
HAL Id: hal-01815481
https://hal.science/hal-01815481v1

Submitted on 14 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ambient Intelligence Users in the Loop: Towards a
Model-Driven Approach

Maroun Koussaifi, Sylvie Trouilhet, Jean-Paul Arcangeli, Jean-Michel Bruel

To cite this version:
Maroun Koussaifi, Sylvie Trouilhet, Jean-Paul Arcangeli, Jean-Michel Bruel. Ambient Intelligence
Users in the Loop: Towards a Model-Driven Approach. MSE (“Microservices: Science and Engineer-
ing”) Workshop (MSE@STAF 2018), Jun 2018, Toulouse, France. �hal-01815481�

https://hal.science/hal-01815481v1
https://hal.archives-ouvertes.fr

Ambient Intelligence Users in the Loop:
Towards a Model-Driven Approach

M. Koussaifi, S. Trouilhet, J.-P. Arcangeli, J.-M. Bruel

University of Toulouse, France
Institut de Recherche en Informatique de Toulouse

Abstract. Ambient and mobile systems consist of networked devices
and software components surrounding human users and providing ser-
vices. From the services present in the environment, other services can
be composed opportunistically and automatically by an intelligent sys-
tem and proposed to the user. The latter must not only to be aware of
existing services but also be kept in the loop in order to both control
actively the services and influence the automated decisions.
This paper first explores the requirements for placing the user in the am-
bient intelligence loop. Then it describes our approach aimed at answer-
ing the requirements, which originality sets in the use of the model-driven
engineering paradigm. It reports on the prototype that has been devel-
oped, and analyzes the current status of our work towards the different
research questions that we have identified.

Keywords: user in the loop, ambient intelligence, service composition, soft-
ware components, emergence of services, presentation of services, model-driven
engineering, model transformation

1 Introduction

Ambient and mobile systems consist of fixed or mobile devices connected by
one or several communication networks. These devices host services specified by
interfaces and implemented by independently developed, installed, and activated
software components. Components therefore provide services and, in turn, may
require other services. They are blocks that can be assembled to build more
complex services. For example, hardware or software interaction components
(e.g., buttons, sliders, screens) and functional components like a Polling Station
and a Report Generator can be assembled if their interfaces match and provide
a complete distributed “voting service”.

Due to the high mobility of current devices and users, the environment is
open and highly unstable: devices and software components, which are indepen-
dently managed, may appear and disappear without this dynamics necessarily
being foreseen. Human users are plunged into these dynamic systems and can
use the services at their disposal. Ambient intelligence aims at offering them
a personalized environment, adapted to the current situation, anticipating their

needs and providing them the right services at the right time, with as little effort
as possible.

We are currently developing a solution in which services (in fact, microser-
vices) are dynamically and automatically composed in order to build composite
services and so customize the environment at runtime. Here, unlike the tradi-
tional “top-down mode” for building applications, services are built on the fly
in “bottom-up mode” from the components that are present and available at
runtime. This is supported by an assembly engine in line with the principles of
autonomic computing and the MAPE-K model [11]: it senses the existing com-
ponents, decides of the connections (it may connect a required service and a
provided one if their interfaces are compatible) without using a pre-established
plan (or not necessarily), and commands them. The heart of this engine is a
distributed multi-agent system where agents, close to the software components,
cooperate and decide on the connections between their services. Composite ser-
vices (realized by assemblies of components) continuously emerge from the en-
vironment, taking advantage of opportunities as they arise. And to make the
right decisions and offer the relevant services, the engine (i.e., the agents) learns
at runtime by reinforcement. The main advantages are proactivity and runtime
adaptation in the context of openness, dynamics and unpredictability [15].

