )T + ∆U∗,ni
as announced. The water height in ∆U∗,ni is 2τ

mi

∑
i 6=j∈I(Di) d

n
ij(H

n
i − H∗,j,ni ) ≥ 0.

Since all the states in Ani have nonnegative water height, we conclude that Hn+1
i ≥ 0

and this proves (ii). Finally, fix n ≥ 0 and assume that all states {Un
j } are admissible

in the sense of Definition 3.10. If Hni > 0 then we have that

Hn+1
i ≥

1−
∑

i6=j∈I(Di)

4τ
mi

dnij

Hni > 0,

and this proves that Un+1
i is admissible. In the remaining case Hni = 0, we have that

H∗,j,ni = 0 for all j ∈ I(Di) and ∆Zn
i = 0. Hence Un+1

j = Ũ
n+1
i and using that

Ũ
n+1
i is a convex combination of admissible states we conclude that the state Un+1

i

is admissible and this proves (iii).

We finish with a discrete inequality which reduces to a standard discrete entropy
inequality when the bottom topography is flat. The proof is omitted for brevity.

Proposition 3.12. Let un+1
h be given by (3.3)–(3.5). Assume the CFL condition

1 + 4 τ
mi
dnii ≥ 0. Then for any flat bed shallow water entropy pair (η,G), we have the

following discrete entropy inequality:

(3.11)
mi

τ

(
η
(
Un+1
i

)
− η (Un

i )
)

+
∑

i 6=j∈I(Di)

(
G
(
U∗,i,nj

)
+ G

(
U∗,j,ni

))
·cij

≤
∑

i6=j∈I(Di)

dnij

(
η
(
U∗,i,nj

)
+ η

(
U∗,j,ni

)
− 2η (Un

i )
)

+

(0,∆Zn
i )T +

∑
i 6=j∈I(Di)

2dnij

(
1− H∗,j,ni

Hni

)
Un
i

 ·∇η(Un+1
i ).
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Remark 3.13 (literature). We refer the reader to Bouchut and Frid [8, section 2]
for an alternative point of view to derive the invariant domain property and entropy
inequality obtained above.

4. Second-order extension. In this section we propose a scheme that is second-
order accurate in space, is exactly well-balanced, and is positivity preserving.

4.1. Flux approximation. We start by constructing a well-balanced second-
order approximation of the quantity

∫
Di

(∇( 1
2h

2) + h∇z)ϕi dx.

Lemma 4.1 (consistency/well-balancing). (i) Assume that {θ̂n}n∈{1:nsh} con-
sists of Lagrange or Bernstein basis functions. The expression

∑
j∈I(Di) Hi(Hj+Zj)cij

is a second-order approximation of
∫
D

(∇( 1
2h

2) + h∇z)ϕi dx. (ii) The mapping uh →
(0,
∑
j∈I(Di) Hi(Hj + Zj)cij)i∈{1:I} is an exactly well-balanced flux.

Proof. (i) If h + z is linear over K ∈ Th then
∫
K
h∇(h + z)ϕi dx =

∇(h + z)|K
∫
K
hϕi dx and the approximation

∫
K
hϕi dx ≈ Hi 1d |K| is second-order

accurate, at least for Lagrange and Bernstein basis functions. Hence, upon notic-
ing that

∑
K⊂Di ∇(h + z)|K 1

d |K| =
∫
Di
∇(h + z)ϕi dx =

∑
j∈I(Di)(Hj + Zj)cij , the

expression
∫
D
h∇(h + z)ϕi dx ≈

∑
j∈I(Di) Hi(Hj + Zj)cij is formally second-order

accurate.
(ii) Let us now prove well-balancing. Let us assume exact rest. Let us fix i ∈

{1:I}. Notice that owing to the partition of unity property we have
∑
j∈I(Di) cij = 0;

hence
∑
j∈I(Di) Hi(Hj + Zj)cij =

∑
j∈I(Di) Hi(Hj + Zj − Hi − Zi)cij . Consider j ∈

I(Di). According to our definition of the exact rest state (see Definition 2.4), either
Hi = 0 and Hj = 0, or Hj + Zj − Hi − Zi = 0; whence the conclusion.

Let us introduce the gas dynamics flux g(u) := (q, 1
hq⊗ q)T; then upon invoking

Lemma 2.1,
∑
j∈I(Di) g(Uj)·cij is a second-order approximation of

∫
Di
∇·(g(u))ϕi dx.

