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We propose a categorical framework for structural operational semantics, in which we prove that under suit-
able hypotheses bisimilarity is a congruence. We then refine the framework to prove soundness of bisimula-
tion up to context, an efficient method for reducing the size of bisimulation relations. Finally, we demonstrate
the flexibility of our approach by reproving known results in three variants of the 𝜋-calculus.
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1 INTRODUCTION
1.1 Motivation
Structural operational semantics [Plotkin 1981] is a method for specifying the dynamics of pro-
gramming languages by induction on their syntax. This means that one describes the behaviour of
a program in terms of its components, a feature often called compositionality. An important issue
in structural operational semantics is the extent to which compositionality entails good behaviour
of the generated labelled transition system. In this paper, we consider two particular questions:
congruence of bisimilarity and soundness of bisimulation up to context.

The former is a long-standing problem in structural operational semantics. Bisimilarity is one of
themostwidely used behavioural equivalences, and congruence of bisimilarity essentially amounts
to substitutivity: given two bisimilar program fragments 𝑃 and𝑄 (which we denote by 𝑃 ∼ 𝑄), do
we have [𝑃]׹ ∼ [𝑄]׹ for any context ?׹ Bisimilarity is famously known not to be a congruence
in general, e.g., in the 𝜋-calculus [Sangiorgi and Walker 2001, §2.2.1].

Our second object of study is bisimulation up to context [Pous and Sangiorgi 2011; Sangiorgi
andWalker 2001], an efficient variant of bisimulation, which often produces the same results using
simpler relations. However, it is sometimes unsound, in the sense that bisimilarity up to context
may not entail bisimilarity. Just like congruence of bisimilarity, soundness of bisimulation up to
context has proved to be a subtle matter.

The difficulty of such questions, particularly the former, led to a rich variety of syntactic for-
mats [Mousavi et al. 2007], which ensure good behaviour of the generated labelled transition sys-
tem, up to some constraints on the considered specification. Despite their diversity, these formats
have a lot in common, both in definitions and in proof schemes.

This commonality motivated functorial operational semantics [Klin 2011; Turi and Plotkin 1997],
a unifying theory of formats, in which specifications are recast as distributive laws of a comonad
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21:2 Tom Hirschowitz

over a monad. The approach has been deeply developed in the set-based case, particularly for
congruence of bisimilarity [Mousavi et al. 2007], but also, among other questions, for soundness
of bisimulation up to context [Bonchi et al. 2016]. A few attempts have also been made to cover
languages with variable binding [Fiore and Staton 2006; Fiore and Turi 2001; Staton 2008].

However, despite its generality and power, functorial operational semantics, in particular in
its variants with variable binding, has not caught on as widely as one might have hoped among
more practical operational semanticists. A first reason, already noticed by Staton, is that it is “too
abstract”. Specifically, although it is very powerful for proving general results, “one must really
squint hard to view a distributive law as a collection of rules” [Staton 2008]. Otherwise said, func-
torial operational semantics is better at reasoning in the large than in the small. Another possi-
ble reason for functorial operational semantics not being more widely adopted might be that we
should distinguish between two different goals, both of which are crucial for a theory of structural
operational semantics to be adopted by the community: (1) the first goal is a high-level abstract lan-
guage for reasoning on structural operational semantics, as close as possible to concrete intuitions;
(2) the second is a generic toolbox for producing well-behaved structural operational semantics
from more basic data. It seems fair to say that, until now, most work on the first goal was done
with a view to the second one, i.e., with formats in mind. In this paper, instead, our aim is to
find the right level of generality, by proposing a new theory of structural operational semantics
which attempts to get closer to operational intuitions, while still proving useful abstract results –
specifically, congruence of bisimilarity and soundness of bisimulation up to context.

1.2 Contributions
Our first contribution is the introduction of transition categories, which are categories equipped
with a distinguished class of cospans, thought of as the set of transition labels. Transition cate-
gories support a notion of bisimulation defined by lifting, much as in Joyal et al. [1993]. A struc-
tural operational semantics specification is then a monad𝒯 on the considered transition category,
which embodies the syntax and proof rules for transitions. Models of the specification𝒯 are thus
simply 𝒯 -algebras. The Kleisli category of 𝒯 is a high-level, flexible environment for reasoning
about terms and (partial) transition proofs, where compositionmodels plugging partial proofs (and
terms) into one another. The approach thus lends itself to reasoning in the small. Our first main
result (Corollary 4.30) is about reasoning in the large: it states that whenever 𝒯 satisfies a cer-
tain familiality property [Carboni and Johnstone 1995; Diers 1978; Garner and Hirschowitz 2018;
Weber 2007] and the considered 𝒯 -algebras, say 𝑋 and 𝑌 , are compositional, in the sense that
both structure maps 𝒯 (𝑋) → 𝑋 and 𝒯 (𝑌) → 𝑌 are functional bisimulations, then bisimilarity
(between states of 𝑋 and 𝑌) is a congruence.

We then turn to soundness of bisimulation up to context in §5. Bisimulation up to context re-
quires the introduction of an intermediate notion, pre-bisimulation, which, instead of relying on
lifting, paraphrases the standard definition of bisimulation. We relate pre-bisimulation to bisimula-
tion by showing that it also may be defined by lifting, though in the cospan category of the ambient
transition category. Furthermore, under a mild additional hypothesis and using a suitable weak
factorisation system, we show that any pre-bisimulation embeds into some bisimulation. We then
define pre-bisimulation up to context, which agrees with standard bisimulation up to context in
examples. Our second main result (Corollary 5.15) is that, up to a refinement of the familiality hy-
pothesis, any pre-bisimulation up to context embeds into some bisimulation, i.e., pre-bisimulation
up to context is sound. This is, to our knowledge, the first categorical soundness result for bisimu-
lation up to context covering calculi with variable binding.
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Finally, we demonstrate the flexibility of our framework in §6 by analysing the failure of bisim-
ilarity to be a congruence in the 𝜋-calculus. We first pinpoint where the hypotheses of Corol-
lary 4.30 fail, namely: the structure map 𝒯 (𝑃𝑕) → 𝑃𝑕 is not a functional bisimulation. We then
recast in our setting two standard ways of working around this issue: (1) prove the weaker claim
that bisimilarity is a non-input congruence [Sangiorgi and Walker 2001]; (2) restrict attention to
a more constrained notion, wide-open bisimulation [Fiore and Staton 2006; Sangiorgi and Walker
2001; Staton 2008], to which Corollary 4.30 applies.

1.3 Related Work
We know of only two other abstract accounts of structural operational semantics covering both
syntax and models (≈ categorical accounts), and proving congruence of bisimilarity: functorial
operational semantics and Staton [2008]. The clearest novelty of our approach compared to them
is that, to our knowledge, they do not cover soundness of bisimulation up to context in the pres-
ence of binding. Another distinctive feature is the crucial role of familiality. In particular, Staton
[2008, Theorem 12] is very close in spirit to our Corollary 4.30, but beyond the fact that it lives in a
different setting, it merely assumes that the considered monad preserves functional bisimulations,
while familiality allows us to prove it. Less closely related work includes presheaf models and their
generalisations [Cattani et al. 1998; Joyal et al. 1993], which emphasise semantical, rather than op-
erational aspects. Furthermore, their representation of labelled transition systems as presheaves
markedly differs from ours, in that, e.g., any finite but cyclic labelled transition system may be
finitely represented in our approach, while it has to be represented by an infinite presheaf in theirs.
Our approach is also more economical for defining bisimulation, by only lifting against one mor-
phism per label, instead of one morphism per trace extension. Finally, our 𝐓𝑟-familial monads are
related to cellular analytic functors [Garner and Hirschowitz 2018], and the relationship between
our pre-bisimulations and bisimulations (§5.2) is closely related to Dubut et al. [2016].

1.4 Plan
We start in §2 with a non-technical overview of the new framework, trying to show that it is more
practical and intuitive than previous approaches. In §3, relying on the examples of combinatory
logic and CCS, we recast structural operational semantics and congruence in the setting of monads
on transition categories. In §4, we prove that compositionality and familiality entail congruence
of bisimilarity. In §5, we investigate soundness of bisimulation up to context. In §6, we analyse
bisimilarity in the 𝜋-calculus using our framework. Finally, we conclude in §7.

1.5 Notation and Preliminaries
We assume basic familiarity with category theory [Mac Lane 1998]. For any small category ℂ, we
denote by 􏾧ℂ the category of presheaves on ℂ, i.e., contravariant functors to sets (𝐒𝐞𝐭) and natural
transformations between them. For any 𝑓 ∶ 𝑐 → 𝑐′ in ℂ and𝑋 ɋ 􏾧ℂ the action𝑋(𝑓 ) ∶ 𝑋(𝑐′) → 𝑋(𝑐)
is denoted by 𝑤 ↦ 𝑤 ⋅ 𝑓 . The Yoneda embedding is denoted by 𝐲∶ ℂ → 􏾧ℂ, and often left implicit.

We denote by 𝑒𝑘(𝑋) the category of elements [Mac Lane and Moerdijk 1992] of any presheaf 𝑋 :
it has as objects all pairs (𝑐, 𝑤) with 𝑤 ɋ 𝑋(𝑐), and as morphisms (𝑐, 𝑤) → (𝑐′, 𝑤′) all morphisms𝑓 ∶ 𝑐 → 𝑐′ inℂ such that 𝑤′ ⋅𝑓 = 𝑤. We denote the correspondingmorphism by 𝑓 ↾ 𝑤′. Furthermore,
we often abbreviate (𝑐, 𝑤) to 𝑤.

Finally, we often denote by 𝑚 the finite set {1, …, 𝑚}.
Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 21. Publication date: January 2019.



21:4 Tom Hirschowitz

2 OVERVIEW
2.1 Bisimulation by Lifting
Before delving into details, let us give a non-technical overview. A transition category is much like
the category of labelled transition systems (over a fixed set of labels), with functional simulations
as morphisms. Sticking to the untyped case for simplicity, there is thus an object, say⋆, consisting
of just one state. Similarly, for each label ,ࢥ there is an object consisting of just one transition-ࢥ
between two states. Thus, giving a morphism ⋆ → 𝑋 to any object 𝑋 is equivalent to choosing a
state in 𝑋 , and likewise giving a morphism 𝑒 ∶ ࢥ → 𝑋 is equivalent to choosing an transition-ࢥ in𝑋 . Furthermore, taking the source of 𝑒 is just pre-composing with the source morphism 𝑟 ∶ ⋆ → .ࢥ
So the source of 𝑒 is 𝑒 ∘ 𝑟. Symmetrically, its target is ⋆ 𝑠−→ ࢥ 𝑒−→ 𝑋 .

Now, we may define bisimulation diagrammatically, as follows. A relation 𝑅 ↪ 𝑋 × 𝑌 is a
bisimulation iff both projections 𝑜∶ 𝑅 → 𝑋 and 𝑝 ∶ 𝑅 → 𝑌 are functional bisimulations, where,
e.g., 𝑜 is a functional bisimulation iff for all labels ࢥ and commuting squares as below left, there is
a lifting 𝑗 that makes both triangles commute.

⋆ 𝑅
ࢥ 𝑋

𝑢
𝑟

𝑒
𝑗 𝑜 𝑢 = (𝑤, 𝑥) 𝑤

(𝑤′, 𝑥′) 𝑤′
𝑜

𝑗 𝑜
𝑒 (1)

Indeed, as we saw, 𝑢 denotes a state in 𝑅, i.e., a related pair (𝑤, 𝑥), 𝑒 an transition-ࢥ in 𝑋 , and

commutation of the square says that 𝑜(𝑢) = 𝑤 is the source of 𝑒, so that 𝑒 ∶ 𝑤 →−ࢥ 𝑤′. We are thus in a
situation like above right. Existence of 𝑗 then says that there is an transition-ࢥ 𝑗 in 𝑅 with source𝑢, mapped by 𝑜 to 𝑒, i.e., a pair (𝑒, 𝑓 ) ∶ (𝑤, 𝑥) →−ࢥ (𝑤′, 𝑥′) of related transitions as above right, just as
in the standard definition of bisimulation.

2.2 Structural Operational Semantics Specifications as Monads
The next step is to view structural operational semantics specifications as monads 𝒯 on the con-
sidered transition category. A specification consists of proof rules for inductively constructing
transitions. Intuitively, 𝒯 (𝑋) is obtained by saturating its argument 𝑋 by the considered proof
rules, i.e., it augments 𝑋 with new, formal transitions constructed using the rules. A model for
the considered structural operational semantics specification is thus merely a 𝒯 -algebra, i.e., an
object 𝑋 respecting the rules, formally a map 𝒯 (𝑋) → 𝑋 satisfying certain conditions.

The Kleisli category of 𝒯 provides a high-level, flexible environment for manipulating terms
and (partial) proofs, including plugging them into one another, at a fine level which is not directly
available in functorial operational semantics.

Remark 2.1. This is not really surprising: monads are a generalisation of algebraic theories, and
the Kleisli category (or rather its opposite) is the corresponding generalisation [Berger et al. 2012]
of Lawvere’s [1963] syntactic category.

Example 2.2. In the case of labelled transition systems, if 𝒯 is the monad for CCS terms and
rules: morphisms ⋆ → 𝒯 (𝑋) are in one-to-one correspondence with CCS terms with free vari-
ables (a.k.a. constants, or indeterminates) in 𝑋 . Similarly, for any label ,ࢥ morphisms ࢥ → 𝒯 (𝑋)
correspond to proofs of transitions-ࢥ with variables in𝑋 , meaning that transitions in𝑋 are treated
as axioms in the proof system. E.g., consider a labelled transition system 𝑋 ≅ 𝑎 + 𝑎 consisting of

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 21. Publication date: January 2019.



Familial Monads and Structural Operational Semantics 21:5

just two transitions 𝑒 ∶ 𝑤 𝑎−→ 𝑤′ and 𝑓 ∶ 𝑥 𝑎−→ 𝑥′. Then, the left-hand proof below yields a morphism𝜏 → 𝒯 (𝑋), and the right-hand one yields a morphism 𝑎 → 𝒯 (𝑋).
𝑒𝑤 𝑎−→ 𝑤′ 𝑓𝑥 𝑎−→ 𝑥′(𝑤|𝑥) 𝜏−→ (𝑤′|𝑥′)

𝑒𝑤 𝑎−→ 𝑤′(𝑤|𝑥) 𝑎−→ (𝑤′|𝑥)(𝑤|𝑥|𝑥) 𝑎−→ (𝑤′|𝑥|𝑥) (2)
The left-hand proof is linear, i.e., each bit of 𝑋 is used exactly once. In such cases, the identity of
these bits does not really matter, so we may represent proofs a bit more abstractly as transition
contexts, i.e., partial proof trees, as below left.