The user is at the core of ambient or cyber-physical systems. Here, unlike
the traditional SOA paradigm, she/he does not necessarily demand or search for
services (in “pull mode”); on the contrary, services adapted to the context and
operational are supplied in “push mode”. In this context of automation based on
artificial intelligence, the sharing of decision-making responsibilities between the
assembly engine and the user is in question. Anyway she/he must be kept “in
the loop”. On the one hand, it is essential to assist the user in the appropriation
and control of the pushed services: she/he must be informed but also must keep
some control over her/his ambient environment, or possibly be able to contribute
herself/himself to the construction of personalized services. On the other hand,
to make the right decisions, the assembly engine must rely on a model of the
user in her/his environment. This model, which is unknown a priori, must be
built at runtime and evolve dynamically.

Keeping the user in the loop therefore demands a number of requirements
to be met. The objective of this work is to experiment and evaluate a solution
based on model-driven engineering and model transformations in order to put
the user in the control loop. The purpose of this paper is to explain and justify
the interest of such an approach, to describe the main architectural principles,
and to report on the development of a prototype solution (the design of the smart
engine itself is out of the scope of this paper). The conducted experimentation
allows us to conclude positively on the advantages of such an approach.

The paper is organized as follows. Section 2 describes in more details the
problem through a use case. The concrete issues raised by the specifics of the
domain, listed as requirements. Section 3 analyses the current state of the art and
concludes that there is no current solution that fully addresses the requirements.
Section 4 presents our initial ideas to address the research questions identified.

2

Section 5 presents the prototype we have developed and experimented in order
to validate our approach. Finally, a conclusion is given in Section 6 as well as
the perspectives of this work.

2 Use Case and Requirements

2.1 Use case

In order to illustrate the problem and motivate the requirements, we propose
the following use case, divided into two phases: the first one describes an oppor-
tunistic adaptive service composition and the second one the emergence of an
unanticipated service.

MissJane is a student at the university. This morning, she has a formative
assessment: the teacher asks some questions and the students answer using a Re-
mote Control device lent by the university for the year. The answers are collected
by the teacher who makes comments in return. For that, the teacher activates
a Quiz service implemented by three software components: a Polling Station
available on the university network, a Report Generator and a Remote Con-
trol installed on his laptop. Then, the services provided by the students’ remote
controls connect with the required service of the Polling Station component.
Unfortunately, MissJane has forgotten her remote control at home and is unable
to answer. However, the ICE (Interactive Control Environment) interface which
is at her disposal in order to control her smart environment suggests the use
of a vertical slider currently available on her smartphone instead of the remote
control. Even though it was not originally designed to be used with the Quiz
service but as it matches the required service of the Polling Station, MissJane
can use it, at least if she agrees, and therefore answer. In fact, the ICE interface
could have suggested several other compatible interaction components (as an
horizontal slider or a dimmer switch) also available in the environment. Then,
MissJane would have chosen her favorite one.

Here, several available components have opportunistically been assembled by
the smart engine. Then the resulting Quiz service that is adapted to the context
has been presented to MissJane, who used it after acceptance. The corresponding
assembly is depicted on the right side of Fig. 1 (we voluntarily use an informal
notation of components and connections). Note that, in this example, we do not
consider how the quiz questions are displayed to the students.

The course in now terminated. MissJane frequently goes to her favorite pub
in the afternoon. To book a table and order drinks, she uses an Order service
(see the left side of Fig. 1) implemented by three components (Customer Input
Interface, Menu Presentation, Order Generator) provided by the pub and in-
stalled on her smartphone. As today it’s her birthday, she would like to invite
the other students to have a drink. But she doesn’t want to enter all of the orders
manually. Thus, she deactivates her Customer Input Interface. Then, in such a
context, the assembly engine proposes to bind the Order Generator component
with the Polling Station still available in the environment, instead of the Cus-
tomer Input Interface. Now, the new Pub4.0 service allows each student to order

3

Fig. 1. Emerging Composite Services

her/his own drink with her/his remote control, and sends the global order to the
pub. This service really emerges from the ambient environment as it was not
designed beforehand and it is built from non-dedicated components provided by
different authorities. The Pub4.0 service is in the dotted frame of Fig. 1.