4.2. Full time and space approximation. Let u0
h =

∑I
i=1 U0

iϕi ∈ P (Th) be
a reasonable approximation of u0. Let n ∈ N, τ be the time step, tn be the current
time, and tn+1 := tn + τ . Let unh =

∑I
i=1 Un

i ϕi ∈ P (Th) be the space approximation
of u at time tn and let un+1

h :=
∑I
i=1 Un+1

i ϕi. We estimate Un+1
i as follows:

mi

τ

(
Un+1
i −Un

i

)
=

∑
j∈I(Di)

− g
(
Un
j

)
·cij −

(
0, gHni

(
Hnj + Zj

)
cij
)T

+
∑

i 6=j∈I(Di)

dnij

(
U∗,i,nj −U∗,j,ni

)
+ µnij

(
Un
j −U∗,i,nj −

(
Un
i −U∗,j,ni

))(4.1)

µnij := max((Vi·nij)−, (Vj ·nij)+)‖cij‖`2 , dnij ≥ µnij , i 6= j.(4.2)

Here we use the notation a+ := max(a, 0) and a− = −min(a, 0). In the above scheme
dnij = dnji can be any nonnegative number larger than µnij when i 6= j. One could
just take dnij = µnij , but a more robust choice consists of using dnij = max(df ,n

ij , df ,n
ji );

note that in this case the local maximum wave speed formulas (3.9) and (3.10) used
with uL := (Hni ,Q

n
i ·nij) and uR = (Hnj ,Q

n
i ·nij) imply that dnij ≥ µnij . Notice that

µnij = µnji because nij = −nji owing to the assumed boundary condition. We adopt
again the convention dnii := −

∑
i6=j∈I(Di) d

n
ij .

Proposition 4.2. The scheme (4.1)–(4.2) is exactly well-balanced and conserva-
tive. It is positivity preserving provided 1 + 2dnii

τ
mi
≥ 0 for all i ∈ {1:I}.
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Proof. The artificial viscosity term on the right-hand side of (4.1) at exact rest is∑
i 6=j∈I(Di)−µ

n
ij(−Hnj +Hni , 0)T = 0, since µnij = 0 at rest state (at large). The remain-

der of the proof is a consequence of Lemma 4.1, which establishes exact well-balancing.
Since

∑
j∈I(Di)−g(Un

j )·cij =
∑
j∈I(Di)(g(Un

i )− g(Un
j ))·cij , the conservation can be

shown like in the proof of Proposition 3.9. Finally, to prove positivity, let us fix i and
assume that Hnj ≥ 0 for all j ∈ I(Di). The water height update is

Hn+1
i = Hni −

τ

mi

∑
i 6=j

(
µnijH

n
i +

(
dnij − µnij

)
H∗,j,ni

)
+

τ

mi

∑
i 6=j

((
µnij − cij ·V n

j

)
Hnj +

(
dnij − µnij

)
H∗,i,nj

)
.

Using that dnij − µnij ≥ 0, µnij ≥ 0, Hni ≥ H∗,j,ni ≥ 0, and H∗,i,nj ≥ 0 we obtain

Hn+1
i ≥ Hni

1− τ

mi

∑
i 6=j

dnij

+
τ

mi

∑
i 6=j

(
µnij − cij ·V n

j

)
Hnj .

The conclusion follows from the assumption on the CFL number and the definition
of µnij which implies that µnij − cij ·V n

j ≥ ((V n
j ·nij)+ − V n

j ·nij)‖cij‖`2 ≥ 0.

Remark 4.3. Note that the approximation of the flux in the scheme (4.1) is for-
mally second-order accurate in space and contrary to (3.3) does not suffer from the
small inconsistency of the hydrostatic reconstruction, since the hydrostatic reconstruc-
tion is used only in the artificial viscosity. In particular (4.1) is formally second-order
accurate in space when the artificial viscosity is set to zero.

4.3. Second-order positivity preserving viscosity. In order to make the
proposed method fully second-order accurate in space, we now propose a new def-
inition of the viscosity along the line of Guermond and Popov [17]. Namely, we
choose the viscous terms dnij and µnij in the scheme (4.1) to be dnij := αnijd

v,n
ij and

µnij := αnijµ
v,n
ij , where dv,nij := max(df ,n

ij , df ,n
ji ) is the first-order viscosity based on the

maximum wave speed, µv,nij := max((Vi·nij)−, (Vj ·nij)+)‖cij‖`2 and αnij ∈ [0, 1] is
appropriately chosen. More precisely, the proposed second-order scheme is

mi

τ

(
Un+1
i −Un

i

)
=

∑
j∈I(Di)