฀1 𝑎−→ ฀′1 ฀2 𝑎−→ ฀′2(฀1|฀2) 𝜏−→ (฀′1|฀′2)
฀𝑎.฀ 𝑎−→ ฀ ฀2 𝑎−→ ฀′2(𝑎.฀|฀2) 𝜏−→ (฀|฀′2) (3)

Such a transition context ∶׻ 𝜏 → 𝒯 (𝑎 + 𝑎) may be thought of as a term of type 𝜏 with two free
variables of respective types 𝑎 and 𝑎. Let us now assume that one wants to instantiate, say, the first

variable in with׻ the output rule 𝑎.฀ 𝑎−→ ฀ (which still depends on a process variable, ฀). Then they
may compose ׻ in the Kleisli category with the morphism

𝑎 + 𝑎 𝑛𝑡𝑠𝑜𝑡𝑠+𝜂−−−−−−−→ 𝒯 (⋆) +𝒯 (𝑎) [𝒯 (𝑕𝑚𝑘),𝒯 (𝑕𝑚𝑞)]−−−−−−−−−−−−−→ 𝒯 (⋆ + 𝑎),
where 𝜂∶ 𝑎 → 𝒯 (𝑎) just picks the given variable, 𝑛𝑡𝑠𝑜𝑡𝑠 is the map 𝑎 → 𝒯 (⋆) corresponding to
the output axiom, and 𝑕𝑚𝑘 and 𝑕𝑚𝑞 denote the coproduct injections ⋆ ↪ ⋆+𝑎 ↩ 𝑎. Concretely, the
composite in the Kleisli category is the transition context on the right in (3), where we explicitly
leave ฀ as an open-ended branch to emphasise that it might be further instantiated with some
(potentially open) process 𝑃∶ ⋆ → 𝒯 (𝑌).
2.3 Congruence of Bisimilarity, Contexts, and Familiality
Now that we have explained why monads on transition categories model structural operational
semantics specifications and how terms and partial transition proofs may be manipulated in the
Kleisli category, let us consider congruence of bisimilarity. Essentially, this amounts to the fact that
given any bisimulation 𝑅 relating the states of labelled transition systems 𝑋 and 𝑌 , the relation
consisting of all pairs of the form ,𝑤1]׹) …, 𝑤𝑚], ,𝑥1]׹ …, 𝑥𝑚]), for any context ׹ with (𝑤𝑕, 𝑥𝑕) ɋ 𝑅
for all 𝑕, is again a bisimulation. The standard, operational approach for proving this [Bernstein
1998; Bloom et al. 1995; Bol and Groote 1996; Middelburg 2001; Mousavi et al. 2005; Sangiorgi
1994; Sangiorgi and Walker 2001] goes by induction on ,׹ but the key underlying intuition is that

any transition proof 𝑒 ∶ ,𝑤1]׹ …, 𝑤𝑚] →−ࢥ 𝑤′ decomposes into a partial transition proof by the context׹ and transition proofs by some 𝑤𝑕s. The categorical framework provides a high-level language to
describe this, which leads to a more algebraic proof (by computation instead of by induction).

In our case, the key lemma will state that given algebras 𝑎 ∶ 𝒯 (𝑋) → 𝑋 and 𝑏 ∶ 𝒯 (𝑌) → 𝑌 ,
togetherwith a bisimulation𝑅 as above,𝒯 (𝑅) is again a bisimulation, in the sense that the compos-

ite 𝒯 (𝑅) 𝒯 (𝑜)−−−−→ 𝒯 (𝑋) 𝑎−→ 𝑋 and its symmetric variant with 𝑌 satisfy the same lifting property (1)
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21:6 Tom Hirschowitz

as 𝑜 above. First of all, it suffices to prove that both 𝑎 and 𝒯 (𝑜) are functional bisimulations, so
we consider them separately. The general framework does not have much to say about the former:
as we will see in §4.1, it intuitively corresponds to the considered algebra being compositional.

For 𝒯 (𝑜), the first step is to be able to talk about contexts, i.e., terms which make linear use of
their free variables. Among morphisms in the Kleisli category, contexts will be those satisfying a
universal property called genericness, described at the beginning of §4.2. The monad 𝒯 is familial
just when any morphism 𝑋 → 𝒯 (𝑌) canonically factors as𝑋 →−׹ 𝒯 (׷) 𝒯 (𝑓 )−−−−→ 𝒯 (𝑌)
with ׹ generic, which corresponds to the standard fact that any term with free variables in 𝑌
decomposes as a context, here ,׹ equipped with a map from its holes to 𝑌 , here 𝑓 . The morphism𝒯 (׷) → 𝒯 (𝑌), being in the image of 𝒯 , is called free, and we generally refer to such factorisa-
tions as generic-free. The middle object ׷ is called the arity of .׹

Example 2.3. In the case of CCS, for any variable 𝑤∶ ⋆ → 𝑋 , the term (𝑤|𝑤) factors as⋆ →−׹ 𝒯 (⋆ + ⋆) 𝒯 [𝑤,𝑤]−−−−−−→ 𝒯 (𝑋),
where׹ is the context (฀1|฀2). General generic transitions ࢥ → 𝒯 (׷) are essentially the transition
contexts of Example 2.2.

The factorisation property of familial monads applies uniformly to terms, transitions, and more
(i.e., any object). An important feature of generic-free factorisations in our examples is that they
also prescribe how to compute the source and target of transition contexts. The source of a transi-

tion, i.e., of a (not necessarily generic) morphism ∶׻ ࢥ → 𝒯 (𝑌), is just the composite ⋆ 𝑟−→ ࢥ 𝒯→−׻ (𝑌). So if we start with a generic ,׻ and take the generic-free factorisation of ׻ ∘ 𝑟, we get a
commuting square ⋆ ࢥ

𝒯 (׷) 𝒯 (𝑌).
𝑟

׹
𝒯 (𝑓 )

׻
Example 2.4. When ׻ is as on the left of (3), factoring ׻ ∘ 𝑟 yields ׹ ≔ (฀1|฀2) ∶ ⋆ → 𝒯 (⋆+⋆)

with 𝑓 = 𝑟 + 𝑟 ∶ ⋆ +⋆ → 𝑎 + 𝑎. Please note that when ׻ is instantiated, say with ℎ∶ 𝑎 + 𝑎 → 𝑍, 𝑓
gives the desired instantiation of ,׹ namely the composite ⋆ +⋆ 𝑟+𝑟−−−→ 𝑎 + 𝑎 ℎ−→ 𝑍, which correctly

models the fact that the source of any transition 𝑦1|𝑦2 𝜏−→ 𝑦′1|𝑦′2 of this form is indeed 𝑦1|𝑦2.
Returning to the proof that 𝒯 (𝑜) is a functional bisimulation when 𝑜 is, we need to prove

that any commuting square as the exterior below admits a lifting. Using familiality of 𝒯 , we
take generic-free factorisations of both 𝑒 and 𝑞 (morally: the given transition and pair of terms,
respectively), as in the solid part of⋆ 𝒯 (𝑅)𝒯 (׷)

𝒯 (𝑌)ࢥ 𝒯 (𝑋).

𝑞
׹

𝑟 𝒯 (𝑗)𝒯 (𝑘) 𝒯 (𝑜)
׻ 𝑒

𝒯 (ℎ)𝒯 (𝑖) (4)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 21. Publication date: January 2019.
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Genericness of ׹ (see §4.2 for details) then yields 𝑘 making both squares commute (with 𝑜 ∘ 𝑗 =ℎ ∘ 𝑘). Intuitively, the left-hand square should be just as in Example 2.4, so 𝑘 should merely be a
coproduct of source maps. Because 𝑜 is a functional bisimulation, we should thus find a lifting
for each one of them, hence 𝑖 by cotupling, which yields the desired lifting 𝒯 (𝑖) ∘ .׻ In order to
enforce this property that the obtained 𝑘 still admits liftings w.r.t. functional bisimulations, we need
to impose a further hypothesis on 𝒯 , which is essentially a specialisation of cellularity [Garner
and Hirschowitz 2018]. This is called 𝐓𝑟-familiality and explained in detail in §4.3.

2.4 Summary
We hope that the present overview demonstrates that the Kleisli category of a monad on a tran-
sition category is a high-level, flexible algebraic framework for reasoning about structural oper-
ational semantics. It is finer-grained than functorial operational semantics, in the sense that it
directly models terms and (partial) transition proofs. Yet, it is a convenient language for prov-
ing properties like congruence of bisimilarity. Notably, the language of familial monads brings us
closer to intuitions underlying the standard proof by induction over context, and proceed alge-
braically instead of logically. Similar benefits are observed for bisimulation up to context in §5,
using much the same language except that lifting is done in the more complex category of cospans
in the ambient transition category. This makes the development a bit more verbose, so we refrain
from exposing it here, and move on to the technical development.

3 STRUCTURAL OPERATIONAL SEMANTICS SPECIFICATIONS AS MONADS
In this section, we essentially fill in the technical details of §2, up to the abstract statement of
congruence of bisimilarity. We first explain how labelled transition systems may be viewed as
presheaves, and how bisimulation may be defined by lifting (§3.1). We then abstract over this to
define transition categories and bisimulation therein. We then show how structural operational
semantics specifications naturally yield monads (§3.2), an observation originally due to Staton
[2008]. We finally define congruence in this setting.

3.1 Labelled Transition Systems as Objects in Transition Categories
Let us first view labelled transition systems as presheaves in concrete examples, and then abstract
over what we did and define transition categories and bisimulation therein.

3.1.1 Labelled Transition Systems. The simplest kind of labelled transition system, the one with
just one label, is suitablymodelled by𝐆𝐩𝐡, the category of (directed, multi) graphs, i.e., presheaves
over the category ⋆ [1]𝑟𝑠 (provided one accepts the extra generality of allowing distinct, parallel
transitions between nodes). More generally, let us show that transition systems labelled in a set 𝐿
may also be viewed as presheaves. As a first step, they may be defined as graph morphisms to the
graph 𝐿׷ with one vertex and one endo-edge for each label 𝑘 ɋ 𝐿. So the relevant category is the
slice𝐆𝐩𝐡/׷𝐿. But as is well known, for any ׷/𝐆𝐩𝐡,׷ is equivalent to 􏾩𝑒𝑘(׷), presheaves over the
category of elements of .׷

Example 3.1. In CCS, labels are elements of 𝐿׹׹𝑆 = {𝜏} ɭ⋃𝑎ɋ𝒩 {𝑎, 𝑎}, where𝒩 denotes a fixed,
infinite set of names, for example the natural numbers ℕ. The relevant base category ℂ׹׹𝑆 ≔𝑒𝑘(׷𝐿׹׹𝑆 ) is freely generated by the graph with vertices in {⋆} ⊎ 𝐿׹׹𝑆, plus, for all ࢥ ɋ 𝐿׹׹𝑆, two

edges ⋆ 𝑟↾ࢥ−−−→ ࢥ 𝑠↾ࢥ←−−− ⋆, which we often abbreviate to 𝑟 and 𝑠. E.g., the labelled transition system𝑤 𝑥 𝑦𝑎 𝑏𝑏 𝑎 is modelled by the presheaf 𝑋 with
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𝑋(⋆) = {𝑤, 𝑥, 𝑦} 𝑋(𝑎) = {𝑒}𝑋(𝑏) = {𝑓 , 𝑓 ′}𝑋(𝑎) = {𝑔} 𝑤 = 𝑒 ⋅ 𝑠𝑥 = 𝑒 ⋅ 𝑟 = 𝑓 ⋅ 𝑟 = 𝑓 ′ ⋅ 𝑟𝑦 = 𝑓 ⋅ 𝑠 = 𝑓 ′ ⋅ 𝑠 = 𝑔 ⋅ 𝑟 = 𝑔 ⋅ 𝑠.
3.1.2 Bisimulation. Having seen how presheaves on ℂ׹׹𝑆 generalise labelled transition systems,
let us now define functional bisimulation by lifting, as sketched in the overview. We will use the
following efficient, standard notation [Riehl 2014]. In any category 𝒜 , a lifting problem for mor-
phisms 𝑓 and 𝑔 is a commuting square as the solid part below. A solution to the lifting problem is
a lifting as shown (dashed) making both triangles commute.׷ ׹

׸ 𝑓׺ 𝑔
Definition 3.2. Let 𝑓 ⧄ 𝑔 iff all lifting problems for 𝑓 and 𝑔 have at least one solution.

When 𝑓 ⧄ 𝑔, we say that 𝑔 has the right lifting property w.r.t. 𝑓 , or symmetrically that 𝑓 has the
left lifting property w.r.t. 𝑔. We moreover let 𝑓 ⧄ denote the class of all morphisms that have the
right lifting property w.r.t. 𝑓 . Similarly, for any class 𝒟 of morphisms, let 𝒟⧄ = ⋂𝑓 ɋ𝒟 𝑓 ⧄. We
define ⧄𝑔 and ⧄𝒟 symmetrically.

Pॸॵॶॵॹiॺiॵॴ 3.3. A morphism 𝑜∶ 𝑅 → 𝑋 in 􏾩ℂ׹׹𝑆 is a functional bisimulation (according to the
standard definition) iff it has the right lifting property w.r.t. all maps of the form 𝑟 ∶ ⋆ → ࢥ for ࢥ a
label, i.e., iff 𝑜 ɋ 𝐓⧄𝑟 , where 𝐓𝑟 denotes the set of all maps 𝑟 ∶ ⋆ → .ࢥ

Indeed, this is just as in §2.1, which should now make technical sense.

General (potentially non-functional) bisimulations may be defined as spans 𝑋 𝑘←− 𝑅 𝑞−→ 𝑌 where𝑘 and 𝑞 are functional bisimulations. Such bisimulations may have non-monic pairings 𝑅 → 𝑋×𝑌 ,
but if we consider their epi-mono factorisations 𝑅 𝑒 𝑕𝑙(𝑅) 𝑙 𝑋 × 𝑌 , we have:

Pॸॵॶॵॹiॺiॵॴ 3.4. The monic factor of any bisimulation is again a bisimulation.

Pॸॵॵf. Consider any factorisation𝑙∘𝑒 as above. Because ⋆ is representable, its covariant hom-

functor preserves epis, i.e., if 𝑓 ∶ ׷ → ׸ is epi, so is the set map 􏾩ℂ׹׹𝑆(⋆,׷) 􏾩ℂ׹׹𝑆(⋆,𝑓 )−−−−−−−−−→ 􏾩ℂ׹׹𝑆(⋆, .(׸
Thus every lifting problem for any 𝑟 ∶ ⋆ → ࢥ and 𝑕𝑙(𝑅) 𝑙 𝑋 ×𝑌 𝜋−→ 𝑋 induces a lifting problem
for 𝑟 and the composite 𝜋 ∘ 𝑙 ∘ 𝑒. The latter has a lifting by hypothesis, which yields a lifting for𝜋 ∘ 𝑙. Everything works symmetrically for the projection to 𝑌 . □

Definition 3.5. Isomorphism classes of monic bisimulations, i.e., subobjects of 𝑋 × 𝑌 that are
bisimulations, are called bisimulation relations.