2.2 Requirements

Our goal in this project is to put the user in the loop. To achieve this goal,
we have identified several requirements listed below. In a general way, the user
must be aware of the emergence of new services that are pushed by the assembly
engine, have the privilege to control this emergence, and be able to appropriate
the services. On the other side, to improve its decisions, the intelligent assembly
engine needs to learn from the user’s actions and reactions to the situation and
the proposals of services. We have organized the requirements in main concerns.

Presentation: An emerging service must be presented to the user. As
unanticipated services may appear, the user must be informed of their availabil-
ity. For example, in our use case, MissJane would receive a notification on her
smartphone that she can use the vertical slider as a voting device. This implies
that she has accepted to receive such a notification. This also raises some re-
quirements related to acceptability and intelligibility. As a result, the research
questions we are interested in are:
PRE 1. How to present an emerging service to a human user in an intelligible

and personalized way?
PRE 2. When and how often must the emerging services be presented?

Acceptation: The user must accept or reject an emerging service. Af-
ter it passes the presentation phase, user acceptation determines if the proposed

4

service is relevant and has to be deployed or not. In our use case, MissJane would
accept the use of the proposed vertical slider. This raises usability requirements:
it demands an easy way for the user to accept or reject the emerging service
(e.g., MissJane would simply click on the accept button attached to the notifi-
cation). Some related research questions are:
ACC 1. How the user must be notified that acceptation is required?
ACC 2. How the user could accept or reject an emerging service?

Modification: An emerging service should be modifiable by the user.
The user should be able to remove or replace any component in the proposed ser-
vice, more widely to modify the emerging service. For example, MissJane should
be able to change from a vertical slider to an horizontal one. So, the user must
have the necessary tools and services to modify the emerging service: alternative
components and/or assemblies should be presented, editing should be easy and
the user assisted in this task. This concerns the usability and ergonomics of the
editing tools. In addition, the permission to use and bind a component,i.e., se-
curity concerns, might be considered. Some related research questions are:
MOD 1. How the user can be assisted and tools be helpful?
MOD 2. How to insure, on the spot, that the modified service is still correct?
MOD 3. Which components of the ambient environment should be usable and

presented to the user and how?

Creation: A composite service can be created by the user. Like the en-
gine but without using its proposals, the user should be able to create her/his own
composite service i.e., an assembly from scratch, out of available components.
For example, MissJane should be able to build by herself the Pub4.0 service in-
stead of the engine. To do this, the user must visualize the available components
and be able to bind the ones she/he selects. Besides usability, user assistance,
service correctness and relevance, another problem -partly related to scalability-
concerns the identification of the available and useful components. This part of
the requirements does not bring any new particular research question in addition
to those related to the modification concern.

Feedback generation: The assembly engine must receive feedback from
the user’s actions. When a service is created, modified, accepted or rejected,
positive or negative feedback must be generated for the engine, that could help
to increase the quality of its decisions and fit to the user’s behavior, practices
and preferences (this means that a user profile is implicitly built). For instance,
breaking a connection between services could trigger negative feedback for the
engine in order to decrease the estimated value of the binding. In the same
way, setting up a new connection could generate a positive feedback increasing
consequently the estimated value of the binding. Thus, for example, after several
times MissJane has modified an emerging service by choosing the horizontal
slider, the engine would have finally learned her preference and proposed the

5

service with the horizontal slider as a priority. In addition, when using a graphical
editor, the user’s actions such as swipe or pinch-spread may give information for
the assembly engine. This way, the swipe of a service could mean that this one is
interesting, and reinforce the interest of the component which implements this
service. Concerning feedback and learning, some research questions are:
FBK 1. How to capture user’s intentions from her/his manipulations?
FBK 2. How to translate the observed actions into useful information for the

engine?

3 State of the Art

According to [9], as self-adaptive systems (e.g., implementing the MAPE-K
model) can behave in unexpected ways, humans must be involved in the adap-
tation process: they can help in conflict resolution and improve the adaptation
strategy by giving feedback, even when they have limited attention or cogni-
tion. Transparency, intelligibility, trust to users, controlability, and management
of user attention are major requirements. In [8], authors propose a solution to
integrate the user in the self-adaptation loop, while usability and preference
modeling are the main requirements. Adaptation relies on variability models
built at design-time and user-level preferences. In addition, for acceptability and
to avoid user trouble, “user focus” components (i.e., components that are in the
actual user focus, in opposition to “background” components) are kept out of
dynamic adaptation. User contribution can be more or less explicit: she/he can
select and adjust an application, accept or reject an application, change her/his
preference, or even put off the adaptive behavior.

