
HAL Id: hal-01815328
https://hal.science/hal-01815328v2

Preprint submitted on 17 Jul 2018 (v2), last revised 13 Nov 2019 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Familial monads and structural operational semantics
Tom Hirschowitz

To cite this version:

Tom Hirschowitz. Familial monads and structural operational semantics. 2018. �hal-01815328v2�

https://hal.science/hal-01815328v2
https://hal.archives-ouvertes.fr

Familial monads and structural operational semantics

TOM HIRSCHOWITZ, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, France

We propose an abstract framework for structural operational semantics, in whichwe prove that under suitable
hypotheses bisimilarity is a congruence. We then refine the framework to prove soundness of bisimulation
up to context, an efficient method for reducing the size of bisimulation relations. Finally, we demonstrate the
flexibility of our approach by reproving known results about congruence of bisimilarity and soundness of
bisimulation up to context, in three variants of the 𝜋-calculus.

1 INTRODUCTION
Motivation
Structural operational semantics [16] is a method for specifying the dynamics of programming lan-
guages by induction on their syntax. This means that one describes the behaviour of a program in
terms of its components, a feature often called compositionality. An important issue in structural
operational semantics is the extent to which compositionality entails good behaviour of the gen-
erated labelled transition system. In this paper, we consider two particular questions: congruence
of bisimilarity and soundness of bisimulation up to context.

The former is a long-standing problem in structural operational semantics. Bisimilarity is prob-
ably the most widely used behavioural equivalence, and congruence of bisimilarity essentially
amounts to substitutivity: given two bisimilar program fragments 𝑃 and 𝑄 (which we denote by
𝑃 ∼ 𝑄), do we have 𝐶[𝑃] ∼ 𝐶[𝑄] for any context 𝐶? Bisimilarity is famously known not to be a
congruence in general, e.g., in the 𝜋-calculus [21, §2.2.1].

Our second object of study is bisimulation up to context [17, 21], an efficient variant of bisim-
ulation, which often produces the same results using simpler relations. However, it is sometimes
unsound, in the sense that bisimilarity up to context may not entail bisimilarity. Just like congru-
ence of bisimilarity, soundness of bisimulation up to context has proved to be a subtle matter.

The difficulty of these questions, particularly the former, led to a rich variety of syntactic for-
mats [15], which ensure good behaviour of the generated labelled transition system, up to some
constraints on the considered specification. Despite their diversity, formats have a lot in common,
both in definitions and in proof schemes.

This commonality motivated functorial operational semantics [11, 24], a unifying theory of for-
mats, in which specifications are recast as distributive laws of a comonad over a monad. The ap-
proach has been deeply developed in the set-based case, particularly for congruence of bisimilarity
but also for soundness of bisimulation up to context (among others) [1]. However, the picture gets
more complex in the presence of variable binding, as, e.g., in the impressive work by Fiore and
Staton [7]. A simpler framework is considered in Staton [23], which makes sense in any ∏𝑊-
pretopos – typically presheaf toposes. Although the format is fairly involved, a great benefit is
that variable binding is treated almost transparently.

However, despite its generality and power, the work of Fiore and Staton [7] and Staton [23] has
not caught on as widely as one might have hoped among more practical operational semanticists.
A reason for this might be that we should distinguish between two different goals, both of which
are crucial for a theory of structural operational semantics to be adopted by the community: (1)
the first goal is a high-level abstract language for reasoning on structural operational semantics,

Author’s address: Tom Hirschowitz, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000, Chambéry,
France, tom.hirschowitz@univ-smb.fr.

1

as close as possible to concrete intuitions, (2) the second is a generic toolbox for producing well-
behaved structural operational semantics from more basic data. It seems fair to say that, until now,
most work on the first goal was done with a view to the second one, i.e., with formats in mind.
In this paper, instead, our aim is to find the right level of generality, i.e., the right language, for
standard proof schemes for congruence of bisimilarity and soundness of bisimulation up to context
to apply.