− g(Un
j )·cij −

(
0, gHni (Hnj + Zj)cij

)T
+

∑
i6=j∈I(Di)

dnij

(
U∗,i,nj −U∗,j,ni

)
+ µnij

(
Un
j −U∗,i,nj −

(
Un
i −U∗,j,ni

))
,

(4.3)

µnij := max(ψni , ψ
n
j )µv,nij , i 6= j,(4.4)

dnij := max(ψni , ψ
n
j )dv,nij , i 6= j,(4.5)

with ψni ∈ [0, 1] yet to be determined. One possible choice for the second-order
coefficient ψni consists of setting ψni = ψ(αni ), where we define

(4.6) αni :=
|
∑
j∈I(Di) Hnj − Hni |∑
j∈I(Di) |H

n
j − Hni |

.

It is shown in Guermond and Popov [19] that any function ψ in C0,1([0, 1]; [0, 1]) with
ψ(1) = 1 gives an algorithm that is positivity preserving up to a CFL condition, (see
also [17] for the scalar version of the method and other possible choices for ψni ). We
take ψ(α) = α2 in all the numerical simulations reported at the end of the paper.
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Proposition 4.4. Let kψ be the Lipschitz constant of ψ. The scheme (4.3)–
(4.4)–(4.5) is positivity preserving provided that τ

mi
(−dnii +

∑
j∈I(Di)(cij ·V

n
j )−) ≤ 1

2

and τ
mi

maxi 6=j∈I(Di)(cij ·Vj)− ≤ 1
4kψc]

, where c] = maxi∈{1:I} card(I(Di)).

Proof. By proceeding as in the proof of Proposition 4.2, we obtain

Hn+1
i = Hni −

τ

mi

∑
i 6=j

(
µnijH

n
i + (dnij − µnij)H

∗,j,n
i

)
+

τ

mi

∑
i 6=j

((
µnij − cij ·V n

j

)
Hnj +

(
dnij − µnij

)
H∗,i,nj

)
.

Using that dnij ≥ µnij and H∗,i,nj ≥ 0, Hni ≥ H∗,j,ni for all j, we obtain

Hn+1
i ≥ Hni

1− τ

mi

∑
i 6=j

dnij

+
τ

mi

∑
i 6=j

(
µnij − cij ·V n

j

)
Hnj .

To finish the proof, it remains to show that the right-hand side is nonnegative under
the appropriate CFL condition. The reader is referred to [19] for the proof of this result
and other choices for αnij that also make the scheme (4.3) positivity preserving.

Remark 4.5 (linearity preserving). It is possible to modify the definition of αni
in (4.6) to make the method linearity preserving (the reader is referred to Berger,
Aftosmis, and Murman [3] for a review on linearity-preserving limiters in the finite
volume literature). More precisely, when the shape functions are Lagrange based, one
can set αni := |

∑
j∈I(Di) βij(H

n
j −Hni )|/

∑
j∈I(Di) βij |H

n
j −Hni |, where the coefficients

βij are generalized barycentric coordinates; see Guermond and Popov [17] for details.
We take βij = 1 in all the numerical simulations reported at the end of the paper.

5. Numerical illustrations. In this section we illustrate the performance of
the various algorithms introduced in the paper. Most of the test cases are taken from
the so-called SWASHES suite from Delestre et al. [11].

5.1. Technical details. All the numerical simulations are done in two space di-
mensions even when the problem under consideration has a one-dimensional solution.
In order to avoid extraneous superconvergence effects we use unstructured, nonnested,
Delaunay meshes composed of triangles. The computations are done with continu-
ous Lagrange P1 finite elements. The time stepping is done with the SSP RK(3,3)
method (three stages, third-order), see Shu and Osher [30, (2.18)] and Kraaijevanger
[22, Thm. 9.4]. All the computations reported in this section have been done with
the upper bound on λf1D

max(vL,vR) given by Lemma 3.8.
To avoid division by zero in the presence of dry states we introduce hε :=

εmaxx∈D h0(x) with ε = 10−16, where h0 is the initial water height. That is to
say, we approximate the 0 water height by 10−16 times the maximum water height
at the initial time. Then we regularize the gas dynamics flux g as follows: gε(u) :=
(q, 2h

h2+max(h,hε)2
q ⊗ q)T. That is to say the speed v := g/h is regularized by setting

vε := 2h
h2+max(h,hε)2

q. Note that we obtain g(u) = gε(u) and vε = v when h ≥ hε;
that is, the regularization is active only when h ≤ hε.