In order to succeed, putting the user in the loop must meet usability require-
ments. For that, End-User Development (EUD) aims to enable non-specialists
in software development to create or modify applications. Common approaches
consists in providing software elements to be customized and composed. Ac-
cording to [13], which reviews different projects in particular concerning mobile
applications, a motivation is that “regular development cycles are too slow to
meet the users’ fast changing requirements”. In [6], authors propose an EUD en-
vironment designed for home control as an alternative to artificial intelligence.
Additionally, they report on their “lived-with” experiences with EUD at home.
They conclude that if EUD and machine learning are competing approaches, “it
should be possible to augment EUD with machine learning”.

In [10], the emphasis is put on feedback and machine learning in adaptive
smart homes. Authors argue that user preferences and profile can be learned
(by semi-supervised reinforcement learning algorithms), associated to activity
recognition that transforms raw data into sharp information about the user
situation.

In the domain of human-computer interaction, several solutions for interface
plasticity (i.e., dynamic adaptation to changing environments) rely on compo-
nent or service dynamic composition [7]: automation is demanded to overcome
complexity (in number, dynamics, composability. . .), but keeping the user in

6

the loop is imperative both to observe and to control the interactive ambient
environment. The concept of Meta-UI (User Interface) [5] has been introduced
as “the set of functions that are necessary and sufficient to control and evaluate
the state of interactive ambient spaces”. In [7], we have proposed the Meta-UI
to present emerging user interfaces and allow for user’s choice in the context of
ambient systems.

Regarding the requirements analyzed in Section 2.2, the existing solutions
are only partially satisfactory. They are ad hoc (EUD environments or Meta-
UI), and none of them can support the description and edition of unanticipated
emerging services. The next section introduces the principles of our approach,
and Section 5 overviews our solution and details the prototype we have realized
as a proof of concept.

4 Our approach

From the previous section we can conclude that the problem we address re-
quires to match and master links between concepts. It can be between a service
and an assembly of components, between an intent and a set of model manipu-
lations, etc. The key concerns here are: (i) the presentation/manipulation of ser-
vices, which implies some form of editor, and (ii) the navigation/transformation
between concepts. We have hence naturally explored the use of the recent Model-
Driven Engineering (MDE) approaches to help in this concern.

Our team has a long experience in providing modeling and language engi-
neering tools and approaches [4]. One of the most recent activity addresses the
benefit of having, in the context of Cyber-Physical Systems (CPS) models di-
rectly manipulable by the final user in order to pilot and adapt their behavior [3].
Such manipulations are now possible thanks to the progress of language engineer-
ing environments such as GEMOC1 that allow the definition of Domain-Specific
Modeling Languages (DSML) and the automated generation of the language
workbench that goes with it (graphical and textual editors, transformation lan-
guages, etc.).

In order for a human to manipulate concretely a model, a set of elements
are required: (i) some tooling (viewers, editors, debuggers, interpreters, . . .);
(ii) some representations (concrete and abstract syntax, . . .); (iii) some inter-
pretations and rules (semantics, grammar, . . .). This is the purpose of MDE
approaches to provide such environments (see Fig. 2). In our context, we have to
extract information from an ambient systems technical world (made of compo-
nents, bindings, services, etc.) and present them from a user point of view (made
of goals, expectations, required services, etc.). MDE will help to make the con-
nections between the two domains by providing: (i) a detailed organization of
the concepts of each domain (called metamodels), (ii) a mapping between those
concepts, (iii) the required environment to manipulate and navigate between
those concepts. The detailed use of MDE to help solving the research questions
we have listed in section 2.2 will be given in Section 5.1.