Bisimulation relations are ordered by inclusion and for any set 𝐼 we may define the union of
relations 𝑅𝑕 ↪ 𝑋 × 𝑌 , for 𝑕 ɋ 𝐼 , as the image of their (wide) cotupling ∑𝑕 𝑅𝑕 → 𝑋 × 𝑌 . We have:

Pॸॵॶॵॹiॺiॵॴ 3.6. Bisimulation relations are closed under union, and admit a maximum, called
bisimilarity.

Pॸॵॵf. As before the covariant hom-functor of⋆ preserves epis. Thus, every lifting problem for

any 𝑟 ∶ ⋆ → ࢥ and a given union ⋃𝑕 𝑅𝑕 ↪ 𝑋 × 𝑌 𝜋−→ 𝑋 yields one for some 𝑅𝑕 ↪ 𝑋 × 𝑌 → 𝑋 ,
which has a lifting by hypothesis. Finally, presheaf categories are well-powered, i.e., each object
has only a set of subobjects. We thus in particular only have a set of bisimulation relations. This
set being closed under unions, it has a maximum. □
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3.1.3 Transition Categories. Let us now abstract away from the particular example of 􏾩ℂ׹׹𝑆. The
structure and properties we need for deriving abstract analogues of Propositions 3.4 and 3.6 are:

Definition 3.7. A transition category is a cocomplete, finitely complete, well-powered category𝒜 with images (i.e., initial factorisations through some mono), equipped with• two sets 𝐏 and 𝐋 of objects called process types and label types, respectively, and• a set 𝐓 of cospans 𝑃 𝑟−→ 𝐿 𝑠←− 𝑄 called transition types, in which 𝑃,𝑄 ɋ 𝐏 and 𝐿 ɋ 𝐋,
such that process types are tiny, i.e., their covariant hom-functors preserve colimits.

Notation 3.8. We generally denote a transition category by just 𝒜 , leaving 𝐏, 𝐋, and 𝐓 implicit.

Remark 3.9. In any initial factorisation׷ 𝑒−→ ׸ 𝑙 ,with𝑙mono׹ 𝑒 is epi, because if 𝑓 ∘𝑒 = 𝑔∘𝑒
then 𝑒 factors through the equaliser of 𝑓 and 𝑔, which thus has to be an iso [Johnstone 2002, p20].

Remark 3.10. Tininess entails that covariant hom-functors of process types preserve epis.

In examples, tininess follows from:

Remark 3.11. If 𝒜 is a presheaf category, then all representable presheaves are tiny.

Let us now abstractly replay the above development of bisimulation and bisimilarity.

Definition 3.12. For any transition category 𝒜 , a morphism 𝑓 ∶ 𝑅 → 𝑋 is a functional bisimu-
lation iff it is in 𝐓⧄𝑟 , where 𝐓𝑟 denotes the class of morphisms appearing as 𝑟 in some transition

type. Given any two objects 𝑋 and 𝑌 , a bisimulation is a span 𝑋 𝑟←− 𝑅 𝑠−→ 𝑌 , or equivalently a map𝑅 Ψ𝑟,𝑠Ω−−−→ 𝑋 × 𝑌 such that 𝑟 and 𝑠 are both functional bisimulations. Isomorphism classes of monic
bisimulations are called bisimulation relations.

Pॸॵॶॵॹiॺiॵॴ 3.13. In any transition category 𝒜 , bisimulations are closed under images, i.e., if𝑞 ∶ 𝑅 → 𝑋 × 𝑌 is a bisimulation, then so is 𝑙 in its epi-mono factorisation 𝑅 𝑒 𝑕𝑙(𝑅) 𝑙 𝑋 × 𝑌 .
Pॸॵॶॵॹiॺiॵॴ 3.14. In any transition category, bisimulation relations 𝑅 ↪ 𝑋 ×𝑌 are closed under

unions, hence admit a maximum, called bisimilarity and denoted by ∼𝑋,𝑌 , or simply ∼ when 𝑋 and𝑌 are clear from context.

As expected we have:

Example 3.15 (Graphs). Graphs form a transition category with 𝐏 = {𝐲⋆}, 𝐋 = {𝐲[1]}, and the

cospan ⋆ 𝑟−→ [1] 𝑠←− ⋆ as unique transition type (omitting the Yoneda embedding).

Example 3.16 (CCS labels). Thecategory 􏾩ℂ׹׹𝑆 forms a transition categorywith⋆ as only process

type, all other representables as label types, and all cospans ⋆ 𝑟−→ ࢥ 𝑠←− ⋆ as transition types.

3.2 Specifications as Monads on Transition Categories
In the previous section, we have defined transition categories and bisimulation therein, which
abstract over standard labelled transition systems. Let us now further explain how structural oper-
ational semantics specifications may be viewed as monads on transition categories, again starting
with examples and then abstracting away.
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3.2.1 First Example: Combinatory Logic. To get a feel for why monads on transition categories are
relevant to operational semantics, let us consider the example of combinatory logic, viewed as a
labelled transition system on just one label, i.e., a graph.

Let 𝒯׹𝐿 denote the functor on 𝐆𝐩𝐡 mapping any graph ׽ to the one with• as vertices all terms generated by the grammar 𝑀,𝑁 ∷= ⦇𝑤⦈ | 𝑆 | 𝐾 | 𝑀 𝑁, where 𝑤 ranges
over ,(⋆)׽ 𝑆 and 𝐾 are constants, and 𝑀 𝑁 stands for the application of a binary function
symbol (called “application”) to 𝑀 and 𝑁 ;• edges inductively defined by the following rules, with the given sources and targets.𝑒 ɋ ,𝑤)׽ 𝑥)⦇𝑒⦈ ∶ ⦇𝑤⦈ → ⦇𝑥⦈ 𝑟𝑀,𝑁,𝑃 ∶ 𝑆 𝑀 𝑁 𝑃 → (𝑀 𝑁) (𝑀 𝑃) 𝑗𝑀,𝑁 ∶ 𝐾 𝑀 𝑁 → 𝑀𝐿 ∶ 𝑀 → 𝑀′𝐿 𝑁 ∶ 𝑀 𝑁 → 𝑀′ 𝑁 𝑅 ∶ 𝑁 → 𝑁 ′𝑀 𝑅 ∶ 𝑀 𝑁 → 𝑀 𝑁 ′

The action of 𝒯׹𝐿 on morphisms is by applying the given graph morphism to vertices ⦇𝑤⦈ and
edges ⦇𝑒⦈. This functor is a monad whose multiplication (a.k.a. substitution) merely removes the
top layer of ⦇−⦈s. It is inductively defined by׽ࢰ,⋆⦇𝑙⦈ = 𝑙׽ࢰ,⋆(𝐾) = 𝐾׽ࢰ,⋆(𝑆) = 𝑆׽ࢰ,⋆(𝑀 𝑁) = (𝑀)⋆,׽ࢰ (𝑁)⋆,׽ࢰ

⦇𝑞⦈[1],׽ࢰ = 𝑞[1],׽ࢰ(𝑗𝑀,𝑁 ) = 𝑗׽ࢰ,⋆(𝑀),׽ࢰ,⋆(𝑁)[1],׽ࢰ(𝑟𝑀,𝑁,𝑃) = 𝑟׽ࢰ,⋆(𝑀),׽ࢰ,⋆(𝑁),׽ࢰ,⋆(𝑃)[1],׽ࢰ(𝐿 𝑁) = (𝐿)[1],׽ࢰ 𝑀)[1],׽ࢰ(𝑁)⋆,׽ࢰ 𝑅) = (𝑀)⋆,׽ࢰ .(𝑅)[1],׽ࢰ
Example 3.17. Let 𝑀 = ⦇𝑀1⦈ ⦇𝑀2⦈, with 𝑀1,𝑀2 ɋ 𝒯׹𝐿(0)(⋆). Then, (𝑀)⋆,0ࢰ = 𝑀1 𝑀2.
Similarly, for 𝑗𝑃,𝑄 ɋ 𝒯׹𝐿(0)(𝐾 𝑃 𝑄, 𝑃), we have ⦇𝑗𝑃,𝑄⦈)[1],0ࢰ 𝑀) = 𝑗𝑃,𝑄 (𝑀1 𝑀2).
The free algebra 𝒯׹𝐿(0) is a proof-relevant variant of combinatory logic.

3.2.2 Example with Labels: CCS. As a second example, useful for illustrating labels, let us consider
CCS, recalling the base category ℂ׹׹𝑆 from §3.1.1.

Definition 3.18. Let 𝒯׹׹𝑆 denote the functor on 􏾩ℂ׹׹𝑆 such that• 𝒯׹׹𝑆(׽)(⋆) is the set of CCS terms (simplified for expository purposes) with variables in׽(⋆), i.e., generated by the grammar 𝑃,𝑄 ∷= ⦇𝑤⦈ | 0 | 𝑎.𝑃 | 𝑎.𝑃 | (𝑃|𝑄) | ,𝑎.𝑃ࢱ with 𝑤 ranging
over׽(⋆), not considered equivalent up to renaming of bound names in 𝑎.𝑃ࢱ equivalence-ࢥ)
is not necessary for CCS; by contrast, it is necessary for 𝜋-calculus, which forces us to use
a more complex base category);• for all ࢥ ≠ ⋆, 𝒯׹׹𝑆(׽)(ࢥ) is the set of transition proofs 𝑃 →−ࢥ 𝑄, much as in Boudol and
Castellani [1988], inductively generated by the following rules.𝑒 ɋ ⦇𝑒⦈(ࢥ)׽ ∶ ⦇𝑒 ⋅ 𝑟⦈ →−ࢥ ⦇𝑒 ⋅ 𝑠⦈ 𝑛𝑡𝑠𝑎𝑃 ∶ 𝑎.𝑃 𝑎−→ 𝑃 𝑕𝑚𝑎𝑃 ∶ 𝑎.𝑃 𝑎−→ 𝑃 𝑅 ∶ 𝑃 →−ࢥ 𝑄 ࢥ Ɍ {𝑎, 𝑎}ࢱ𝑎.𝑅 ∶ 𝑎.𝑃ࢱ →−ࢥ 𝑎.𝑄ࢱ

𝐿 ∶ 𝑃 →−ࢥ 𝑃′(𝐿|𝑄) ∶ (𝑃|𝑄) →−ࢥ (𝑃′|𝑄) (+ symmetric 𝑄|𝐿) 𝐿 ∶ 𝑃 𝑎−→ 𝑃′ 𝑅 ∶ 𝑄 𝑎−→ 𝑄′𝐿 ⊳ 𝑅 ∶ (𝑃|𝑄) 𝜏−→ (𝑃′|𝑄′) (+ sym. 𝑅 ⊲ 𝐿)
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Again substitution equips𝒯׹׹𝑆 with monad structure, and the free algebra𝒯׹׹𝑆(0) is a proof-
relevant variant of CCS.

3.2.3 Abstract Congruence. In the previous sections, we have seen two example monads on tran-
sition categories, which have the labelled transition systems for combinatory logic and CCS as
their free algebras. Let us now review what it means to be a congruence, and then give an abstract
definition in the setting of algebras for a monad on a transition category.

Standardly, given a structural operational semantics specification 𝑋 , we say that a relation 𝑅
is a congruence when for all multi-hole contexts ׹ and pairs (𝑤1, 𝑥1), …, (𝑤𝑚, 𝑥𝑚) of related pro-
cesses, ,𝑤1]׹ …, 𝑤𝑚] and ,𝑥1]׹ …, 𝑥𝑚] are again related. In the abstract setting, given any monad𝒯 on a transition category 𝒜 , we may mimick this definition, and even slightly generalise it by
considering two different 𝒯 -algebras:

Definition 3.19. Given a monad 𝒯 on a transition category 𝒜 , 𝒯 -algebras 𝑎 ∶ 𝒯 (𝑋) → 𝑋
and 𝑏 ∶ 𝒯 (𝑌) → 𝑌 , and a relation 𝑅 ↪ 𝑋 × 𝑌 , we say that 𝑅 is a congruence when the map𝒯 (𝑅) → 𝒯 (𝑋 × 𝑌) Ψ𝒯 (𝜋),𝒯 (𝜋′)Ω−−−−−−−−−−−−→ 𝒯 (𝑋) ×𝒯 (𝑌) 𝑎×𝑏−−−→ 𝑋 × 𝑌 factors through 𝑅 ↪ 𝑋 × 𝑌 .

Pॸॵॶॵॹiॺiॵॴ 3.20. When 𝑅 ↪ 𝑋 × 𝑌 is a congruence, 𝑅 is a 𝒯 -algebra and 𝑅 ↪ 𝑋 × 𝑌 is a
morphism of 𝒯 -algebras.

Remark 3.21. What does factorisation through𝑅 have to dowith being a congruence? Intuitively,
an element in 𝒯 (𝑅) has the form ,𝑤1)]׹ 𝑥1), … , (𝑤𝑚, 𝑥𝑚)], with (𝑤𝑕, 𝑥𝑕) ɋ 𝑅 for all 𝑕. It is mapped byΨ𝒯 (𝜋),𝒯 (𝜋′)Ω to the pair ,𝑤1]׹) … , 𝑤𝑚], ,𝑥1]׹ … , 𝑥𝑚]) ɋ 𝒯 (𝑋) × 𝒯 (𝑌), and 𝑎 × 𝑏 evaluates this
back to 𝑋 × 𝑌 . Thus, the composite factoring through 𝑅 precisely means that 𝑎(׹[𝑤1, … , 𝑤𝑚]) and𝑏(׹[𝑥1, …, 𝑥𝑚]) are related, i.e., 𝑅 is a congruence.

4 CONGRUENCE OF BISIMILARITY
In the previous sections, we have explained in which sense monads on transition categories model
structural operational semantics specifications, and defined congruence in this setting. We now
turn to proving congruence of bisimilarity, by filling in the details missing from the overview. We
consider compositionality in §4.1, familiality in §4.2, and 𝐓𝑟-familiality in §4.3. Relying on the
theory of weak factorisation systems, we are then able to prove congruence of bisimilarity.

4.1 Compositionality
In the overview, our proof sketch for congruence of bisimilarity started by assuming that the
structure map 𝑎 ∶ 𝒯 (𝑋) → 𝑋 of the considered algebra was a functional bisimulation. Concretely,
for any square as below, there exists a lifting 𝑗 making both triangles commute.𝑃 𝒯 (𝑋)

𝐿 𝑋
𝑢

𝐓𝑟∋𝑟 𝑞
𝑗 𝑎

Thinking of 𝑢 as a process with variables in 𝑋 , i.e., a context applied to some processes in 𝑋 , of𝑎 ∘ 𝑢 as its evaluation in 𝑋 , and of 𝑞 as a transition from 𝑎 ∘ 𝑢, this says that 𝑞 may be decomposed
as the evaluation 𝑎 ∘ 𝑗 of some transition proof 𝑗 with variables in 𝑋 and domain 𝑗 ∘ 𝑟 = 𝑢. This
leads us to:

Definition 4.1. A 𝒯 -algebra 𝑎 ∶ 𝒯 (𝑋) → 𝑋 is compositional iff 𝑎 ɋ 𝐓⧄𝑟 .
Notation 4.2. We often denote algebras by their carriers, e.g., 𝑋 is compositional.
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Example 4.3. It might be instructive to exhibit a simple example of a non-compositional algebra.
Consider the monad 𝒯 on 𝐆𝐩𝐡 whose terms are freely generated by a constant 𝑐 and two unary
operations 𝑓 and 𝑔, and whose transitions are freely generated by the axiom below left.