All the schemes proposed in this paper are positivity preserving on the water
height provided they are programmed correctly. Hence, provided the initial water is
nonnegative, the water height should never become negative up to roundoff errors.
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We have observed that is is possible to avoid the effects of roundoff errors in the
presence of dry regions by programming the update of the water height as follows:

(5.1) Hn+1
i = Hni

1− τ

mi

cii·Vni +
∑
i 6=j

µnij +
(
dnij − µnij

) H∗,j,ni

Hni


+

τ

mi

∑
i 6=j

(
−cij ·Qn

j + µnijH
n
j +

(
dnij − µnij

)
H∗,i,nj

)
instead of setting Hn+1

i = Hn
i + τ

mi
∆Rni with

∆Rni :=
∑

j∈I(Di)

−cij ·Qn
j + µnij

(
Hnj − Hni

)
+
(
dnij − µnij

) (
H∗,i,nj − H∗,j,ni )

)
.

When doing convergence tests over meshes of different mesh size, the convergence
rates are estimated as follows: given two errors e1, e2 obtained on two meshes Th1,
Th2, and denoting I1 := dimP (Th1) I2 := dimP (Th2), the convergence rate is defined
to be the ratio d log(e1/e2)/ log(I2/I1) since the quantity I−

1
d scales like the mesh

size. In all the test cases we take g = 9.81 m s−1 and d = 2.

5.2. Well-balancing. We have verified on various tests, not reported here for
brevity, that the proposed methods are well-balanced. More precisely, the first-order
algorithm (3.3)–(3.5) is well-balanced irrespective of the structure of the mesh, i.e.,
the discharge stays close to the roundoff error indefinitely. The well-balancing of the
second-order algorithm depends on whether or not exact rest is possible as defined in
Definition 2.4. If the mesh is such that exact rest is possible, then the algorithm is
well-balanced up to machine accuracy indefinitely. If exact rest is not supported by
the mesh, approximate well-balancing is achieved up to truncation error indefinitely.

5.3. Flows over a bump. We consider in this section several classical test
cases detailed in [11, section 3.1]. The domain is a one-dimensional channel [0, L]
with length L = 25 m. The bathymetry profile proposed in [11, section 3.1] is flat
with a parabolic bump, but to increase the smoothness of the solution in order to
estimate the convergence rate properly, we modify a little bit the profile as follows:

(5.2) z(x) =

{
0.2
64 (x− 8)3(12− x)3 if 8 ≤ x ≤ 12,
0 otherwise.

Steady solutions satisfy mass conservation q(x) = q(0) and the Bernoulli relation

(5.3)
q2

2gh2 + h(x) + z(x) = CBer,

where the Bernoulli constant CBer depends on the data. All the computations in
section 5.3 are done in two dimensions in the channel D = [0, L]×[0, 1].

5.3.1. Subcritical flow. We now consider a steady state solution with the in-
flow discharge −q·n = qin = 4.42 m2 s−1 imposed at {x = 0} and q·n = 0 on the
sides of the channel {y = 0} ∪ {y = 1}. The water height is enforced to be equal to
hL = 2 m at {x = L}; hence CBer := q2in

2gh2
L

+ hL. The initial condition is q0(x) = 0
and h0(x) = hL − z(x). We look for the solution at t = 80 s which should be close to
steady state. From Bernoulli’s relation (5.3), z(x) + h(x) + q2in

2gh2(x) = CBer one gets



3218 PASCAL AZERAD, JEAN-LUC GUERMOND, AND BOJAN POPOV

Table 1
Subcritical flow over a bump with h given by (5.6). Computation done at t = 80 s with initial

data at rest; CFL = 1.25. L1-norm is given in rows 2–6, L2-norm is given in rows 7–11. Viscosities
are ψ(α) = α2 (columns 3–4) and first-order viscosity (columns 5–6).

Norm I ψ(α) = α2 ψ(α) = 1

L1

248 1.46E-03 Rate 4.99E-03 Rate
885 2.57E-04 2.73 3.39E-03 0.61
3069 3.44E-05 3.08 1.95E-03 0.84
12189 1.21E-06 3.09 1.03E-03 0.98
48053 7.47E-07 2.66 5.19E-04 1.00

L2

248 2.91E-3 Rate 9.57E-03 Rate
885 6.48E-04 2.35 6.36E-03 0.64
3069 1.25E-04 2.52 3.62E-03 0.86
12189 2.31E-05 2.59 1.90E-03 0.99
48053 4.04E-06 2.55 9.57E-04 1.00

that the exact steady state solution h(x) solves the algebraic equation

(5.4) h3(x) + (z(x)− CBer)h2(x) +
q2in
2g

= 0 ∀x ∈ [0, L].