1 http://gemoc.org/

7

Modeling
team

A

B
C

meta
modeling
process

Experts

Developers Application

Final users

modeling
process

Experts

Developers Application

Final
system

Metamodeling
team

DSML

Modeling tools

Leverage on domain
specific experience

Development of a
system in the context
of a given domain

Fig. 2. Model-Driven Engineering in action (taken from [4])

Apart from our own efforts (e.g., [1, 3]) towards putting the final user in the
loop of the monitoring and management of his/her own applications, we can cite
several other approaches. In [14], the authors use MDE to control user interface
adaptation according to explicit usability criteria. They focus on the generation
of those interfaces and hence address more the variability concerns that the
user interactions themselves. Let us also mention the work from [2], where the
authors apply knowledge (inferred from large volumes of information, artificial
intelligence or collective intelligence) to boost the performance and impact of a
process. They nevertheless do not focus in user interaction. The following section
provides details on the way we have implemented MDE techniques to answer the
requirements identified in Section 2.

5 Proof of Concept

In order to experiment the base ideas of our approach, we have developed
a solution that consists of a specialized model editor for user manipulations
and tools to link the models with (an emulated version of) the ambient system.
The full source code of our prototype can be found on Github2. The first tool
generates the model of a service from the output of the assembly engine. The
second tool allows the models that are created, modified, or accepted by the user
to be deployed in the ambient environment.

Several technologies and frameworks support the implementation. They are
used to define a metamodel from which models can be edited using a graphical
editing framework, and to transform models by model-to-text transformation
into codes that realize the deployment. In practice, we have used the Eclipse
Modeling Framework (EMF3) which is a basic plugin for metamodeling on

2 https://github.com/marounkoussaifi/MDE_Prototype_User_In_The_Loop
3 https://www.eclipse.org/[modeling/emf|sirius|acceleo]

8

Eclipse, Ecore to define and create the metamodel, Sirius3 to define the edi-
tor’s resources, and Acceleo3 which is a model-to-text transformation tool, to
generate deployment code.

In the following, we present an overview of the implemented approach, and
provide some more technical details.

5.1 Overview of the prototype solution

Fig. 3 shows an overview of our prototype solution that is structured in three
parts: an editor, a service presenter, and a service deployer.

Fig. 3. Implementation of the complete loop

At first, the engine monitors the ambient environment to detect the available
components and produces composite services in the form of scripts, i.e., text
files defining executable bindings of components. Fig. 4 shows an example of
such a script in Java, where the comments have been added by hand for a better
understanding.

Fig. 4. Script for the assembly of Pub4.0 service

9

Then the service presenter transforms the script into an editable model of
the emerging service to be presented to the user. This model conforms to the
metamodel we have defined for this purpose (see Section 5.2). Via the editor, the
service model can be manipulated either in the form of a text (for example for ex-
perimented users) or in a graphical form (possibly for non-specialists). Actually,
this form can be adapted to the user thanks to the separation between the model
and its representation, i.e., the model can be represented in a domain-specific
language (DSL). Fig. 5 shows the graphical representation by the editor of the
emerging Pub4.0 service proposed by the engine (see Section 2.1). It consists
of different components connected together. The students’ remote controls are
connected to the Polling Station by binding the Vote services together. Also,
MissJane’s Vertical Slider is used as the master remote control of Pub4.0 : it’s
connected to the Polling Station by binding the Master Control service to the
Value service. The Value service represents a generic type of service which is
compatible with different other types, such as the Master Control service. In the
same way, the Polling Station is connected to the Order Generator by binding
the Report service to the Order service. Additionally, the editor may display
several non-connected components which are available for connection if neces-
sary. Once the emerging service is uploaded in the editor, the user can accept or
reject it. She/he can also modify it, that is to say remove or change any bind-
ing between the components and use available components if one exists, or even
define a new service by creating a new assembly.

Fig. 5. Presentation of the Pub4.0 service

When editing, in order to generate feedback for the engine to enrich the
agents’ learning process, user’s actions on bindings (in general on the interactive
interface) are captured. The engine knowledge hence increases and therefore the
engine future decisions will be more in line with the user expectations and profile.