𝑓 (𝑔(𝑤)) → 𝑤 𝑓 [𝑔(𝑐)] 𝑓 (𝑔(𝑐))
𝑐

Clearly, the transition above right cannot be matched by 𝑓 [𝑔(𝑐)] because no rule has a conclu-
sion starting from 𝑓 alone. The free 𝒯 -algebra 𝒯 (0) is thus not compositional, i.e., the monad
multiplication ࢰ is not in 𝐓⧄𝑟 .

Pॸॵॶॵॹiॺiॵॴ 4.4. The free 𝒯׹𝐿-algebra 𝒯׹𝐿(0) is compositional, i.e., 0ࢰ ɋ 𝐓⧄𝑟 .
Pॸॵॵf ॹॱeॺ३h. (More detail in [Hirschowitz 2018].) Any𝑀 ɋ 𝒯 𝐿(0)׹2 is a processwith variables

in 𝒯׹𝐿(0), i.e., it has the shape ,𝑀1]׹ …,𝑀𝑚]. We need to be able to decompose any transition𝑅∶ (𝑀)⋆,0ࢰ → 𝑁 into ,𝑒1]׻ …, 𝑒𝑚] such that ,𝑒1]׻)[1],0ࢰ …, 𝑒𝑚]) = 𝑅. We proceed by induction on׹. E.g., if ׹ = 1׹ 2׹ and 𝑅 = 𝐿 𝑃, then there exists 𝑕 ɋ 𝑚 such that 𝐿 ⋅ 𝑟 = ,𝑀1]1׹)⋆,0ࢰ …,𝑀𝑕−1])
and 𝑃 = ,𝑀𝑕]2׹)⋆,0ࢰ …,𝑀𝑚]). Then, by induction hypothesis, we find ,𝑒′1]′׻ …, 𝑒′𝑕−1] such that׻)[1],0ࢰ′[𝑒′1, …, 𝑒′𝑕−1]) = 𝐿, so we can pick ׻ = ′׻ .2׹ □

Pॸॵॶॵॹiॺiॵॴ 4.5. The 𝒯׹׹𝑆-algebra 𝒯׹׹𝑆(0) is compositional.

Pॸॵॵf. Similar to 𝒯׹𝐿, using the fact that, because we do not mod out by ,equivalence-ࢥ eachࢱ𝑎 operator is considered as a unary operator. □

4.2 Familiality
Let us now turn to proving that 𝒯 (𝑓 ) ɋ 𝐓⧄𝑟 , starting with familiality. Here is the long-awaited
definition of genericness:

Definition 4.6. Given any functor ℱ ∶ 𝒜 → 𝒳 , a morphism ∶ࢲ 𝑋 → ℱ (׷) is ℱ -generic, or
generic for short, when for all commuting squares of the form𝑋 ℱ (׸)

ℱ (׷) ℱ (׹)
𝜒

ࢲ
ℱ (𝑓 )

ℱ (ℎ) ℱ (𝑔) (5)

there exists a unique ℎ such that ℱ(ℎ) ∘ ࢲ = 𝜒 and 𝑔 ∘ ℎ = 𝑓 .
Example 4.7. Let 𝒯 denote the free monoid monad on sets, which associates to any set 𝑋 the

set∑𝑚 𝑋𝑚 of sequences of elements of𝑋 . The generic-free factorisation associated to any sequence𝑘 = (𝑤1, …, 𝑤𝑚), viewed as a morphism 1 → 𝒯 (𝑋), is
1 (1,…,𝑚)−−−−−→ 𝒯 (𝑚) 𝒯 [𝑤𝑕]𝑕ɋ𝑚−−−−−−−→ 𝒯 (𝑋),

where we recall that 𝑚 denotes {1, …, 𝑚}. Intuitively, the generic part retains only the ‘shape’ of 𝑘,
or otherwise said the linear term from which 𝑘 may be obtained by substitution.

Example 4.8. In the same setting, a non-generic morphism is the sequence (1, 1), viewed as a
morphism 1 → 𝒯 (1). Indeed, the square
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1 𝒯 (2)
𝒯 (1) 𝒯 (1)

(1,2)
(1,1)

𝒯 (!)
𝒯 (!)

commutes, with diagonal the sequence (1, 1), but no renaming will send (1, 1) to (1, 2). This exam-
ple shows the tight connection between genericity and linearity.

Definition 4.9. A functor ℱ ∶ 𝒜 → 𝒳 is familial when any morphism 𝑋 → ℱ (׷) factors
as the composite of some generic morphism followed by a free one, i.e., one of the form ℱ(𝑓 ).
A monad (𝒯 , 𝜂, (ࢰ is familial when the underlying endofunctor is, and furthermore 𝜂 and ࢰ are
cartesian natural transformations, i.e., all their naturality squares are pullbacks.

Remark 4.10. By the pullback lemma, when the domain category has a terminal object, a natural
transformation ∶ࢥ ׼ → ׽ is cartesian iff its naturality squares of the form below are pullbacks.׷׼ 1׼

׷׽ 1׽
(!)׼

׷ࢥ
(!)׽

1ࢥ
It should now be clear that the mediating arrow 𝑘 in (4) follows from genericity of .׹

Example 4.11. On 𝐒𝐞𝐭, if the considered functor 𝒯 is finitary, then arities ׷ of generic opera-
tions ∶׹ 1 → 𝒯 (׷) may be proved to be finite, so we may simply choose them to be the ordinal
corresponding to the number 𝑚׹ of holes in .׹ Familial functors thus coincide with standard poly-
nomial functors [Kock 2011], as we have 𝒯 (𝑋) ≅ ׹∑ 𝑋𝑚׹ .

There is a slight generalisation of the formula of Example 4.11 to presheaf categories, which will
be useful for showing that the monads 𝒯׹𝐿 and 𝒯׹׹𝑆 of §3.2.1 and §3.2.2 are familial:

Leॳॳ१ 4.12 ([We२eॸ 2007, Reॳ१ॸॱ 2.12]). An endofunctor 𝒯 on any presheaf category 􏾧ℂ is
familial iff there is a functor ∶׻ 𝑒𝑘(𝒯 (1)) → 􏾧ℂ and a natural isomorphism (in 𝑋 and 𝑐):𝒯 (𝑋)(𝑐) ≅ 􏾜𝑤ɋ𝒯 (1)(𝑐) 􏾧ℂ(׻(𝑐, 𝑤), 𝑋). (6)

Pॸॵॵf ॹॱeॺ३h. In presheaf categories, familiality is equivalent to pointwise familiality, i.e., ex-
istence of a generic-free factorisation for all morphisms of the form 𝐲𝑐 → 𝒯 (𝑋). Any functor of
the form (6) is clearly pointwise familial: any map (𝑤, 𝜑) ∶ 𝐲𝑐 → 𝒯 (𝑋), with 𝜑∶ ,𝑐)׻ 𝑤) → 𝑋 , fac-

tors as 𝐲𝑐 (𝑤,𝑕𝑑)−−−−→ 𝒯 ,𝑐)׻) 𝑤)) 𝒯 (𝜑)−−−−→ 𝒯 (𝑋). Conversely, if 𝒯 is pointwise familial, define ,𝑐)׻ 𝑤)
for any 𝑤∶ 𝐲𝑐 → 𝒯 (1) to be given by (any global choice of) generic-free factorisation of 𝑤:𝐲𝑐 → 𝒯 ,𝑐)׻) 𝑤)) → 𝒯 (1). □

Pॸॵॶॵॹiॺiॵॴ 4.13. The monad 𝒯׹𝐿 is familial.

Pॸॵॵf ॹॱeॺ३h. (More detail in [Hirschowitz 2018].) By Lemma 4.12, it suffices to exhibit a func-
tor ∶׻ 𝑒𝑘(𝒯׹𝐿(1)) → 𝐆𝐩𝐡, such that 𝒯׹𝐿(𝑍)(𝑐) ≅ ∑𝑤ɋ𝒯׹𝐿(1)(𝑐)[׻(𝑐, 𝑤), 𝑍], naturally in 𝑐 and 𝑍.
Now, 𝒯׹𝐿(1)(⋆) consists of terms on a unique free variable, say ⊤, and we define ׻ to map any
such term ׹ to the discrete graph with vertices in the ordinal 𝑚׹, where 𝑚׹ is the number of occur-
rences of ⊤ in .׹ Similarly, 𝒯׹𝐿(1)[1] consists of transition proofs on just one transition axiom,
say ⫪∶ ⊤ → ⊤. On such proofs, we define ׻ by induction:
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⦇⫪⦈׻ = 𝐲[1], 𝑗𝑀,𝑁)׻ ) = (𝑀)׻ + ,(𝑁)׻ 𝐿)׻ 𝑁) = (𝐿)׻ + ׻…,(𝑁)׻ is then defined on 𝑟 ↾ 𝑅 and 𝑠 ↾ 𝑅 (recall §1.5), by straightforward induction. □

Pॸॵॶॵॹiॺiॵॴ 4.14. 𝒯׹׹𝑆 is familial.

Pॸॵॵf. Similar, using the fact that we do not mod out by .equivalence-ࢥ □

4.3 Congruence of Bisimilarity And 𝐓𝑟-Familiality
Let us now get to 𝐓𝑟-familiality. In the overview, we obtained by familiality of 𝒯 the mediating
morphism 𝑘, which we argued should intuitively be a coproduct of source maps. This allowed us to
find a lifting: we found one for each source map individually, and then took the cotupling. In the
general case, however, there is a priori no guarantee that the mediating morphism will have such a
nice form. Now, the only thing we need in order to conclude is that the mediating morphism be in⧄(𝐓⧄𝑟 ), so it is tempting to take this as an additional hypothesis. But the question is then whether
this will be expressive enough to cover our examples. E.g., will ⧄(𝐓⧄𝑟 ) always contain coproducts of
maps in𝐓𝑟 and isomorphisms?This is where basic results fromweak factorisation systems [Hovey
1999; Riehl 2014] come to the rescue.

4.3.1 Weak Factorisation Systems and ⧄(𝐓⧄𝑟 ). Indeed, the point is that the classes of maps ⧄(𝐓⧄𝑟 )
and 𝐓⧄𝑟 will form a cofibrantly generated weak factorisation system. Let us start with the most
general notion:

Definition 4.15. A weak factorisation system on a category𝒜 consists of two classes of mapsℒ
and ℛ such that ℒ ⧄ = ℛ , ℒ = ⧄ℛ , and every map 𝑓 ∶ ׷ → ׸ factors as ׷ 𝑘−→ ׹ 𝑞−→ ׸ with𝑘 ɋ ℒ and 𝑞 ɋ ℛ .

Cofibrantly generated weak factorisation systems are those generated from a set of maps by
lifting (this is the so-called small object argument). We introduce them in Proposition 4.19 below,
which requires us to first define transfinite composition, small objects, and relative cell complexes:

Definition 4.16. For any ordinal ,ࢯ a sequence-ࢯ is a cocontinuous functor from ࢯ viewed as a cat-
egory, to 𝒜 . A transfinite composite of any sequence-ࢯ 𝑋 ∶ ࢯ → 𝒜 is the component 𝜌0 ∶ (0)ࢯ →𝑐𝑛𝑘𝑕𝑙ࢯ>ࢦ𝑋(ࢦ) of any colimiting cocone 𝜌.

Definition 4.17. Let 𝒥 denote any class of morphisms in a cocomplete category 𝒜 , and let ࢮ
denote any cardinal. An object ׷ ɋ 𝒜 is small-ࢮ relative to 𝒥 iff, for all filtered-ࢮ [Hovey 1999,
Definition 2.1.12] ordinals ࢯ and sequences-ࢯ 𝑋 ∶ ࢯ → 𝒜 such that 𝑋(ࢦ) → 𝑋(ࢦ + 1) is in 𝒥 for
all +ࢦ 1 < ,ࢯ the canonical map 𝑐𝑛𝑘𝑕𝑙ࢯ>ࢦ𝒜 ((ࢦ)𝑋,׷) → 𝒜 ,׷) 𝑐𝑛𝑘𝑕𝑙ࢯ>ࢦ𝑋(ࢦ)) is bijective. We say
that ׷ is small relative to 𝒥 iff it is small-ࢮ relative to 𝒥 for some .ࢮ
Definition 4.18. For any class 𝒥 of maps in a cocomplete category 𝒜 , let 𝒥 - 𝑐𝑒𝑘𝑘 denote the

class of transfinite composites of pushouts of maps in 𝒥 , which we call relative𝒥 -cell complexes.

Pॸॵॶॵॹiॺiॵॴ 4.19 ([Hॵvey 1999, Theॵॸeॳ 2.1.14]). For any set 𝒥 of maps in a cocomplete cat-
egory, if the domains of maps in 𝒥 are small relative to 𝒥 - 𝑐𝑒𝑘𝑘, then ⧄(𝒥 ⧄) and 𝒥 ⧄ form a weak
factorisation system. Any so obtained weak factorisation system is called cofibrantly generated.

This applies to our abstract setting:

Pॸॵॶॵॹiॺiॵॴ 4.20. In any transition category, process types are small relative to 𝐓𝑟- 𝑐𝑒𝑘𝑘.
Pॸॵॵf. Smallness of an object ׷ means precisely that its covariant hom-functor preserves cer-

tain transfinite compositions, which holds for process types by tininess. □
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We thus have by Proposition 4.19:

Cॵॸॵॲॲ१ॸy 4.21. In any transition category, ⧄(𝐓⧄𝑟 ) and 𝐓⧄𝑟 form a weak factorisation system.

Cofibrantly generated weak factorisation systems enjoy an explicit characterisation of ℒ :

Definition 4.22. A retract of 𝑓 ∶ 𝑋 → 𝑌 is any map 𝑔∶ ׷ → ׸ for which there exists a retraction𝑓 → 𝑔 in the arrow category 𝒜 →, i.e., morphisms 𝑔 𝑟−→ 𝑓 𝑞−→ 𝑔 such that 𝑞 ∘ 𝑟 = 𝑕𝑑𝑔.
Pॸॵॶॵॹiॺiॵॴ 4.23 ([Hॵvey 1999, Cॵॸॵॲॲ१ॸy 2.1.15]). In the setting of Proposition 4.19, the left

class ⧄(𝒥 ⧄) consists precisely of retracts of relative𝒥 -cell complexes.

We thus have:

Cॵॸॵॲॲ१ॸy 4.24. In any transition category, the classes of maps (⧄(𝐓⧄𝑟 ), 𝐓⧄𝑟 ) form a weak factori-
sation system whose left class consists precisely of retracts of relative 𝐓𝑟-cell complexes. In particular,⧄(𝐓⧄𝑟 ) contains coproducts of maps in 𝐓𝑟 and of isomorphisms.