Let b(x) := z(x) − CBer and d := q2in
2g . With the considered data, the cubic equation

h3 + bh2 + d = 0 has three real zeros. The one that corresponds to the steady state
solution is the largest root. Upon defining

(5.5) Q(x) := −b
2(x)
9

, R(x) := −27d+ 2b3(x)
54

, cos(θ(x)) = (−Q(x))−
3
2R(x),

the water height is given by the trigonometric form of Cardano’s formula:

(5.6) h(x) = 2
√
−Q(x) cos

(
θ(x)

3

)
− b(x)

3
.

Two types of computations are performed with the scheme (4.3)–(4.5) using either
the second-order viscosity ψ(α) = α2 or the first-order viscosity ψ(α) = 1. We use
CFL = 1.25. In order to speed up the convergence to steady state we additionally
impose the exact water height at x = 0. This artifact is used only to observe the
theoretical convergence rate in space at t = 80. We show in Table 1 the error on the
water height measured in the L1-norm and in the L2-norm. All the errors are relative
to the corresponding norm of the exact solution. We observe that the convergence
rate exceeds 2 both in the L1-norm and in the L2-norm for the viscosity ψ(α) = α2.
This is a superconvergence effect that we do not really understand at the moment.
Let us recall that the meshes that are used here are nonnested, unstructured, and the
initial condition is rest. As expected the asymptotic convergence rate of the solution
obtained with the first-order viscosity ψ(α) = 1 is 1 irrespective of the norm.

5.3.2. Transcritical flow. We run again the above test in the transcritical
regime. Given qin, we set the Bernoulli constant CBer so that the Bernoulli rela-
tion (5.4) has two identical positive roots at the top of the bump, meaning that the
discriminant of (5.4), Q3 +R2, is zero, where Q and R are defined in (5.5). This fixes
the Bernoulli constant CBer to be equal to zM + 3

2 ( q
2
in
g )

1
3 , where zM is the height of the

bump. The flow is fluvial (subsonic) upstream and becomes torrential (supersonic) at
the top of the bump. The exact water height is the largest root of (5.4) when x ≤ xM
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Table 2
Transcritical flow over a bump with h given by (5.7). Computation done at t = 80 s with initial

data at rest; CFL = 0.95. L1-norm is given in rows 2–6, L2-norm is given in rows 7–11. Viscosities
are ψ(α) = α2 (columns 3–4) and first-order viscosity (columns 5–6).

Norm I ψ(α) = α2 ψ(α) = 1

L1

248 2.03E-02 Rate 1.63E-01 Rate
885 3.49E-03 2.77 9.09E-02 0.92
3069 4.71E-04 3.08 4.67E-02 1.02
12189 9.86E-05 2.40 2.35E-02 1.05
48053 1.95E-05 2.38 1.17E-02 1.02

L2

248 2.28E-02 Rate 1.57E-01 Rate
885 4.41E-03 2.58 8.73E-02 0.93
3069 6.40E-04 2.96 4.49E-02 1.02
12189 1.30E-04 2.44 2.27E-02 1.05
48053 2.49E-05 2.42 1.13E-02 1.02

and is the other positive root of (5.4) in the other case:

(5.7) h(x) =

2
√
−Q(x) cos

(
θ(x)

3

)
− b(x)

3 if x ≤ xM ,

2
√
−Q(x) cos

(
4θ(x)

3

)
− b(x)

3 otherwise,

where θ(x) is defined in (5.5) and xM is such that z(xM ) is the maximum of z(x).
We take qin = 1.53 m2 s−1. With the bottom topography defined in (5.2), we have

xM = 10 m and zM = 0.2 m. The flow rate is enforced at {x = 0} and the exact water
height (given by (5.7)) is enforced at the outflow {x = L}. We start with the initial
condition q(x) = 0 m2 s−1 and h(x) + z(x) = 0.66 m. The errors are measured at
t = 80 s. All the errors are relative to the corresponding norm of the exact solution.
The computational domain is again D = [0, 25]×[0, 1]. Two types of computations are
done with the scheme (4.3)–(4.5) using either the second-order viscosity ψ(α) = α2

or the first-order viscosity ψ(α) = 1. We use CFL = 0.95. We show in Table 2 the
error on the water height measured in the L1-norm and in the L2-norm.