Contributions
Our first contribution is the introduction of transition categories, which are categories equipped
with a selection of cospans, thought of as the set of transition labels. Transition categories support
a notion of bisimulation defined by lifting, much as in Joyal et al. [10]. A structural operational
semantics specification is then a monad𝒯 on the considered transition category, which embodies
the syntax and derivation rules for transitions. Finally, models of 𝒯 are simply 𝒯 -algebras.

Our first main result (Corollary 3.26) states that whenever𝒯 satisfies a certain familiality prop-
erty [4, 6, 8, 25] and the considered 𝒯 -algebras, say 𝑋 and 𝑌 , are compositional, in the sense that
both structure maps 𝒯 (𝑋) → 𝑋 and 𝒯 (𝑌) → 𝑌 are functional bisimulations, then bisimilarity
(between states of 𝑋 and 𝑌) is a congruence.

We then turn to soundness of bisimulation up to context in §4. The definition by lifting is
too rigid to directly accomodate bisimulation up to context, so we introduce a notion of pre-
bisimulation. Under a mild additional hypothesis, using an appropriate weak factorisation sys-
tem, we show that any pre-bisimulation embeds into some bisimulation. We then define pre-
bisimulation up to context, which agrees with standard bisimulation up to context in examples.
Our second main result (Corollary 4.13) is that, up to a refinement of the familiality hypothesis,
any pre-bisimulation up to context embeds into some bisimulation, i.e., pre-bisimulation up to
context is sound. This is to our knowledge the first general soundness result for bisimulation up
to context covering calculi with variable binding.

Finally, we demonstrate the flexibility of our framework in §5 by analysing the failure of bisim-
ilarity to be a congruence in the 𝜋-calculus. We first pinpoint where the hypotheses of Corol-
lary 3.26 fail, namely: the structure map 𝒯 (𝑃𝑖) → 𝑃𝑖 is not a functional bisimulation, which we
interpret as the input axiom being non-compositional. We then recast in our setting two standard
ways of working around this issue: (1) prove the weaker claim that bisimilarity is a non-input con-
gruence [21]; (2) restrict attention to a more constrained notion, wide-open bisimulation [7, 19, 23],
to which Corollary 3.26 applies.

Related work
We only know of two other abstract accounts of structural operational semantics covering both
syntax and models, and proving congruence of bisimilarity: functorial operational semantics and
Staton [23]. The clearest novelty of our approach compared to them is that, to our knowledge,
they do not cover soundness of bisimulation up to context in the presence of binding. Another
distinctive feature is the crucial role of familiality. In particular, Staton [23, Theorem 12] is very
close in spirit to our Corollary 3.26, but beyond the fact that it lives in a different setting, it only
assumes that the considered monad preserves functional bisimulations, while familiality allows us
to prove it. Less closely related work includes presheaf models and their generalisations [5, 10],
which emphasise semantical, rather than operational aspects. Furthermore, their representation
of labelled transition systems as presheaves markedly differs from ours, in that, e.g., any finite but
cyclic labelled transition system may be finitely represented in our approach, while it has to be
represented by an infinite presheaf in theirs. Our approach is also more economical for defining

2

bisimulation, by only lifting against one morphism per label, instead of one morphism per trace
extension. Finally, our 𝐓𝑠-familial monads are a specialisation of cellular analytic functors [8].

Overview
Before delving into details, let us give a non-technical overview. A transition category is much like
a category of labelled transition systems (over a fixed set of labels), with functional simulations as
morphisms. Sticking to the untyped case for simplicity, there is thus an object, say ⋆, consisting
of just one state. Similarly, for each label 𝛼, there is an object consisting of just one 𝛼-transition
between two states. Thus, giving a morphism ⋆ → 𝑋 to some object𝑋 is equivalent to choosing a
state in 𝑋 , and likewise giving a morphism 𝑒 ∶ 𝛼 → 𝑋 is equivalent to choosing an 𝛼-transition in
𝑋 . Furthermore, taking the source of 𝑒 is just pre-composing with the source morphism 𝑠 ∶ ⋆ → 𝛼.