4.3.2 Congruence of Bisimilarity. Being assured that ⧄(𝐓⧄𝑟 ) is large enough for our purposes, let
us now return to congruence of bisimilarity.

Definition 4.25. A monad (𝒯 , 𝜂, (ࢰ on a transition category𝒜 is 𝐓𝑟-familial when it is familial
and furthermore for any commuting diagram𝑃 𝐿

𝒯 (׷) 𝒯 (𝑅)
𝑟

׹
𝒯 (𝑟′)

׺
where 𝑟 ɋ 𝐓𝑟 and ׹ and ׺ are generic, we have 𝑟′ ɋ ⧄(𝐓⧄𝑟 ).

Remark 4.26. By Lemma 4.12, when 𝒜 is a presheaf category and 𝑃 and 𝐿 are representable,
this is equivalent to requiring that all maps of the form 𝑟′ ≅ 𝑟)׻ ↾ 𝑤) (for some 𝑤 ɋ 𝒯 (1)(𝐿)) are in⧄(𝐓⧄𝑟 ). Indeed, above, take for 𝑤 the composite 𝐿 →−׺ 𝒯 (𝑅) 𝒯 (!)−−−−→ 𝒯 (1): we then have 𝑅 ≅ ,𝐿)׻ 𝑤),׷ ≅ ,𝑃)׻ 𝑤 ⋅ 𝑟), and 𝑟′ ≅ 𝑟)׻ ↾ 𝑤).

Theॵॸeॳ 4.27. For any 𝐓𝑟-familial monad 𝒯 on a transition category, if 𝑓 ∶ 𝑅 → 𝑋 is a func-

tional bisimulation, so is 𝒯 (𝑅) 𝒯 (𝑓 )−−−−→ 𝒯 (𝑋).
Pॸॵॵf. We need to construct a lifting for any commuting square as the exterior of𝑃 𝒯 (𝑅)𝒯 (׷)

𝒯 𝐿(׸) 𝒯 (𝑋).

𝑜
׹

𝑟 𝒯 (𝑔)𝒯 (𝑟′) 𝒯 (𝑓 )
׺ 𝑞

𝒯 (ℎ)
𝒯 (𝑗)

We use familiality of𝒯 to factor 𝑜 as𝒯 (𝑔)∘׹ and 𝑞 as𝒯 (ℎ)∘׺with ׹ and׺ generic. Genericity
of ׹ then yields 𝑟′ ∶ ׷ → ׸ as shown, which is in ⧄(𝐓⧄𝑟 ) by 𝐓𝑟-familiality, so we obtain a lifting𝑗 ∶ ׸ → 𝑅, and 𝒯 (𝑗) ∘ ׺ is a lifting for the whole diagram. □
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We may now prove that bisimilarity is a congruence, based on the following well-known stabil-
ity properties of factorisation systems.

Leॳॳ१ 4.28 ([Riehॲ 2014, Leॳॳ१ 11.1.4]). For any weak factorisation system (ℒ ,ℛ ), ℒ (resp.ℛ ) contains all isomorphisms and is closed under composition, retracts, coproducts (resp. products)
of arrows, and pushouts (resp. pullbacks). ℒ is furthermore closed under transfinite composition.

Cॵॸॵॲॲ१ॸy 4.29. For any bisimulation 𝑅 → 𝑋 × 𝑌 between compositional algebras for a 𝐓𝑟-
familial monad 𝒯 , the induced map 𝒯 (𝑅) → 𝑋 × 𝑌 is a bisimulation.

Pॸॵॵf. By compositionality, Theorem 4.27, and Lemma 4.28. □

Cॵॸॵॲॲ१ॸy 4.30. Between any two compositional algebras for a 𝐓𝑟-familial monad𝒯 , bisimilar-
ity is a congruence.

In most examples, the considered algebra is the free one 𝒯 (0). This is thus covered by:

Cॵॸॵॲॲ१ॸy 4.31. Consider any 𝐓𝑟-familial monad 𝒯 on some transition category 𝒜 such that1ࢰ ∶ 𝒯 2(1) → 𝒯 (1) is a functional bisimulation. Then for all 𝑋 , if 𝑓 ∶ 𝑅 → 𝒯 (𝑋) is a functional

bisimulation, so is𝒯 (𝑅) 𝒯 (𝑓 )−−−−→ 𝒯 2(𝑋) →−−𝑋ࢰ 𝒯 (𝑋), and hence bisimilarity in𝒯 (𝑋) is a congruence.
Pॸॵॵf. Because 𝒯 is familial, all naturality squares for ࢰ are pullbacks, so 𝑋ࢰ is a functional

bisimulation by Lemma 4.28. We conclude by Corollary 4.30. □

Example 4.32. Corollary 4.31 applies to 𝒯׹𝐿(0), 𝒯׹׹𝑆(0), and 𝒯 +𝜋 (0) (see §6.3 below). Indeed,𝒯׹𝐿 and𝒯׹׹𝑆 are both 𝐓𝑟-familial (for different 𝐓𝑟), because any 𝑟′ obtained as in Definition 4.25
is a coproduct (in the arrow category) of isomorphisms and maps in 𝐓𝑟, hence in ⧄(𝐓⧄𝑟 ) by
Lemma 4.28. Similarly, 𝐓𝑟-familiality of 𝒯 +𝜋 is Proposition 6.16 below.

However, Corollary 4.31 does not apply to either of the other two variants of the 𝜋-calculus that
we consider in §6. Indeed, for𝒯𝜋(0) (§6.1), 1ࢰ is not a functional bisimulation (this is the standard
fact that bisimilarity is not a congruence), and in §6.2 the 𝜋-calculus is considered as an algebra
for a certain submonad 𝒯 −𝜋 of 𝒯𝜋, not of the relevant form 𝒯 −𝜋 (𝑋), so we need to resort to the
theorem rather than the corollary.

5 BISIMULATION UP TO CONTEXT
In this section, we consider an alternative notion of bisimulation in transition categories, pre-
bisimulation, which we relate to bisimulation by showing that under a mild additional hypothesis
any pre-bisimulation embeds into some bisimulation. We then define a notion of pre-bisimulation
up to context, which in examples corresponds to bisimulation up to context. Finally, we prove
that pre-bisimulation up to context is sound, in the sense that any pre-bisimulation up to context
embeds into some pre-bisimulation (and hence into some bisimulation).

5.1 Progression and Pre-Bisimulation
In Definition 3.12, we defined functional bisimulation through a lifting property, which is flexible
enough to, e.g., exclude some transitions from the considered labelled transition systems 𝑋 and𝑌 . We will now define a slightly different notion which is in fact closer to the ordinary definition
of bisimulation. A standard way to define bisimulation and bisimulation up to context is through
the notion of progression [Sangiorgi and Rutten 2011, Definition 6.2.1]: a relation 𝑅 progresses to𝑅′ when for all (𝑤, 𝑥) ɋ 𝑅 and transitions 𝑤 →−ࢥ 𝑤′, there exists 𝑥 →−ࢥ 𝑥′ such that (𝑤′, 𝑥′) ɋ 𝑅′ (and
symmetrically). So in particular, 𝑅 is a bisimulation iff it progresses to itself. This may be defined
in the abstract setting, as follows.
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Definition 5.1. Consider maps 𝑕 ∶ 𝑅 → 𝑋 ×𝑌 and 𝑖 ∶ 𝑅′ → 𝑋 ×𝑌 in any transition category. We

say that 𝑅 progresses to 𝑅′, notation 𝑅 ↝ 𝑅′, iff for all transition types 𝑃 𝑟−→ 𝐿 𝑠←− 𝑄, processes𝑐 ∶ 𝑃 → 𝑅, and transitions 𝑞 ∶ 𝐿 → 𝑋 making the solid part below left commute, there exist 𝑡 and𝑑 as shown making the whole commute, and symmetrically for 𝑌 .𝑃 𝑅 𝑋𝐿 𝑋 × 𝑌 𝑋𝑄 𝑅′ 𝑋

𝜋∘𝑕
𝜋

𝜋∘𝑖

𝑞∘𝑟
𝑞
𝑞∘𝑠

𝑟
𝑠

𝑐
𝑡
𝑑

𝑕
𝑖

׷ ׹
𝑈 𝑉
׸ ׺

ℎ
𝑎 𝑗 𝑐

𝑘𝑏 𝑑 (7)

A relation 𝑅 is a pre-bisimulation iff 𝑅 ↝ 𝑅.
Let us mention an equivalent presentation of progression, which uses lifting analogously to

bisimulation, but in the category of cospans:

Definition 5.2. Let 𝒜 ɫ have cospans in 𝒜 as objects, and as morphisms (𝑎, 𝑏) → (𝑐, 𝑑) all
commuting diagrams as on the right of (7).

Pॸॵॶॵॹiॺiॵॴ 5.3. Given 𝑅 → 𝑋 × 𝑌 and 𝑅′ → 𝑋 × 𝑌 , 𝑅 progresses to 𝑅′ iff every commuting
diagram of the following form admits a dashed lifting as shown, and symmetrically for 𝑌 .𝑃 𝑅𝑃 𝑋𝑃 𝑋 × 𝑌𝐿 𝑋0 𝑅′𝑄 𝑋

𝑟
𝑠

𝑕
𝑖 𝜋 (8)

5.2 From Pre-Bisimulation to Bisimulation
Let us now relate pre-bisimulation to bisimulation. Intuitively, the value of 𝑅 over transitions is
irrelevant in the definition of pre-bisimulation. But, thinking of 𝑅 as a relation over processes, one
would expect that by completing it with all transitions that exist in 𝑋 ×𝑌 between pairs of related
processes we would get a bisimulation. This completion operation may be performed generically
by a weak factorisation system, up to an additional stratification hypothesis. Let us first define the
weak factorisation system in question, then introduce the relevant hypothesis, and finally relate
pre-bisimulation to bisimulation (Proposition 5.8).

Pॸॵॶॵॹiॺiॵॴ 5.4. In any transition category 𝒜 , the set 𝒥 = {[𝑟, 𝑠] ∶ 𝑃 + 𝑄 → 𝐿 | (𝑟, 𝑠) ɋ 𝐓}
generates a weak factorisation system, say (ℒ ,ℛ ).

Pॸॵॵf. By Proposition 4.19 and tininess of process types. □

Definition 5.5. A transition category 𝒜 is two-level iff 𝒥 ⊆ 𝐏⧄, viewing each 𝑃′ ɋ 𝐏 as the
unique map 0 → 𝑃′.
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Explicitly, 𝒜 is two-level when any map 𝑓 ∶ 𝑃′ → 𝐿 with 𝑃′ ɋ 𝐏 lifts through any [𝑟, 𝑠] with
codomain 𝐿, i.e., there exists 𝑗 making the following triangle commute.𝑃 + 𝑄

𝑃′ 𝐿𝑗
𝑓

[𝑟,𝑠] (9)

Remark 5.6. All our example transition categories are two-level. Indeed, the involved base cate-
gories feature a notion of dimension, given by the only non-trivial functors to 𝟚, the two-element
ordinal viewed as a category. E.g., the functor ℂ׹׹𝑆 → 𝟚 maps ⋆ to 0 and all labels to 1. Di-
mension extends to presheaves by decreeing that a presheaf has dimension 0 when it is empty
over all objects of dimension 1, and dimension 1 otherwise. The point is that in examples, all mor-
phisms [𝑟, 𝑠] ∶ 𝑃 + 𝑄 → 𝐿 are in fact bijective over objects of dimension 0, which directly ensures
two-levelness.

Leॳॳ१ 5.7. In any two-level transition category, we haveℒ ⊆ 𝐏⧄.
Pॸॵॵf. By Proposition 4.23, it suffices to show that 𝐏⧄ contains𝒥 and is stable under pushout,

transfinite composition, and retracts. First of all, 𝒥 ⊆ 𝐏⧄ holds by hypothesis. Stability under
retracts is direct, and stability under pushout and transfinite composition follows from tininess of
process types (by transfinite induction in the latter case). □

Pॸॵॶॵॹiॺiॵॴ 5.8. For any pre-bisimulation 𝑕 ∶ 𝑅 → 𝑋 × 𝑌 in a two-level transition category, the

factor 𝑕 of the (ℒ ,ℛ )-factorisation 𝑅 𝑘−→ 𝑅 𝑕−→ 𝑋 × 𝑌 of 𝑕 is a bisimulation.

Intuitively, 𝑅 coincides with 𝑅 on states, but adds in all the transitions between pairs of related
vertices that exist in 𝑋 × 𝑌 .

Pॸॵॵf. Consider any commuting square as below left. By Lemma 5.7, we find a lifting, say𝑜′ ∶ 𝑃 → 𝑅 of 𝑜 through 𝑘 ∶ 𝑅 → 𝑅. Because 𝑅 is a pre-bisimulation, we get 𝑞′ and 𝑝′ making the
diagram below center commute. We may thus factor the original square as below right, and hence
get the desired (dashed) lifting by 𝑕 ɋ ℛ .

𝑃 𝑅
𝑋 × 𝑌

𝐿 𝑋

𝑜

𝑟

𝑞

𝑕
𝜋

𝑃 𝑅 𝑋𝐿 𝑋 × 𝑌 𝑋𝑄 𝑅 𝑋

𝜋∘𝑕
𝜋

𝜋∘𝑕

𝑞∘𝑟
𝑞
𝑞∘𝑠

𝑟
𝑠

𝑜′
𝑞′

𝑝′

𝑕
𝑕

𝑅
𝑃 𝑃 + 𝑄 𝑅

𝑋 × 𝑌
𝐿 𝐿 𝑋

𝑕𝑚𝑘
𝑟

𝑜′ 𝑜 𝑘
[𝑟,𝑠] [𝑘∘𝑜′,𝑘∘𝑝′]

𝑞𝑞′
𝑞

𝑕
𝜋

□

5.3 Pre-bisimulation up to Context
After defining pre-bisimulations in the previous section, and showing that they embed into bisimu-
lations by factorisation, we now proceed in this section to defining pre-bisimulations up to context,
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and showing that they embed into pre-bisimulations, hence into bisimulations, under suitable hy-
potheses.

Let us consider any familial monad𝒯 on a transition category𝒜 , and𝒯 -algebras 𝑎 ∶ 𝒯 (𝑋) →𝑋 and 𝑏 ∶ 𝒯 (𝑌) → 𝑌 .

Definition 5.9. A map 𝑕 ∶ 𝑅 → 𝑋 × 𝑌 is a pre-bisimulation up to𝒯 iff 𝑅 ↝ 𝒯 (𝑅), where 𝒯 (𝑅)
is equipped with the map 𝒯 (𝑅) 𝒯 (𝑕)−−−−→ 𝒯 (𝑋 × 𝑌) Ψ𝒯 (𝜋),𝒯 (𝜋′)Ω−−−−−−−−−−−−→ 𝒯 (𝑋) ×𝒯 (𝑌) 𝑎×𝑏−−−→ 𝑋 × 𝑌.