5.3.3. Transcritical flow over a bump with shock. We run again the above
test in the transcritical regime with a hydraulic jump (i.e., a shock). To get a shock the
flow must at some point become sonic and the water height at the outflow boundary
must be larger than the water height at the sonic point. At the sonic point the
discriminant of the Bernoulli relation (5.4) is zero. Just like in the test in section 5.3.2
we position the sonic point at the top of the bump, i.e., the Bernoulli constant CBer

is equal to zM + 3
2 ( q

2
in
g )

1
3 , where zM is the height of the bump. The flow is fluvial

(subsonic) upstream and becomes torrential (supersonic) at the top of the bump and
stays supersonic up to the hydraulic jump. Now we fix the location of the shock
xS ∈ (xM , 12). The water height before the hydraulic jump is the second largest root

of (5.4): h(x−S ) = 2
√
−Q(x−S ) cos( 4θ(x−

S )
3 ) − b(x−

S )
3 . The water height after the jump

is determined by the Rankine–Hugoniot relation: h(x+
S ) = 0.5(−h(x−S ) +

√
∆), where

∆ = (h(x−S ))2 + 8q2in
gh(x−

S )
. In conclusion the exact solution for the water height is

(5.8) h(x) =


2
√
−Q(x) cos

(
θ(x)

3

)
− b(x)

3 if x ≤ xM ,

2
√
−Q(x) cos

(
4θ(x)

3

)
− b(x)

3 if xM ≤ x < xS ,

h(x+
S ) + z(xS)− z(x) if xS < x.
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Table 3
Transcritical flow with a shock, (5.8). Computation done at t = 80 s with initial data at rest;

CFL = 0.95. L1-norm is given in rows 2–6, L2-norm is given in rows 7–11. Viscosities are
ψ(α) = α2 (columns 3–4) and first-order viscosity ψ(α) = 1 (columns 5–6).

Norm I ψ(α) = α2 ψ(α) = 1

L1

248 2.79E-02 Rate 7.40E-02 Rate
885 7,97E-03 1.97 4.43E-02 0.81
3069 4.03E-03 1.05 2.71E-02 0.75
12189 2.69E-03 0.62 1.74E-02 0.68
48053 1.54E-03 0.82 1.15E-02 0.61

L2

248 6.70E-02 Rate 1.12E-01 Rate
885 4.81E-02 0.52 8.60E-02 0.42
3069 3.75E-02 0.38 7.71E-02 0.17
12189 3.37E-02 0.17 7.19E-02 0.11
48053 2.55E-02 0.41 6.54E-02 0.14

The bottom topography defined in (5.2) gives xM = 10 m, zM = 0.2 m. In
our computations we take qin = 0.18 m2 s−1 to be consistent with the literature,
Delestre et al. [11], Noelle, Xing, and Shu [26], but we could take any value for qin.
We use xS = 11.7 m and compute the water height at the outflow boundary hL :=
h(x+

S )+z(xS)−z(L) (using g = 9.81 m s−2, this gives hL = 0.282 052 798 138 021 81 m).
Note that in [11, 26] the topography is different (z(x) = max(0, 0.2− 0.05(x− 10)2)),
the gravity constant is also different (g = 9.812 m s−2), and the shock location is
also different (xS = 11.665 504 281 554 291 m). We insist on using our smooth bottom
topography (5.2) instead of the parabolic profile, since it allows us to properly estimate
the convergence rate of the method. With the nonsmooth topography used in the
literature (z(x) = max(0, 0.2 − 0.05(x − 10)2)), the distance between the shock and
the kink in the bottom topography is 0.3 m, which represents 1.2% of the length of
the domain. To start observing a meaningful convergence rate with this topography,
using a quasi-uniform mesh would require one to have at least 10 grid points between
the two singularities, which would require one to have at least 833 grid point in the
x-direction and 33 points in the y-direction (since D = [0, 25]×[0, 1]). The asymptotic
convergence range is reached with far fewer grid points with our smooth topography.

The flow rate is enforced at {x = 0} and the exact water height hL is enforced
at the outflow {x = L}. The initial condition is q(x) = qin and h(x) + z(x) = hL.
The errors are measured at t = 80 s. Two types of computations are done with the
scheme (4.3)–(4.5) using either the second-order viscosity ψ(α) = α2 or the first-order
viscosity ψ(α) = 1. We use CFL = 0.95. We show in Table 3 the relative error
on the water height measured in the L1-norm and in the L2-norm. Once again the
superiority of the second-order viscosity ψ(α) = α2 is evident.