So the source of 𝑒 is 𝑒 ∘ 𝑠. Symmetrically, its target is ⋆
𝑡
−→ 𝛼

𝑒
−→ 𝑋 .

Now, we may define bisimulation diagrammatically, as follows. A relation 𝑅 ↪ 𝑋 × 𝑌 is a
bisimulation iff for all labels 𝛼 and commuting squares as below left, there is a lifting 𝑘 that makes

⋆ 𝑅

𝛼 𝑋

𝑣

𝑠

𝑒

𝑘 𝑓

𝑣 𝑓 (𝑣)

𝑘 ⋅ 𝑡 𝑒 ⋅ 𝑡

𝑓

𝑘

𝑓

𝑒 (1)

both triangles commute, where 𝑓 denotes the composite 𝑅 ↪ 𝑋×𝑌
𝜋
−→ 𝑋 (and symmetrically for

𝑌). Indeed, as we saw, 𝑣 denotes a state in 𝑅, i.e., a related pair (𝑥, 𝑦), 𝑒 an 𝛼-transition in 𝑋 , and
commutation of the square says that 𝑓 (𝑣) is the source of 𝑒. We are thus in a situation like above
right. Existence of 𝑘 then says that there is an 𝛼-transition 𝑘 in 𝑅 with source 𝑣, mapped by 𝑓 to
𝑒, as above right, just as in the standard definition of bisimulation.

The next step is to view structural operational semantics specifications as monads 𝒯 on the
considered transition category. A specification consists of proof rules for inductively constructing
transitions. Intuitively, 𝒯 (𝑋) is obtained by saturating its argument 𝑋 by the considered proof
rules, i.e., it augments 𝑋 with new, formal transitions constructed from the rules. A 𝒯 -algebra is
then an object 𝑋 respecting the rules, formally a map 𝒯 (𝑋) → 𝑋 satisfying certain conditions.

Now, the crucial result for proving congruence of bisimilarity is that given algebras 𝑎 ∶ 𝒯 (𝑋) →
𝑋 and 𝑏 ∶ 𝒯 (𝑌) → 𝑌 , together with a bisimulation 𝑅 as above, the saturation 𝒯 (𝑅) is again a

bisimulation, in the sense that the composite 𝒯 (𝑅)
𝒯 (𝑓)
−−−→ 𝒯 (𝑋)

𝑎
−→ 𝑋 satisfies the same lifting

property (1) as 𝑓 above. For this, it suffices to prove that both 𝑎 and 𝒯 (𝑓) do.
First, for 𝑎, this means that any commuting square as below should admit a lifting 𝑘 as shown.

⋆ 𝒯 (𝑋)

𝛼 𝑋

𝑣

𝑠

𝑒

𝑘 𝑎

Intuitively, 𝑣 is a term 𝐶 with variables 𝑥1, …, 𝑥𝑛 in 𝑋 , which we denote by 𝑣 = 𝐶[𝑥1, …, 𝑥𝑛],
so this says that any 𝛼-transition 𝑒 whose source has the shape 𝑎(𝐶[𝑥1, …, 𝑥𝑛]) decomposes as
𝑎(𝐸[𝑒1, …, 𝑒𝑛]) for some 𝐸 and 𝑒𝑖’s. Here, 𝐸 is a transition proof with holes, that are assigned to the
𝑒𝑖’s. In other words, transitions of the compound state 𝑎(𝐶[𝑥1, …, 𝑥𝑛]) may be described in terms
of those of its components 𝑥1, …, 𝑥𝑛: this is precisely compositionality!