Before proving soundness of pre-bisimulation up to𝒯 , we need to refine 𝐓𝑟-familiality. Indeed,
in order to find the desired lifting in the proof of Theorem 4.27, we needed to assume that the
image by ׻ of any 𝑟 ɋ 𝐓𝑟 was in ⧄(𝐓⧄𝑟 ). For pre-bisimulations, we will proceed analogously, but in
the cospan category.

Pॸॵॶॵॹiॺiॵॴ 5.10. The cospan category 𝒜 ɫ is again a transition category with transition types,

say 𝐓ɫ, given by 𝑃 𝑃 0𝑃 𝐿 𝑄0 𝑄 𝑄.𝑟 𝑟 𝑠𝑠
Pॸॵॶॵॹiॺiॵॴ 5.11. Any familial monad 𝒯 on 𝒜 lifts to a familial monad 𝒯 ɫ on the cospan

category 𝒜 ɫ, whose generics are given by componentwise generics.

This leads us to define:

Definition 5.12. A familial monad 𝒯 on a transition category 𝒜 is 𝐓ɫ𝑟 -familial iff 𝒯 ɫ is (as a
monad on 𝒜 ɫ).

Theॵॸeॳ 5.13. For any 𝐓ɫ𝑟 -familial monad 𝒯 , compositional 𝒯 -algebras 𝑎 ∶ 𝒯 (𝑋) → 𝑋 and𝑏 ∶ 𝒯 (𝑌) → 𝑌 , and pre-bisimulation 𝑕 ∶ 𝑅 → 𝑋×𝑌 up to𝒯 , the followingmap is a pre-bisimulation:

𝒯 (𝑅) 𝒯 (𝑕)−−−−→ 𝒯 (𝑋 × 𝑌) Ψ𝒯 (𝜋),𝒯 (𝜋′)Ω−−−−−−−−−−−−→ 𝒯 (𝑋) ×𝒯 (𝑌) 𝑎×𝑏−−−→ 𝑋 × 𝑌. (10)

Pॸॵॵf. Let 𝑕′ denote the map (10), and define 𝑎′, 𝑏′, 𝑕′𝑋 , and 𝑕′𝑌 by composition as in

𝑋𝒯 (𝑅) 𝒯 (𝑋 × 𝑌) 𝒯 (𝑋) ×𝒯 (𝑌) 𝑋 × 𝑌𝑌 .

𝒯 (𝑕)
𝑕′𝑋

𝑕′𝑌
Ψ𝒯 (𝜋),𝒯 (𝜋′)Ω

𝑎′

𝑏′
𝑎×𝑏 𝜋

𝜋′

The cube on the left of Figure 1 commutes (notably by the monad algebra laws), which means that
it forms a square as on the right in 𝒜 ɫ, whose top arrow is by hypothesis the image by 𝒯 ɫ of a
map in (𝐓ɫ𝑟 )⧄.
Notation 5.14. Open arrow heads denote arrows of the form 𝒯 ɫ(−), and commutation of a

diagram of such arrows means that the underlying arrows, without 𝒯 , agree.

By symmetry, it suffices to prove that the bottom map (𝑕′𝑋 , 𝜋, 𝑕′𝑋 ) is in (𝐓ɫ𝑟 )⧄. For this, consider
any commuting square as the perimeter of
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𝒯 (𝑅) 𝒯 (𝑋)𝒯 (𝑅) 𝑋𝒯 (𝑋 × 𝑌) 𝒯 (𝑋)𝑋 × 𝑌 𝑋𝒯 2(𝑅) 𝒯 (𝑋)𝒯 (𝑅) 𝑋

𝒯 (𝜋) 𝑎

𝒯 (𝜋∘𝑕)
𝒯 (𝑕)
𝒯 (𝑕′)

𝑅ࢰ 𝒯 (𝑕′𝑋 )

𝑕′𝑋 𝑎

𝑕′𝑋
𝑎

Ψ𝑎′,𝑏′Ω 𝜋𝑕′
𝑕′

𝒯 ɫ(𝑕, 𝑕′) 𝒯 ɫ(𝑕𝑑𝑋 , 𝑕𝑑𝑋 )
(𝑕′, 𝑕′) (𝑕𝑑𝑋 , 𝑕𝑑𝑋 )

𝒯 ɫ(𝜋∘𝑕,𝜋,𝑕′𝑋 )
(𝑕𝑑𝒯 (𝑅),Ψ𝑎′,𝑏′Ω,ࢰ𝑅)

(𝑕′𝑋 ,𝜋,𝑕′𝑋 )
(𝑎,𝑎,𝑎)

Fig. 1. Cube for the proof of Theorem 5.13

(𝑕𝑑𝑃, !𝑃) 𝒯 ɫ(𝑕𝑑׷, (׷! 𝒯 ɫ(𝑕, 𝑕′) (𝑕′, 𝑕′)
(𝑟, 𝑠) 𝒯 ɫ(𝑟′, 𝑠′) 𝒯 ɫ(𝑕𝑑𝑋 , 𝑕𝑑𝑋 ) (𝑕𝑑𝑋 , 𝑕𝑑𝑋 ).

𝑡𝑡′
(𝑕𝑑𝑃,𝑟,!𝑄) ׹ 𝒯 ɫ(ℎ)

𝑢𝑢′
׻ 𝒯 ɫ(𝜋∘𝑕,𝜋,𝑕′𝑋 )(𝑕𝑑𝒯 (𝑅),Ψ𝑎′,𝑏′Ω,ࢰ𝑅) (𝑕′𝑋 ,𝜋,𝑕′𝑋 )(𝑎,𝑎,𝑎)

Because (𝑕𝑑𝒯 (𝑅), Ψ𝑎′, 𝑏′Ω, (𝑅ࢰ has identity first component and (𝑕𝑑𝑃, !𝑃) has identity top leg, 𝑡 factors
through the former, say as 𝑡′. But by compositionality of 𝑋 , we have (𝑎, 𝑎, 𝑎) ɋ (𝐓ɫ𝑟 )⧄, so by lifting
we find a 𝑢′ as shown making both parts of the diagram commute. Now, by familiality of 𝒯 ɫ, we
find generic-free factorisations of 𝑡′ and 𝑢′, say with generics׹ and .׻ Next, by genericity of׹we
find a lifting 𝒯 ɫ(ℎ) as shown, with ℎ ɋ ⧄((𝐓ɫ𝑟 )⧄) by 𝐓ɫ𝑟 -familiality. We thus find a dashed lifting
as shown, which at last yields a lifting for the whole diagram. □

Cॵॸॵॲॲ१ॸy 5.15. For any 𝐓ɫ𝑟 -familial monad 𝒯 and compositional 𝒯 -algebras 𝑎 ∶ 𝒯 (𝑋) → 𝑋
and 𝑏 ∶ 𝒯 (𝑌) → 𝑌 , any pre-bisimulation up to 𝒯 embeds into some bisimulation.

Pॸॵॵf. By Theorem 5.13 and Proposition 5.8. □

Example 5.16. In CCS, the cospans morphisms involved in 𝐓ɫ𝑟 -familiality are coproducts (in(𝒜 ɫ)→) of maps in 𝐓ɫ𝑟 and isomorphisms, so the corollary applies and bisimulation up to context
is sound.

6 THREE SHADES OF 𝜋-CALCULUS
Let us now consider a more significant example than combinatory logic and CCS: the 𝜋-calculus.
Unlike in CCS, we have to mod out by ,equivalence-ࢥ because channel names may be input, hence
substituted deep in process terms, which may force renaming. We essentially follow the presenta-
tion of Sangiorgi and Walker [2001, §1.3], using a simplified variant for expository purposes.

In §6.1, we make a first attempt at covering the 𝜋-calculus using our approach. We manage to
design a familial monad, 𝒯𝜋, over a certain presheaf category 􏾧𝔹, which faithfully encodes the
desired labelled transition system. However, as bisimilarity is known not to be a congruence in 𝜋,
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something is bound to fail. And indeed, we show that the initial𝒯𝜋-algebra𝒯𝜋(0) of processes is
not compositional. We rectify this in a standard way in §6.2, by defining a familial submonad,𝒯 −𝜋 ,
such that the 𝒯 −𝜋 -algebra 𝒯𝜋(0) is compositional, thus recovering the known facts that (1) stan-
dard bisimilarity is a congruence for all operators but input, and (2) bisimulation up to non-input
context is sound.We finally consider in §6.3 a different, though still standard, way of remedying the
non-congruence problem.This consists in restricting attention to relations, called wide open [Fiore
and Staton 2006; Sangiorgi and Walker 2001; Staton 2008], that are stable under channel renam-
ing. We do this by working over a different base category 𝔽, and adapting the definition of 𝒯𝜋,
yielding a new familial monad 𝒯 +𝜋 . We recover the known results that wide-open bisimilarity is
a congruence and that wide-open bisimulation up to context is sound.

6.1 Basic Approach
In this section, we illustrate our approach by examining the failure of congruence for standard
bisimilarity in 𝜋. We analyse the problem, which allows us to consider two different solutions in
the next two sections.

Naively adapting what we did with CCS to the 𝜋-calculus, we could try considering a similar
base category with CCS labels replaced with𝜋-calculus labels, 𝜏, 𝑛𝑎,𝑏, ,𝑎,𝑏ࢭ etc. However, this setting

cannot accomodate the input axiom: 𝑎(𝑐).𝑃 →−−𝑎,𝑏ࢭ 𝑃[𝑐 ↦ 𝑏]. Indeed, this requires a definition of
renaming, for which a standard, inductive definition stumbles upon the base case: it does not
make any sense to replace 𝑐 with 𝑏 in ⦇𝑤⦈. We thus consider a different base category.
Definition 6.1. Recalling𝒩 from Example 3.1, let 𝔹 denote the subcategory of 𝐒𝐞𝐭𝑛𝑜 with finite

subsets of 𝒩 as objects and bijections as morphisms, augmented with• objects 𝜏ࢧ, 𝑛ࢧ,𝑎,𝑏, 𝑛ࢧࢱ,𝑎,𝑐, ,𝑎,𝑏,ࢧࢭ and 𝑎,𝑐,ࢧࢱࢭ for all ࢧ ɋ 𝒫𝑓 (𝒩 ), 𝑎, 𝑏 ɋ ,ࢧ and 𝑐 Ɍ •,ࢧ morphisms, arranged by transition types (denoting by ,ࢧ 𝑐 the (disjoint) union ⊎ࢧ {𝑐} – here
but not, e.g., in 𝑛ࢧ,𝑎,𝑏: input and output labels have three arguments, a ࢧ and two names; we
rely on context to disambiguate):ࢧ 𝑟−→ 𝜏ࢧ 𝑠←− ࢧ ࢧ 𝑟−→ 𝑛ࢧ,𝑎,𝑏 𝑠←− ࢧ ࢧ 𝑟−→ 𝑎,𝑏,ࢧࢭ 𝑠←− ࢧ ࢧ 𝑟−→ 𝑛ࢧࢱ,𝑎,𝑐 𝑠←− ,ࢧ 𝑐 ࢧ 𝑟−→ 𝑎,𝑐,ࢧࢱࢭ 𝑠←− ,ࢧ 𝑐 ,• plus, for all transition types ࢧ 𝑟−→ ࢥ 𝑠←− ,ࢧ ࢨ and bijections ℎ∶ ࢧ −∼ ′ࢧ and 𝑗 ∶ ࢨ −∼ ′ࢨ such thatࢧ′ ɬ ′ࢨ = ∅, a morphism (ℎ, 𝑗) ∶ (ℎ, 𝑗) ⋅ ࢥ → ,ࢥ where(ℎ, 𝑗) ⋅ 𝜏ࢧ = 𝜏ࢧ′ and (ℎ, 𝑗) ⋅ 𝑎,𝑏,ࢧࢥ = ℎ(𝑎),(ℎ+𝑗)(𝑏),′ࢧࢥ for ࢥ ɋ {𝑛, ,ࢭ 𝑛ࢱ, ,{ࢱࢭ
satisfying the obvious equations:ࢧ ࢥ ,ࢧ ࢨ

′ࢧ (ℎ, 𝑗) ⋅ ࢥ ,′ࢧ .′ࢨ
𝑟

ℎ 𝑟
(ℎ,𝑗)

𝑠
ℎ+𝑗

𝑠
(11)

Notation 6.2. For general presheaves 𝑋 , we denote the action 𝑋(𝑐′) 𝑋(𝑓 )−−−−→ 𝑋(𝑐) of any 𝑓 ∶ 𝑐 → 𝑐′
in the base by 𝑤 ↦ 𝑤 ⋅ 𝑓 . However, for 𝑓 ∶ ࢧ −∼ ′ࢧ in sets, although 𝑓 acts contravariantly as a mapࢧ′ → ࢧ in 𝔹, it acts covariantly as a set-map, so we often write 𝑓 ⋅ 𝑤 instead. We use the same
convention for arbitrary (potentially non-bijective) maps below.

Pॸॵॶॵॹiॺiॵॴ 6.3. The category 􏾧𝔹 forms a transition category, with transition types 𝐓𝜋 as above.

Let us now define our monad on 􏾧𝔹, in three stages. We first define𝒯𝜋(𝑋) on process types. We
then observe that not only bijections act on 𝒯𝜋(𝑋), but also arbitrary maps. The presheaf 𝒯𝜋(𝑋)
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that we defined on process types and bijections thus extends to a functor on the category of finite
subsets of 𝒩 and all maps. We finally use this to define 𝒯𝜋(𝑋) on transitions.