5.4. Unsteady flows. In the preceding sections, we went through steady state
solutions of increasing difficulties. These solutions are useful to check well-balancing
and accuracy in space, but they do not give information about the transient behavior.
Thus, in this section, we test transient solutions with wet/dry transitions.

5.4.1. Dam break on a dry bottom. We start with an ideal dam break called
Ritter’s solution; see [29]. This is a Riemann problem with the initial condition

(5.9) h(x) =
{
hl if 0 ≤ x < x0,
0 if x0 ≤ x < L,
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Table 4
Problem (5.9) at t = 6 with data (5.10)–(5.11) at t = 1 (columns 3–6) and t = 0 (columns

7–10); CFL = 0.5. L1-norm is given in rows 2–6, L2-norm is given in rows 7–11. Viscosities are
ψ(α) = α2 (columns 3–4; 7–8) and first-order viscosity (columns 5–6; 9–10).

Initialization time t = 1 Initialization time t = 0
Norm I ψ(α) = α2 ψ(α) = 1 ψ(α) = α2 ψ(α) = 1

L1

248 1.52E-02 Rate 3.64E-02 Rate 3.33E-02 Rate 4.82E-02 Rate
816 7.41E-03 1.20 2.17E-02 0.81 1.82E-02 1.01 3.38E-02 0.56
3069 3.03E-03 1.35 1.22E-02 0.88 1.08E-02 0.79 2.39E-02 0.53
12189 1.21E-03 1.34 6.70E-03 0.92 4.81E-03 1.16 1.52E-02 0.69
48053 4.73E-04 1.37 3.54E-03 0.93 2.65E-03 0.87 9.61E-03 0.67

L2

248 2.00E-01 – 4.65E-02 – 4.31E-01 – 6.14E-02 –
816 1.10E-02 1.01 2.97E-02 0.70 2.45E-02 0.95 4.36E-02 0.54
3069 5.42E-03 1.06 1.82E-02 0.76 1.40E-02 0.84 3.11E-02 0.52
12189 2.65E-03 1.04 1.11E-02 0.76 7.13E-03 0.98 2.06E-02 0.63
48053 1.28E-03 1.06 6.64E-03 0.75 3.83E-03 0.91 1.34E-02 0.63

where hl > 0 and v(x) = 0 m/s. The analytical solution is

h(x, t) =


hl if 0 ≤ x ≤ xA(t),

4
9g

(√
ghl − x−x0

2t

)2 if xA(t) ≤ x ≤ xB(t),
0 if xB(t) ≤ x ≤ L,

(5.10)

v(x, t) =

 0 if 0 ≤ x ≤ xA(t),
2
3

(
x−x0
t +

√
ghl
)

if xA(t) ≤ x ≤ xB(t),
0 if xB(t) ≤ x ≤ L,

(5.11)

where xA(t) = x0 − t
√
ghl, xB(t) = x0 + 2t

√
ghl. This test is used to check if the

scheme preserves positivity of the water height and is able to locate and treat correctly
the wet/dry transition. As in SWASHES [11], we consider hl = 0.005 m, x0 = 5 m,
L = 10 m, and t = 6 s. The computational domain in D = [0, L]×[0, 1].

We show in Table 4 convergence results on the water height for the solution to the
above problem at t = 6 s with two different initializations. The results in columns 3–6
have been obtained with the initial data given by (5.10)–(5.11) with the initial time
t = 1 s. This test is meant to estimate the accuracy of the method with a solution
whose partial derivatives are in BV(D). We observe the rates 4

3 in the L1-norm and
1 in the L2-norm with the viscosity ψ(α) = α2. The rates are 1 and 3

4 for the first-
order viscosity, ψ(α) = 1. The results on the discharge (not shown) give exactly the
same convergence rates. The results in columns 7–10 have been obtained by using the
Riemann data (5.9) at t = 0 s. There is a loss of accuracy since the initial data are now
only in BV(D). We observe the convergence rate 1 in the L1-norm and the L2-norm
for the viscosity ψ(α) = α2 and 2

3 in the L1-norm and the L2-norm with the first-
order viscosity ψ(α) = 1. The results on the discharge (not shown) give exactly the
same convergence rates. Note that with both initializations the ψ(α) = α2 viscosity
performs better than the first-order viscosity ψ(α) = 1. We have also performed the
above tests with the first-oder scheme (3.3)–(3.5) and the results (not shown) are
almost indistinguishable from those given by the scheme (4.3)–(4.5) with the first-
order viscosity ψ(α) = 1.

