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A Simplification of the RitzGenEO Recycling Strategy for Adaptive
Multi-Preconditioned FETI Applied to Multiple Right-Hand Sides
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Cachan 94235, France

In this article, a method to accelerate the solution of multiple right-hand side problems when using the adaptive multi-preconditioned finite
element tearing and interconnecting algorithm is presented. This is done by deflating the conjugate gradient algorithm by means of a coarse
space, which is built by a simplification of the recently published RitzGenEO method. While the proposed method no longer requires
to solve local eigenproblems, it is able to maintain a significant part of the reduction in computational cost. Numerical results show a
comparison of the methods and appropriate applications for either method are discussed.
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1. Recycling Strategies for Adaptive Multi-Preconditioned FETI

Finite element tearing and interconnecting (FETI) is a non-overlapping domain decomposition method that is usually applied
to finite element discretized problems of structural mechanics. In this sometimes called dual formulation, connection forces
between coinciding nodes of adjacent substructures are derived from a unique, global field λ, such that the action-reaction
principle is always fulfilled. They must be chosen such that in case of dynamics, r =

∑Ns

s=1B
süs

I = 0 holds for the
interface accelerations üs

I of all substructures s = 1 . . . Ns. This interface compatibility condition expresses the equality of
corresponding degrees of freedom of coinciding nodes on the substructure interfaces, using signed Boolean assembly matrices
Bs. Injection of the local, time discretized balance equations of the form Ssüs

I = gsI −B
sTλ into the interface compatibility

condition yields for the solution of each time step the so-called dual interface problem

Fλ = d with F =
∑

s F
s =

∑
sB

sSs−1BsT d =
∑

sB
sSs−1gsI , (1)

which is solved iteratively by a conjugate gradient algorithm. Usually, a preconditioner H ≈ F−1 is also employed. As F
andH are constructed from local contributions, which can be computed independently, the method parallelizes naturally.

FETI is often augmented by adding additional, auxiliary constraints of the typeCTr = 0, which are enforced throughout all
iterations, resulting in general in a deflated conjugate gradient algorithm. This is equivalent to applying the standard conjugate
gradient algorithm to the deflated, preconditioned system HP T

CFλ = HP T
Cd where PC = I − C(CTFC)−1CTF

with an appropriate start value fulfilling the auxiliary constraint. The deflation space spanned by the columns of C is called
coarse space in the scope of domain decomposition methods. Numerous references to the original and the deflated FETI
methods can be found in [1, 3, 2]. A coarse space called GenEO, addressing severe ill-conditioning by heterogeneous material
distributions, was proposed for FETI in [1]. It constructs a coarse space from the solutions of local eigenproblems, which
must be computed prior to the iterative process. A further enhancement of FETI was its extension to an adaptive multi-
preconditioned (AMP) conjugate gradient algorithm through several publications [2]. While the multi-preconditioning exhibits
very good convergence, even for highly ill-conditioned systems, the state of the art to recycle previous solution spaces for
multiple right-hand side problems is no longer applicable in a straight forward manner. This problem was addressed in [3],
where it was proposed to roughly approximate the local eigenproblems of GenEO using the solution space generated by a
former application of AMP FETI to the same operator F . The method constructs a highly efficient coarse space at much less
cost then the full GenEO eigenproblems by benefiting from the information gathered in the preceding iterations. The original
GenEO problem and the Ritz approximation of it within the space spanned by the columns of V s write

Ssys = ΘsBsTHBsys and V sTSsV sqs = Θ̃sV sTBsTHBsV sqs , (2)

respectively. The approximation space, which could also be interpreted as test and trial functions, is constructed as

V s = (Ss)−1BsTV s
W where V s

W =
[
∆λ0

∣∣∆λ1

∣∣ ... ∣∣∆λns−1

]
. (3)

In summary, each substructure s contributes ns basis vectors to the coarse space, and they are built from the adaptions ∆λi

that have been made to λ during the iterations. In what follows, the coarse space size is set to 67 for the GenEO coarse space
by choosing the 67 GenEO vectors ys with the smallest corresponding eigenvalues Θs among all substructures. The coarse
space size of RitzGenEO is also limited to 67 analogously.
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2. A Simplified Coarse Space Constructed Directly from the Approximation Space

Instead of solving the reduced eigenproblem of Equations (2), we propose to employ the columns of V s from Equations (3)
directly as approximations of GenEO vectors ys, such that the coarse space is constructed analogously to the original GenEO
coarse space as

C =
[
C1
∣∣C2

∣∣ . . . ∣∣CNs

]
where Cs =

[
HF s∆λ1

∣∣ HF s∆λ2

∣∣ . . .
∣∣ HF s∆λks

]
(4)

noting that HF sV s
W = HBsV s. Each substructure contributes ks basis vectors to the coarse space. The adaptive multi-
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Figure 1. Left: Mesh, decomposition, material distribution (grey: fiber, blue: matrix), and applied load. Right: Scaling of the load over
time.

preconditioned FETI is applied to compute the first 20 time steps of the linear, dynamic problem illustrated in Fig. 1. Because
of its strongly heterogeneous material distribution, it is highly ill-conditioned. Different variants using different coarse spaces
are compared. All variants use adaptive multi-preconditioning [2] and are denominated according to the coarse space they
employ. For variant None the coarse space is empty. Here, the ks in RitzDirect are chosen as balanced as possible, and such that
the overall size of the coarse space is equal to that of the GenEO variant to ensure good comparability. However, the selection
method proposed in [3], used to choose the sizes of the approximation spaces V s, could be parametrized more restrictively,
and used consequently to obtain a reasonable coarse space size for RitzDirect automatically. Further parameters that hold for
all variants are listed in the table in the upper of Fig. 2. The effective spectrum and the computational cost, described by the
average number of local Dirichlet and Neumann solves per substructure, are shown in the lower left and lower right of Fig. 2,
respectively. The results show that the reduction in local solves achieved by the RitzDirect coarse space is of course inferior
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None
RitzGenEO
GenEO
RitzDirect

Youngs mod. fiber/matrix E2
E1

= 104 Period of highest eig.f. Tmax = 1.4 × 10−5 s Time step size ∆t = 10−3

Density fiber/matrix ρ2
ρ1

= 101 Period of 1. eigenfreq. T1 = 3.2 × 10−1 s AMP-criterion τ = 0.1

Poisson ratio matrix ν1 = 0.49 Poisson ratio fiber ν2 = 0.3 Newmark-Beta γ = 1
2

β = 1
4

Figure 2. Upper: Table of parameters. Left: Spectrum of the deflated, preconditioned operator HP T
CF . Right: Average number of local

solves per substructure

to RitzGenEO but still very close to the original GenEO variant. This is a remarkable result, considering that no eigenproblem
and not any other system of equations needs to be solved to obtain the respective coarse space. Consequently, the coarse space
(4) is easy to implement and therefore recommended in cases where, for example, only few right hand sides must be solved.
Otherwise, the application of the full RitzGenEO approximation might be superior in the long run. Future research should
further enlighten the question, which coarse space suites best for which application.
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