10

At last, the emergent4 service is transformed by the service deployer into a
script to be executed in the ambient environment.

5.2 Service edition

The graphical editor is the core element of the answer to the identified re-
quirements listed in Section 2.2. It realizes the ICE interface introduced in Sec-
tion 2.1: basically, it allows for visualization of emerging service models, service
acceptation, and modification, deletion or creation of links between services. In
addition, as a graphical editor, it enables to drag and drop any displayed com-
ponent.

The editor relies on a metamodel that frames the definition of component
assemblies as a service. The metamodel is classically defined by a class diagram
relating together the metamodeling concepts (see Fig. 6). The figure was auto-
matically generated by the Sirius Ecore Editor, a tool that allows the graphical
representation and edition of an Ecore model (metamodel). It consists of three
main classes. The Service abstract class is extended by two child classes, the
ProvidedService and the RequiredService classes. The ambient environment (am-
bientEnv class) is composed of components (Component class). Components are
composed themselves of at least one service (Service class). Bindings between
component services are made to build the emerging service. Additionally, we
have implemented Object Constraint Language (OCL) [16] rules to constrain
the service models (e.g., to control that a service does not exceed a maximal
number of connections).

Fig. 6. Our Service Metamodel

4 We deliberately use emerging to qualify services that are dynamically appearing. We
reserve the use of emergent for emerging services that have been accepted by the
user.

11

To develop the editor, we have used the GEMOC Studio, and more precisely
Sirius, a technology for designing customized graphic modeling tools. Sirius al-
lows to define editors in a completely graphical way, without having to write
any code. This is where the use of an MDE approach takes all its sense. Indeed,
with such a strong coupling between the tool and the concepts, it is important
that we take into account, in advance, the future evolutions of our metamodel.
As the editor is completely automated from the metamodel itself, the meta-
model evolutions have no impact on the editor from a workload point of view.
At this point of our work, feedback generation has not yet been implemented.
The GEMOC monitoring capabilities will be used in order to generate feedback
for the learning process of the engine.

The editor should be integrated into the whole system and the ambient en-
vironment for example to present a short list of available components that are
not connected but relevant for use (e.g., an horizontal slider). At this stage, our
editor is not fully integrated. Nevertheless, in order to test our prototype and
simulate the arrival of new components, we have added to the editor a side panel
that allows the user to design any component with its services.

5.3 Service presentation

The service presenter is the element of our solution that transforms an emerg-
ing service into an editable model (which in turn will be presented to the user
via the editor, as described in the previous section). Unlike the editor, the service
presenter is not a user-manipulated tool.

The service presenter relies on the same metamodel as the editor to generate
the model of the emerging service. Nevertheless, unlike for the editor but for fast
prototyping concerns, we have not yet used an MDE approach to implement the
service presenter . For the moment, we have developed a Java program that
records all the bindings between different components, then generates the XML
source of the graphical model while respecting the editor metamodel concepts.
Whenever the metamodel changes, the service presenter must be rebuilt in order
to become compatible with these changes. Using a MDE approach will be one
of the major evolution of our future work.

However, in its current form, the service presenter is fully operational and is
able to generate the model of an emerging service in the form of an assembly of
components.

5.4 Service deployment

The service deployer is the element of our solution that generates the bindings
commands to be executed for the actual deployment of an emergent service in
the ambient environment. It is also a non-user manipulated tool.

Likewise the editor, the service deployer must rely on the same metamodel
while executing model-to-text transformation in order to properly generate the
binding script. At this stage, this part suffers from the same limitation than the
presenter described previously.

12

The service deployer consists of an Acceleo program that performs model-to-
text transformation. Acceleo is an open source code generator from the Eclipse
foundation. It allows the design of code generation modules that can generate
outputs in a language chosen by the developer from one or more models as inputs.
Currently, the service deployer performs model-to-Java code transformation.

At this stage of our work, the generated Java code implements the emergent
service model to be injected in the ambient environment. This is enough for
rapid prototyping and test.