5.5. Planar surface in a paraboloid. We now consider a two-dimensional
solution with moving shoreline developed by Thacker; see [31]. It is periodic in time
with moving wet/dry transitions. It provides a perfect test for shallow water codes as
it deals with bed slope and wetting/drying with two-dimensional effects. Moreover, as
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Table 5
Planar free surface in a paraboloid vessel with exact solution (5.12). Computations done at

t = 3 × 2π/ω with initial data (5.12) at t = 0; CFL = 0.3. L1-norm is given in rows 2–6; second-
order method with ψ(α) = α2 (columns 3–4); second-order method with ψ(α) = 1 (columns 5–6);
first-order method from section 3 (columns 7–8).

Norm I ψ(α) = α2 ψ(α) = 1 Mthd. from section 3

L1

508 2.71E-01 Rate 6.25E-01 Rate 7.85E-01 Rate
1926 6.51E-02 2.13 4.27E-01 0.57 7.44E-01 0.08
7553 1.58E-02 2.08 2.54E-01 0.76 5.46E-01 0.45
29870 4.46E-03 1.83 1.49E-01 0.88 3.33E-01 0.72
118851 1.50E-03 1.58 7.26E-02 0.94 1.82E-01 0.87

the gradient of the solution has BV regularity, it is appropriate to verify the accuracy
of a numerical method up to second order in L1(D). The topography is a paraboloid
of revolution defined by

z(x) = −h0

(
1−

(
r(x)
a

)2
)

with r(x) =
√

(x− L/2)2 + (y − L/2)2 for each x := (x, y) ∈ [0, L]×[0, L]. When the
water is at rest, h0 is the water height at the central point of the domain and a is
the radius of the circular free surface. An analytical solution with a moving shoreline
and a free surface that remains planar in time is given by

(5.12)


h(x, t) = max(ηh0

a2

(
2(x− L

2 ) cos(ωt) + 2(y − L
2 ) sin(ωt)

)
− z(x, y), 0),

vx(x, t) = −ηω sin(ωt),
vy(x, t) = ηω cos(ωt),

where the frequency is defined by ω =
√

2gh0/a and η is a free parameter. To visualize
this case, one can think of a glass with some liquid in rotation inside.

The initial condition is the analytic solution at t = 0. Boundary conditions are
natural, i.e., nothing is enforced. Typical values of parameters are the same as in
SWASH [11], a = 1 m, h0 = 0.1 m, L = 4 m, η = 0.5. The solution is computed up
to time t = 3 × 2π/ω. The computational domain is D = [0, L]×[0, L]. The results
are reported in Table 5.

5.6. Tidal wave over an island. We finish with a simulation of an experiment
reported in Liu et al. [25], which consists of a water tank D = [0, 30]×[0, 25] with a
conical island. The topography is

(5.13) z(x) := min(htop, (hcone − r(x)/scone)+), r(x) :=
√

(x− 15)2 + (y − 13)2,

where htop = 0.625 m, hcone = 0.9 m, scone = 4 m. All the dimensions are in meters.
We do not use the experimental setup for the initial conditions since there is no real
consensus in the literature on the setup of the initial data. Instead, we set the initial
condition to be a (solitary) wave big enough to overtop the island to demonstrate
that the method is robust with respect to the presence of dry states. Moreover, we
impose transparent boundary conditions to show that they are easy to enforce in the
finite element setting. Essentially, imposing transparent boundary conditions consist
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Fig. 2. Tidal wave overtopping a conical island.

of not doing anything (these are the so-called natural boundary conditions). The
initial condition is given by h(x, 0) = hinit(x), q(x, 0) = (uinit(x)hinit(x), 0), where

hinit(x) :=

(
h0 +

A

cosh2
(√

3A
4h3

0
(x− xs)

) − z(x)

)
+

,(5.14)

uinit(x) :=
A

cosh2
(√

3A
4h3

0
(x− xs)

)√ g

h0
(5.15)

with h0 = 0.32 m, A = h0, and xs = 2.04 m. The computations are done on an
unstructured Delaunay mesh composed of 174432 triangles and 87767 grid points.
The average mesh size is 0.1 m. We report in Figure 2 the water elevation at 6
different times, 4.08 s, 4.92 s, 5.88 s, 6.96 s, 9.72 s, 14.52 s showing the various stages of
the overtopping of the island. To visualize properly the dry areas, the water height is
set to zero in the images (not in the computations) when h ≤ 10−3h0. For rendering
purposes, the elevation map and the water height in the images are scaled by 3.
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