For any 𝑋 ɋ 􏾧𝔹, let 𝒯𝜋(𝑋)(ࢧ) denote the set of all equivalence-ࢥ classes of 𝜋-calculus terms
of the form ࢧ ⊢ 𝑃, as defined in the top part of Figure 2. Let us then define renaming, the action

𝑤 ɋ 𝑋(ࢧ) 𝑓 ɋ 𝐒𝐞𝐭(ࢧ, ′ࢧ(′ࢧ ⊢𝑋 ⦇𝑤⦈(𝑓 ) ࢧ ⊢𝑋 𝑃 ࢧ ⊢𝑋 𝑄ࢧ ⊢𝑋 𝑃|𝑄 ࢧ ⊢𝑋 0 ,ࢧ 𝑎 ⊢𝑋 𝑃ࢧ ⊢𝑋 ࢧ𝑎.𝑃ࢱ ⊢𝑋 𝑃 𝑎, 𝑏 ɋ ࢧࢧ ⊢𝑋 𝑎Ψ𝑏Ω.𝑃 ,ࢧ 𝑏 ⊢𝑋 𝑃 𝑎 ɋ ࢧࢧ ⊢𝑋 𝑎(𝑏).𝑃
𝑒 ɋ 𝑋(ࢥ) ࢧ 𝑟−→ ࢥ 𝑠←− ,ࢧ ࢨ ℎ∶ ࢧ −∼ ′ࢧ 𝑗 ∶ ࢨ −∼ ′ࢨ ′ࢧ ɬ ′ࢨ = ∅Ϊ𝑒Ϋ(ℎ, 𝑗) ∶ ′ࢧ ⊢𝑋 ⦇𝑒 ⋅ 𝑟⦈(ℎ) (ℎ,𝑗)⋅ࢥ−−−−−→ ,′ࢧ ′ࢨ ⊢𝑋 ⦇𝑒 ⋅ 𝑠⦈(ℎ + 𝑗)ࢧ, 𝑏 ⊢𝑋 𝑃 𝑎, 𝑐 ɋ 𝑕𝑚𝑎,𝑐𝑏.𝑃ࢧ ∶ ࢧ ⊢𝑋 𝑎(𝑏).𝑃 →−−−−𝑎,𝑐,ࢧࢭ ࢧ ⊢𝑋 [𝑏 ↦ 𝑐] ⋅ 𝑃 ࢧ ⊢𝑋 𝑃 𝑎, 𝑏 ɋ 𝑋𝑃⊣ࢧ𝑛𝑡𝑠𝑎,𝑏ࢧ ∶ ࢧ ⊢𝑋 𝑎Ψ𝑏Ω.𝑃 𝑛ࢧ,𝑎,𝑏−−−−→ ࢧ ⊢𝑋 𝑃

𝑅 ∶ ࢧ ⊢𝑋 𝑃 𝑛ࢧ,𝑎,𝑏−−−−→ ࢧ ⊢𝑋 𝑃′ 𝑆 ∶ ࢧ ⊢𝑋 𝑄 →−−−−𝑎,𝑏,ࢧࢭ ࢧ ⊢𝑋 𝑄′
𝑅 ⊳ 𝑆 ∶ ࢧ ⊢𝑋 (𝑃|𝑄) 𝜏ࢧ−−→ ࢧ ⊢𝑋 (𝑃′|𝑄′) + symmetric rule ⊲

,ࢧ 𝑏 ⊢𝑋 𝑃 𝑎 ɋ ࢧ
𝑕𝑚𝑎,ࢱ𝑏𝑃 ∶ ࢧ ⊢𝑋 𝑎(𝑏).𝑃 →−−−−𝑎,𝑏,ࢧࢱࢭ ,ࢧ 𝑏 ⊢𝑋 𝑃

𝑅 ∶ ,ࢧ 𝑏 ⊢𝑋 𝑃 𝑛(ࢧ,𝑏),𝑎,𝑏−−−−−−→ ,ࢧ 𝑏 ⊢𝑋 𝑄 𝑎 ≠ 𝑏
Ɋ𝑏.𝑅 ∶ ࢧ ⊢𝑋 𝑏.𝑃ࢱ 𝑛ࢧࢱ,𝑎,𝑏−−−−→ ,ࢧ 𝑏 ⊢𝑋 𝑄

𝑅 ∶ ࢧ ⊢𝑋 𝑃 𝑛ࢧࢱ,𝑎,𝑏−−−−→ ,ࢧ 𝑏 ⊢𝑋 𝑃′ 𝑆 ∶ ࢧ ⊢𝑋 𝑄 →−−−−𝑎,𝑏,ࢧࢱࢭ ,ࢧ 𝑏 ⊢𝑋 𝑄′
𝑅 𝑏ࢱ⊲ 𝑆 ∶ ࢧ ⊢𝑋 𝑃|𝑄 𝜏ࢧ−−→ ࢧ ⊢𝑋 𝑏.(𝑃′|𝑄′)ࢱ + symmetric rule 𝑏ࢱ⊳

𝑅 ∶ ,ࢧ 𝑏 ⊢𝑋 𝑃 →−ࢥ ,ࢧ 𝑏, ࢨ ⊢𝑋 𝑄 𝑏 Ɍ fv(ࢥ)ࢱ𝑏.𝑅 ∶ ࢧ ⊢𝑋 𝑏.𝑃ࢱ →−−−ࢥ.𝑏ࢱ ,ࢧ ࢨ ⊢𝑋 𝑏.𝑄ࢱ
𝐿 ∶ ࢧ ⊢𝑋 𝑃 →−ࢥ ,ࢧ ࢨ ⊢𝑋 𝑃′ ࢧ ⊢𝑋 𝑄𝐿|𝑄 ∶ ࢧ ⊢𝑋 𝑃|𝑄 →−ࢥ ,ࢧ ࢨ ⊢𝑋 𝑃′|𝑄 + symmetric rule 𝑄|𝐿

Fig. 2. Syntax and labelled transition system for 𝜋𝒯𝜋(ࢧ) → 𝒯𝜋(ࢧ′) of any set-map 𝑓 ∶ ࢧ → ,′ࢧ denoted by 𝑃 ↦ 𝑓 ⋅ 𝑃, by straightforward induc-
tion; notably, for the base case, if 𝑔∶ ″ࢧ → ,ࢧ we set 𝑓 ⋅ ⦇𝑤⦈(𝑔) = ⦇𝑤⦈(𝑓 ∘ 𝑔) (see full definition
in [Hirschowitz 2018]).
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Finally, let us define 𝒯𝜋(𝑋) on transitions. For all ࢧ 𝑟−→ ࢥ 𝑠←− ,′ࢧ 𝒯𝜋(𝑋)(ࢥ) denotes the set ofࢥ-equivalence classes of transitions 𝑃 →−ࢥ 𝑄 with constants in 𝑋 , for 𝑃 ɋ 𝒯𝜋(𝑋)(ࢧ) and 𝑄 ɋ𝒯𝜋(𝑋)(ࢧ′), as defined in the bottom part of Figure 2, where• the only binding operations are 𝑕𝑚𝑎,𝑐𝑏.𝑃, ,𝑏.𝑅ࢱ and 𝑅 𝑏ࢱ⊲ 𝑆 – binding 𝑏;• a peculiarity is that in ⦇𝑤⦈(𝑓 ), the status of names in ࢧ is analogous to that of ‘binding’
names in contexts, e.g., as 𝑏 in 𝑎(𝑏).฀; in particular they are neither free, nor bound, norࢥ-convertible;• [𝑏 ↦ 𝑐] stands for the map ,ࢧ) 𝑏) → ࢧ mapping 𝑏 to 𝑐 and the rest of ࢧ to itself;• weakening (i.e., renaming along an injective map) is used implicitly in 𝐿|𝑄 and 𝑄|𝐿;• for ,𝑏.𝑅ࢱ we define

fv(𝑛ࢧ,𝑎,𝑏) = fv(ࢧࢭ,𝑎,𝑏) = fv(𝑛ࢧࢱ,𝑎,𝑏) = fv(ࢧࢱࢭ,𝑎,𝑏) = {𝑎, 𝑏} and fv(𝜏ࢧ) = ∅
and 𝑐,ࢧ𝑐.𝜏ࢱ = 𝜏ࢧ 𝑎,𝑏,(𝑐,ࢧ)ࢥ.𝑐ࢱ = ,𝑎,𝑏,ࢧࢥ for ࢥ ɋ {𝑛, ,ࢭ 𝑛ࢱ, ,{ࢱࢭ

where ࢥ.𝑐ࢱ is defined iff 𝑐 Ɍ fv(ࢥ).
This almost defines an assignment 𝑛𝑏(􏾧𝔹) → 𝑛𝑏(􏾧𝔹): it remains to define the action of maps in 𝔹 on𝒯𝜋(𝑋) and show that it is functorial. For maps of the form ࢧ → ,′ࢧ we merely use renaming; for𝑟 and 𝑠, we use the sources and targets specified in transitions. For (ℎ, 𝑗) ∶ (ℎ, 𝑗) ⋅ ࢥ → ,ࢥ we define(ℎ, 𝑗) ⋅ 𝑅 by induction on 𝑅, e.g.,(ℎ, 𝑗) ⋅ (Ϊ𝑒Ϋ(ℎ′, 𝑗′)) = Ϊ𝑒Ϋ(ℎ ∘ ℎ′, 𝑗 ∘ 𝑗′)(ℎ, 𝑕𝑑∅) ⋅ 𝑕𝑚𝑎,𝑐𝑏.𝑃 = 𝑕𝑚ℎ(𝑎),ℎ(𝑐)𝑎ࢧ′ .((ℎ+(𝑏↦𝑎ࢧ′ ))⋅𝑃)(ℎ, 𝑕𝑑∅) ⋅ (𝑅 𝑏ࢱ⊲ 𝑆) = ((ℎ, (𝑏 ↦ 𝑎ࢧ′ )) ⋅ 𝑅) ′ࢧ𝑎ࢱ⊲ ((ℎ, (𝑏 ↦ 𝑎ࢧ′ )) ⋅ 𝑆), … (12)

where (𝑏 ↦ 𝑐) is the unique map {𝑏} → {𝑐}, and 𝑎ࢧ denotes some globally chosen name not in .ࢧ
Finally, we prove that this is functorial, again by induction.This defines an assignment 𝑛𝑏(􏾧𝔹) →𝑛𝑏(􏾧𝔹), which easily extends to a functor 𝒯𝜋 ∶ 􏾧𝔹 → 􏾧𝔹: the action of a morphism ׼ ∶ 𝑋 → 𝑌 in 􏾧𝔹

is obtained by renaming 𝑤, resp. 𝑒, according to ׼ in ⦇𝑤⦈(𝑓 ), resp. Ϊ𝑒Ϋ(ℎ, 𝑗).
Remark 6.4 (Replication). The 𝜋-calculus standardly features additional operations like guarded

sum and replication. Guarded sum may be incorporated readily, but, depending on presentation,

replication may be less easy. E.g., the compact transition rule
𝑃|!𝑃 →−ࢥ 𝑄!𝑃 →−ࢥ 𝑄 does not obviously yield

a familial monad. However, the rules of Sangiorgi and Walker [2001, §1.3], a variant of which is
reproduced below (without the s’ࢧ for readability), do yield a familial monad directly.

𝑃 →−ࢥ 𝑃′!𝑃 →−ࢥ 𝑃′|!𝑃 𝑃 𝑛ࢧ,𝑎,𝑏−−−−→ 𝑃′ 𝑃 →−−−−𝑎,𝑏,ࢧࢭ 𝑃″
!𝑃 𝜏ࢧ−−→ (𝑃′|𝑃″)|!𝑃 𝑃 𝑛ࢧࢱ,𝑎,𝑏−−−−→ 𝑃′ 𝑃 →−−−−𝑎,𝑏,ࢧࢱࢭ 𝑃″

!𝑃 𝜏ࢧ−−→ 𝑏.(𝑃′|𝑃″)|!𝑃ࢱ
Pॸॵॶॵॹiॺiॵॴ 6.5. 𝒯𝜋 forms a 𝐓𝜋𝑟 -familial monad.

Pॸॵॵf ॹॱeॺ३h. (More detail in [Hirschowitz 2018].) To see that 𝒯𝜋 is a familial functor, by
Lemma 4.12, it is enough to exhibit a functor ∶׻ 𝑒𝑘(𝒯𝜋(1)) → 􏾧𝔹 such that𝒯𝜋(𝑋)(𝑐) ≅ 􏾜𝑅ɋ𝒯𝜋(1)(𝑐)[׻(𝑐, 𝑅), 𝑋],
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naturally in 𝑋 and 𝑐 ɋ 𝔹. Elements of𝒯𝜋(1)(ࢧ) are processes of type ,ࢧ over exactly one constant
process, say ′ࢧ⊤ of each type .′ࢧ Elements of 𝒯𝜋(1)(ࢥ) are transitions with exactly one constant

transition of each type ࢧ 𝑟−→ ࢦ 𝑠←− ,′ࢧ say ,ࢦ⊤ with source ࢦ⊤ ⋅ 𝑟 = ࢧ⊤ and target ࢦ⊤ ⋅ 𝑠 = ′ࢧ⊤ .
On objects, we construct ׻ by induction on the depth of the considered proof (globally for all

objects 𝑐 ɋ 𝔹), as in Figure 3, relying on some global choice of binary coproducts and fresh name𝑎ࢧ, for all ࢧ ɋ 𝒫𝑓 (𝒩 ), as in the definition of renaming. The choice of 𝑎ࢧ is in fact completely
irrelevant, because for all maps ℎ ∶ ࢧ −∼ ,′ࢧ 𝑗 ∶ ࢨ −∼ ′ࢨ in sets, processes ࢧ ⊢ 𝑃, and transitions𝑅∶ ࢧ) ⊢ 𝑃) →−ࢥ ,ࢧ) ࢨ ⊢ 𝑄), we have by induction:׻(ℎ ⋅ 𝑃) = (𝑃)׻ and ,ℎ))׻ 𝑗) ⋅ 𝑅) = (𝑅)׻ (yes, equality!). (13)
Typically, if 𝑓 ∶ ࢧ → ,′ࢧ we have by definition 𝑓)׻ ⋅ ((𝑕𝑑)⦇ࢧ⊤⦈ = 𝑓)⦇ࢧ⊤⦈)׻ )) = 𝐲ࢧ: 𝑓 is not taken
into account.