6 Conclusion and Future Work

Infrastructure automation, commonly based on continuous integration, au-
tomated testing and deployment, helps in microservices management [12]. Our
project aims to go a step further in this direction by automating the assembly
of services that are available in the environment and operational. In such a con-
text, the user must nevertheless be put into the loop to be informed of emerging
services, to be able to edit, modify, validate them, and to give implicit feedback
to the automatic system.

In this paper, we have proposed an MDE-based approach intended to answer
the requirements to place the user in the ambient loop. The solution consists
of an editor that enables the user to visualize an emerging service provided
by a service presenter . Also, it enables her/him to accept or edit the service,
before deployment by a service deployer . In such a way, the user is a full actor
in the ambient system, especially as her/his actions may produce feedback for
the intelligent system. At this stage of our work, tools for service presentation
(service presenter) and deployment (service deployer) are working but should
be consolidated via a full MDE-based development.

In the following, we discuss the current status of our solution towards the nine
research questions we have identified. This discussion is summarized in Table 1
where the status regarding research questions are rated from none to three +.

Research Question Current Status

PRE 1 (How to present) +
PRE 2 (When to present) +
ACC 1 (How to notify user)
ACC 2 (How the user accept) ++
MOD 1 (Help in manipulation) ++
MOD 2 (Correctness) + + +
MOD 3 (What to present) +
FBK 1 (How to capture intentions) +
FBK 2 (Feedback for the engine)

Table 1. Current status of our solution towards the identified research questions

13

The first group of research questions is directly related to the MDE-based ap-
proach we adopted in order to put the user in the loop: PRE 1, MOD 2, FBK 2.
The experience presented in this paper shows that MDE meets the requirements
of service presentation and editing, whereas the services are correct by construc-
tion since they conform to the metamodel. In addition, as the concrete service
representation is separated from the service model itself, any dedicated language
that is familiar to the user can be used (DSL). So, we do not expect any par-
ticular service manipulation abilities from the user; in the contrary we consider
that it is up to ICE to adapt to the user. On the other hand, the view is cur-
rently only structural but does not present the function of the emerging service
(neither of the components). Likewise, if a certain number of user actions can be
observed, they still need to be interpreted in a way that is useful for learning.
These points are fundamental, so we aim for a +++ level of response. To meet
this objective, and fulfill intelligibility requirements both for the user and the
engine, important work remains to be done concerning the enhancement of the
metamodel and the transformation rules.

A second group of research questions concerns problems related to Human-
Computer Interactions (HCI): PRE 2, ACC 1, ACC 2. They mainly concern
acceptability, usability, and ergonomics. For the moment, the ambient environ-
ment and its changes are sensed periodically; at the same frequency, new emerg-
ing services are presented if there exist. We still have to deal with problems
related to environment instability, awareness of user preferences, obtrusiveness
or ergonomics in order to reach a solution rated between + and ++. Our pro-
posal will rely on solutions elaborated in the HCI domain, and we do not really
aim for a major contribution to the state of the art.

The last questions are strongly related to Artificial Intelligence issues: MOD 1,
MOD 3, FBK 2. Currently, the editor supports the presentation of emergent ser-
vices proposed by the intelligent system. We should go further in the choice of
relevant services and components to present according to the context (user pro-
file, situation. . .), and in the assistance to the user. Another challenge sets in
the translation of user actions into learning knowledge useful to the engine. As
these aspects are essential, we aim for a level response rated from ++ to +++.
The further development of the engine’s intelligence and its coupling with ICE
will provide answers.