Processes⦇ࢧ⊤⦈)׻(𝑓 )) = 𝐲׻ࢧ(𝑃|𝑄) = (𝑃)׻ + (0)׻(𝑄)׻ = (𝑃.ࢧ𝑎ࢱ)׻0 = (𝑎Ψ𝑏Ω.𝑃)׻(𝑃)׻ = (𝑃.(ࢧ𝑎)𝑎)׻(𝑃)׻ = (𝑃)׻

Transitions׻(Ϊ⊤ࢥΫ(ℎ, 𝑗)) = 𝐲ࢥ (Ɋ𝑏.𝑅)׻ = (𝑃.ࢧ𝑕𝑚𝑎,𝑐𝑎)׻(𝑅)׻ = (𝑃)׻ 𝑅)׻ ࢧ𝑎ࢱ⊲ 𝑆) = (𝑅)׻ + 𝑛𝑡𝑠𝑎,𝑐𝑃)׻(𝑆)׻ ) = (𝑃)׻ (𝑅.ࢧ𝑎ࢱ)׻ = 𝑅)׻(𝑅)׻ ⊳ 𝑆) = (𝑅)׻ + (𝑆)׻ (𝐿|𝑄)׻ = (𝐿)׻ + 𝑏𝑃ࢱ,𝑕𝑚𝑎)׻(𝑄)׻ ) = (𝑃)׻ (𝑃|𝑅)׻ = (𝑃)׻ + (𝑅)׻
Fig. 3. Definition of ׻ on objects

Let us now define ׻ on morphisms:• For any 𝑓 ∶ ࢧ −∼ ′ࢧ in sets and 𝑃 ɋ 𝒯𝜋(1)(ࢧ), we have 𝑓 ↾ 𝑃∶ ,′ࢧ) 𝑓 ⋅ 𝑃) → ,ࢧ) 𝑃) in 𝑒𝑘(𝒯𝜋(1))
and define 𝑓)׻ ↾ 𝑃) ∶ ,′ࢧ)׻ 𝑓 ⋅ 𝑃) → ,ࢧ)׻ 𝑃) to be just the identity (which makes sense by (13)).• Similarly, for all (ℎ, 𝑗) ∶ (ℎ, 𝑗) ⋅ ࢥ → ,ࢥ let ,ℎ))׻ 𝑗) ↾ 𝑅) = 𝑕𝑑׻(𝑅).• Finally, for all ࢧ 𝑟−→ ࢥ 𝑠←− ,ࢧ ࢨ and 𝑅 ɋ 𝒯𝜋(1)(ࢥ), we define 𝑟)׻ ↾ 𝑅) and 𝑠)׻ ↾ 𝑅) straightfor-
wardly by induction, thanks to (13). An example key case is 𝑅)׻ ࢧ𝑎ࢱ⊲ 𝑆), for which we define׻(𝑟 ↾ 𝑅 ࢧ𝑎ࢱ⊲ 𝑆) and 𝑠)׻ ↾ 𝑅 ࢧ𝑎ࢱ⊲ 𝑆) to be׻(𝑃) + (𝑄)׻ →−−−−−−−−−−−−(𝑟↾𝑆)׻+(𝑟↾𝑅)׻ (𝑅)׻ + (𝑆)׻ −−−−−−−−−−−←(𝑠↾𝑆)׻+(𝑠↾𝑅)׻ (′𝑃)׻ + .(′𝑄)׻

Clearly, by induction, each 𝑟)׻ ↾ 𝑅) lies in ⧄((𝐓𝜋𝑟 )⧄), so that𝒯𝜋 is 𝐓𝜋𝑟 -familial by Remark 4.26.The
unit is given by variables, and multiplication is essentially substitution, which is straightforwardly
defined by induction. Key cases are:ࢰ𝑋,ࢥ(Ϊ𝑞Ϋ(ℎ, 𝑗)) = (ℎ, 𝑗) ⋅ 𝑞 ࢧ𝑋,𝜏ࢰ (𝑅 𝑏ࢱ⊲ 𝑆) = 𝑎,𝑏,ࢧࢱ𝑋,𝑛ࢰ (𝑅) 𝑏ࢱ⊲ 𝑎,𝑏,ࢧࢱࢭ,𝑋ࢰ (𝑆).
Unit and multiplication are natural and satisfy the monad laws. Finally, cartesianness of 𝜂 and ࢰ
may be checked pointwise (i.e., relative to representable presheaves), and follows by induction. □

As announced and expected, because bisimilarity is not a congruence in 𝜋, something must fail:

Pॸॵॶॵॹiॺiॵॴ 6.6. The free 𝒯𝜋-algebra, 𝒯𝜋(0), with action given by ,0ࢰ is not compositional.

Pॸॵॵf. The problem comes from renaming, as embedded in constant terms ⦇𝑤⦈(𝑓 ). Indeed, con-
sider 𝑜 = (𝑎Ψ𝑎Ω.0|𝑏(𝑐).0) (for 𝑎 ≠ 𝑏), a process involved in a standard counterexample to bisimilarity
being a congruence [Sangiorgi and Walker 2001]. Letting 𝑓 ∶ {𝑎, 𝑏} → {𝑎} denote the unique such
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map, ⦇𝑜⦈(𝑓 ) ɋ (𝒯𝜋)2(0){𝑎} is mapped by {𝑎},0ࢰ to 𝑜′ = (𝑎Ψ𝑎Ω.0|𝑎(𝑐).0). The latter process has a𝜏-transition to 0|0, which the former cannot match. □

Remark 6.7. The root of the problem here is 𝑕𝑚𝑎,𝑐𝑏.𝑃, which forces the syntax for processes to feature
renaming, even if only at the level of constants ⦇𝑤⦈(𝑓 ). To emphasise that this does make renaming
a proper syntactic operation, it may help to realise that 𝒯𝜋 could be presented using an explicit
renaming operation 𝑃[𝑓 ] together with equations describing how it propagates down towards the
leaves, e.g., (𝑃|𝑄)[𝑓 ] = 𝑃[𝑓 ]|𝑄[𝑓 ], to finally integrate with constants: ⦇𝑤⦈(𝑔)[𝑓 ] = ⦇𝑤⦈(𝑓 ∘ 𝑔).
6.2 Non-Input Congruence
A first, standard way around non-congruence of bisimilarity is to elude the problematic case, and
prove that bisimilarity is a congruence for all operators but input. Our framework can cover this
by viewing 𝜋-calculus as a non-free algebra for a smaller monad 𝒯 −𝜋 .

Definition 6.8. Let 𝒯 −𝜋 denote the sub-functor of 𝒯𝜋 obtained by removing 𝑎(𝑏).𝑃 from the
syntax of Figure 2, replacing the rule for ⦇𝑤⦈(𝑓 ) by𝑤 ɋ 𝑋(ࢧ) 𝑓 ɋ 𝐈𝐧𝐣(ࢧ, ′ࢧ(′ࢧ ⊢𝑋 ⦇𝑤⦈(𝑓 ) ,
where 𝐈𝐧𝐣(ࢧ, (′ࢧ denotes the set of injective maps ࢧ ↪ ,′ࢧ and removing 𝑕𝑚𝑎,𝑐𝑏.𝑃 and 𝑕𝑚𝑎,ࢱ𝑏𝑃 from the
labelled transition system of Figure 2.

Remark 6.9. We need to retain injective renaming for 𝐿|𝑄 and 𝑃|𝑅 to make sense.

We clearly obtain:

Pॸॵॶॵॹiॺiॵॴ 6.10. 𝒯 −𝜋 is a 𝐓𝜋𝑟 -familial monad.

But this time, instead of considering 𝒯 −𝜋 (0), which does not even satisfy the input rule, we
observe that𝒯𝜋(0) forms a𝒯 −𝜋 -algebra (because it satisfies all𝜋-calculus rules, hence in particular
those of 𝒯 −𝜋 ). We thus obtain:

Pॸॵॶॵॹiॺiॵॴ 6.11. The 𝒯 −𝜋 -algebra 𝒯𝜋(0) is compositional.

This gives an alternative proof of [Sangiorgi and Walker 2001, Theorem 2.2.8(1)], which says
that bisimilarity is a non-input congruence [Sangiorgi and Walker 2001, Definition 2.1.23]. In our
language:

Cॵॸॵॲॲ१ॸy 6.12. Bisimilarity for the 𝒯 −𝜋 -algebra 𝒯𝜋(0) is a congruence.
Pॸॵॵf. By Corollary 4.30 and Propositions 6.10 and 6.11. □

Similarly, 𝒯 −𝜋 is (𝐓𝜋𝑟 )ɫ-familial, so we recover Sangiorgi and Walker [2001, Lemma 2.3.21]:

Cॵॸॵॲॲ१ॸy 6.13. Bisimulation up to non-input context is sound.

6.3 Wide-Open Bisimilarity
Another standard solution to the failure of bisimilarity to be a congruence is to resort to wide-open
bisimilarity. For this, following Staton [2008], we need to modify our base category 𝔹 to include
non-bijective maps ࢧ → .′ࢧ
Definition 6.14. Let 𝔽 be defined just as 𝔹 (Definition 6.1), but including all morphisms from𝐒𝐞𝐭𝑛𝑜 (between relevant objects), instead of just bijections.
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Please note that while we include non-bijective morphisms 𝑓 ∶ ࢧ → ,′ࢧ we do not (need to)
do so for transition objects. The presheaf category 􏾧𝔽 forms a transition category with the same
transition types as 􏾧𝔹, which we denote by 𝐓+.

Let us now adapt our monad on 􏾧𝔹 to 􏾧𝔽.

Pॸॵॶॵॹiॺiॵॴ 6.15. Replacing the rules for ⦇𝑤⦈(𝑓 ) and Ϊ𝑒Ϋ(ℎ, 𝑗) in Figure 2 by𝑤 ɋ 𝑋(ࢧ)ࢧ ⊢𝑋 ⦇𝑤⦈ 𝑒 ɋ 𝑋(ࢥ)ࢧ ⊢𝑋 Ϊ𝑒Ϋ ,
and changing the base cases for renaming to 𝑓 ⋅ ⦇𝑤⦈ = ⦇𝑓 ⋅ 𝑤⦈ and (ℎ, 𝑗) ⋅ Ϊ𝑒Ϋ = Ϊ(ℎ, 𝑗) ⋅ 𝑒Ϋ yields a
functor 𝒯 +𝜋 ∶ 􏾧𝔽 → 􏾧𝔽.

It is not entirely trivial that this again forms a familial monad.

Pॸॵॶॵॹiॺiॵॴ 6.16. 𝒯 +𝜋 is a 𝐓+𝑟 -familial monad.

Pॸॵॵf ॹॱeॺ३h. (More detail in [Hirschowitz 2018].) Most of the definitions are adapted from 𝔹
to 𝔽, modulo the following subtlety. On objects, fresh names 𝑎ࢧ are chosen globally for all ࢧ as
in the proof of Proposition 6.5, and only the base cases change to ⦇𝑤⦈׻ = 𝐲ࢧ (for 𝑤 ɋ 𝑋(ࢧ)) and׻Ϊ𝑒Ϋ = 𝐲ࢥ (for 𝑒 ɋ 𝑋(ࢥ)). However, over 𝔹, we had 𝑓)׻ ⋅ 𝑃) = ,(𝑃)׻ which considerably eased
the definition of ׻ on morphisms. But because of the new treatment of renaming, this no longer
holds over 𝔽. E.g., consider 𝑃 = ⦇⊤{𝑎}⦈. We have (𝑃)׻ = 𝐲{𝑎}, but 𝑎))׻ ↦ 𝑏) ⋅ 𝑃) = 𝐲{𝑏} (where, we
recall from (12), (𝑎 ↦ 𝑏) denotes the unique map {𝑎} → {𝑏}), so we only get (𝑃)׻ ≅ 𝑎))׻ ↦ 𝑏) ⋅ 𝑃).
The treatment of morphisms thus needs adjustment: for ℎ ∶ ࢧ −∼ ′ࢧ and 𝑗 ∶ ࢨ −∼ ′ࢨ as in (13), we
get inductively-defined, functorial assignments׻(ℎ ↾ 𝑃) ∶ ℎ)׻ ⋅ 𝑃) → (𝑃)׻ and ,ℎ))׻ 𝑗) ↾ 𝑅) ∶ ,ℎ))׻ 𝑗) ⋅ 𝑅) → .(𝑅)׻

Finally, the definitions of 𝑟)׻ ↾ 𝑅) and 𝑠)׻ ↾ 𝑅) also need adjustment for scope-changing
constructors 𝑕𝑚𝑎,ࢱ𝑏𝑃 , Ɋ𝑏.𝑅, ,𝑏.𝑅ࢱ and 𝑅 𝑏ࢱ⊲ 𝑆. E.g., consider the morphism 𝑠 ↾ 𝑕𝑚𝑎,𝑐𝑏.𝑃 ∶ [𝑏 ↦ 𝑐] ⋅ 𝑃 →𝑕𝑚𝑎,𝑐𝑏.𝑃. We have by definition (𝑕𝑚𝑎,𝑐𝑏.𝑃)׻ = 𝑏))׻ ↦ 𝑎ࢧ) ⋅ 𝑃) so we define 𝑠)׻ ↾ 𝑕𝑚𝑎,𝑐𝑏.𝑃) to be

𝑏])׻ ↦ 𝑐] ⋅ 𝑃) →−−−−−−−−−−−−−−−−−(𝑃⋅(ࢧ𝑏↦𝑎)↾[𝑐↦ࢧ𝑎])׻ 𝑏))׻ ↦ 𝑎ࢧ) ⋅ 𝑃).
We then show by induction that this assignment on morphisms is functorial, which entails that𝒯 +𝜋 is familial. Finally, by definition, morphisms 𝑟 ↾ 𝑅 are mapped to coproducts of isomorphisms

and maps in 𝐓+𝑟 , up to isomorphism in the arrow category, hence 𝒯 +𝜋 is indeed 𝐓+𝑟 -familial. □

The compositionality problem created by 𝑤⦇𝑓 ⦈ having disappeared, we get:

Pॸॵॶॵॹiॺiॵॴ 6.17. 𝒯 +𝜋 (0) is a compositional algebra.

Calling wide-open bisimilarity the largest bisimulation relation over 𝒯 +𝜋 (0), we get:

Pॸॵॶॵॹiॺiॵॴ 6.18. Wide-open bisimilarity is a congruence.

Pॸॵॵf. By Corollary 4.31 and Propositions 6.16 and 6.17. □

Similarly, we recover Sangiorgi and Walker [2001, Corollary 2.3.25]:

Cॵॸॵॲॲ१ॸy 6.19. Wide-open bisimulation up to context is sound.

Remark 6.20. Adifferent presentation of wide-open bisimilaritymay be obtained by augmenting𝔹 with a transition type ,ࢧ 𝑎 𝑟−→ 𝜎ࢧ,𝑎,𝑏 𝑠←− ࢧ (for 𝑏 ɋ ,(ࢧ and adding the rule 𝑃 𝜎ࢧ,𝑎,𝑏−−−−→ [𝑎 ↦ 𝑏] ⋅ 𝑃.
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Remark 6.21. Similarly, open bisimilarity [Sangiorgi and Walker 2001, Definition 4.6.2] may be
obtained by considering yet another base category, where instead of finite sets of names and (bi-
jective) maps we would have as objects pairs (׺,ࢧ) of a finite set ࢧ of names and a distinction ,׺
i.e., an irreflexive relation on ,ࢧ with maps (׺,ࢧ) → ,′ࢧ) (′׺ all maps 𝑓 ∶ ࢧ → ′ࢧ respecting ,׺ i.e.,
if (𝑎, 𝑏) ɋ ׺ then 𝑓 (𝑎) ≠ 𝑓 (𝑏).
7 CONCLUSION AND PERSPECTIVES
We presented a categorical framework for studying congruence of bisimilarity, based on familial
monads and lifting properties. We then refined the framework to account for soundness of bisim-
ulation up to context, using lifting in the cospan category. We finally showed that the framework
flexibly accounts for most known results about congruence of bisimilarity and soundness of bisim-
ulation up to context in the 𝜋-calculus. To our knowledge, this is the first categorical account of
congruence of bisimilarity and soundness of bisimulation up to context in the presence of binding.
We furthermore hope to have demonstrated that the approach is close to operational intuitions.

However, although the framework provides abstract, rather general proofs of non-trivial facts,
it does not yet come with any format, i.e., means to construct instances from more basic data.
An obvious next step is thus to look for such formats, which in our case means automatically
constructing familial monads satisfying the relevant hypotheses. An intermediate step would be
to show that relevant formats (e.g., Middelburg [2001]; Mousavi et al. [2005]; Sands [1997]) give
rise to familial monads with compositional initial algebras. Another potential direction is to con-
sider questions related to congruence of bisimilarity and soundness of bisimulation up to context,
e.g., weak variants of these results, environmental bisimulation, or solutions of process equations.
Finally, we could consider adapting pointwise analytic monads [Garner and Hirschowitz 2018] to
transition categories, which could accomodate structural congruence, hence possibly provide a new
language to study the derivation of labelled transition systems from reduction rules [Sewell 1998].
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