References

1. Bruel, J.M., Combemale, B., Ober, I., Raynal, H.: MDE in Practice for Computa-
tional Science. In: Int. Conf. on Computational Science. Reykjav́ık, Iceland (Jun
2015), https://hal.inria.fr/hal-01141393

2. Cabot, J., Clarisó, R., Brambilla, M., Gérard, S.: Cognifying Model-Driven Soft-
ware Engineering. In: Seidl, M., Zschaler, S. (eds.) Software Technologies: Appli-
cations and Foundations. pp. 154–160. Springer International Publishing, Cham
(2018), https://link.springer.com/chapter/10.1007/978-3-319-74730-9_13

3. Combemale, B., Cheng, B.H., Moreira, A., Bruel, J.M., Gray, J.: Modeling for Sus-
tainability. In: Modeling in Software Engineering 2016 (MiSE’16). ACM, Austin,
USA (2016), https://hal.inria.fr/hal-01185800

14

4. Combemale, B., France, R., Jézéquel, J.M., Rumpe, B., Steel, J.R., Vojtisek, D.:
Engineering Modeling Languages. Chapman and Hall/CRC (Nov 2016), https:

//hal.inria.fr/hal-01355374

5. Coutaz, J.: Meta-user Interfaces for Ambient Spaces. In: Proc. of the 5th Int. Conf.
on Task Models and Diagrams for Users Interface Design. pp. 1–15. TAMODIA’06,
Springer-Verlag, Berlin, Heidelberg (2007), http://dl.acm.org/citation.cfm?

id=1756988.1756990

6. Coutaz, J., Crowley, J.L.: A First-Person Experience with End-User Development
for Smart Homes. IEEE Pervasive Computing 15, 26 – 39 (May 2016), https:

//doi.org/10.1109/MPRV.2016.24

7. Degas, A., Trouilhet, S., Arcangeli, J.P., Calvary, G., Coutaz, J., Lavirotte, S.,
Tigli, J.Y.: Opportunistic Composition of Human-Computer Interactions in Am-
bient Spaces. In: Workshop on Smart and Sustainable City (Smart World Congress
2016 & Int. Conf. IEEE UIC 2016). pp. 998–1005. IEEE Computer Society (2016),
http://oatao.univ-toulouse.fr/18769/

8. Evers, C., Kniewel, R., Geihs, K., Schmidt, L.: The user in the loop: Enabling user
participation for self-adaptive applications. Future Generation Computer Systems
34, 110–123 (May 2014), https://doi.org/10.1016/j.future.2013.12.010

9. Gil, M., Pelechano, V., Fons, J., Albert, M.: Designing the Human in the Loop
of Self-Adaptive Systems. In: Garćıa, C.R., Caballero-Gil, P., Burmester, M.,
Quesada-Arencibia, A. (eds.) 10th Int. Conf. on Ubiquitous Computing and Am-
bient Intelligence. pp. 437–449. Springer International Publishing (2016), https:
//link.springer.com/chapter/10.1007/978-3-319-48746-5_45

10. Karami, A.B., Fleury, A., Boonaert, J., Lecoeuche, S.: User in the Loop: Adaptive
Smart Homes Exploiting User Feedback—State of the Art and Future Directions.
Information 7(2) (Jun 2016), https://doi.org/10.3390/info7020035

11. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (Jan 2003), https://doi.org/10.1109/MC.2003.1160055

12. Lewis, J., Fowler, M.: Microservices (2014), https://martinfowler.com/

articles/microservices.html

13. Paternò, F.: End User Development: Survey of an Emerging Field for Empowering
People. ISRN Software Engineering 2013 (Apr 2013), https://doi.org/10.1155/
2013/532659

14. Sottet, J.S., Calvary, G., Coutaz, J., Favre, J.M.: A model-driven engineering ap-
proach for the usability of plastic user interfaces. In: Gulliksen, J., Harning, M.B.,
Palanque, P., van der Veer, G.C., Wesson, J. (eds.) Engineering Interactive Sys-
tems. pp. 140–157. Springer, Berlin, Heidelberg (2008), https://link.springer.
com/chapter/10.1007/978-3-540-92698-6_9

15. Triboulot, C., Trouilhet, S., Arcangeli, J.P., Robert, F.: Opportunistic software
composition: benefits and requirements. In: Lorenz, P., Maciaszek, L.A. (eds.) Int.
Conf. on Software Engineering and Applications (ICSOFT-EA). pp. 426–431. IN-
STICC (Jul 2015), http://oatao.univ-toulouse.fr/15305/

16. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2 edn. (2003), https://dl.acm.org/citation.cfm?id=861416

15