Let us now explain the standard scheme for proving that 𝒯 (𝑓) satisfies (1).

3

(i) Intuitively, 𝒯 (𝑅) consists of terms 𝑟 with as variables pairs of related elements, i.e.,

𝑟 = 𝐶[(𝑥1, 𝑦1), …, (𝑥𝑛, 𝑥𝑛)] (2)

with (𝑥𝑖, 𝑦𝑖) ∈ 𝑅. Or, equivalently, 𝑟 = (𝐶[𝑥1, …, 𝑥𝑛], 𝐶[𝑦1, …, 𝑦𝑛]).
(ii) The (standard) key insight for proving that this is a bisimulation is that any transition proof

𝑒∶ 𝐶[𝑥1, …, 𝑥𝑛]
𝛼
−→ 𝑥′ decomposes into a formal 𝛼-transition from 𝐶, say 𝐸∶ 𝐶

𝛼
−→ 𝐷, and a

family of transitions 𝑒𝑖 ∶ 𝑥𝑖
𝛼𝑖−→ 𝑥′𝑖 , so that

𝑒 = 𝐸[𝑒1, …, 𝑒𝑛]. (3)

(iii) Indeed, because 𝑅 is a bisimulation, we then find transitions 𝑓𝑖 ∶ 𝑦𝑖
𝛼𝑖−→ 𝑦′𝑖 with (𝑥′𝑖 , 𝑦′𝑖) ∈ 𝑅,

so that 𝐶[𝑦1, …,𝑛]
𝛼
−→ 𝐷[𝑦′1, …, 𝑦′𝑛] with (𝐷[𝑥′1, …, 𝑥′𝑛], 𝐷[𝑦′1, …, 𝑦′𝑛]) ∈ 𝒯 (𝑅), as desired.

Familiality provides a high-level language for describing this situation. Indeed, it ensures that
any commuting square as the exterior below, decomposes as in the solid part of

⋆ 𝒯 (𝑅)

𝒯 (𝑛)

𝒯 (∑𝑖 𝛼𝑖)

𝛼 𝒯 (𝑋).

𝑟

𝐶

𝑠
𝒯 ([(𝑥𝑖,𝑦𝑖)]𝑖)

𝒯 (∑𝑖 𝑠𝑖) 𝒯 (𝑓)

𝐸

𝑒

𝒯 ([𝑒𝑖]𝑖)
𝒯 ([(𝑒𝑖,𝑓𝑖)]𝑖)

(4)

It thus accounts for both decompositions (2) and (3). The lifting property of 𝑅 as a bisimulation
then provides all liftings [(𝑒𝑖, 𝑓𝑖)], and the composite 𝒯 ([(𝑒𝑖, 𝑓𝑖)]𝑖) ∘ 𝐸 intuitively corresponds to
𝐸[(𝑒1, 𝑓1), …, (𝑒𝑛, 𝑓𝑛)]. This shows that 𝒯 (𝑅) is indeed a bisimulation.

Finally, let us mention that our account of bisimulation up to context uses much the same lan-
guage, except that cannot be directly defined by lifting. This makes it a bit more verbose, so we
refrain from exposing it here, and move on to the technical development.

Plan
In §2, relying on the examples of combinatory logic and CCS, we recast structural operational
semantics and congruence of bisimilarity in the setting of monads on transition categories. In
§3, we prove that compositionality and familiality entail congruence of bisimilarity. In §4, we
investigate soundness of bisimulation up to context. In §5, we analyse bisimilarity in the𝜋-calculus
using our framework. Finally, we conclude in §6.

Notation and preliminaries

We assume basic familiarity with category theory [13]. For any small category ℂ, we denote by ℂ
the category of presheaves on ℂ, i.e., contravariant functors to sets (𝐒𝐞𝐭) and natural transforma-
tions between them. For any 𝑓 ∶ 𝑐 → 𝑐′ in ℂ and 𝑋 ∈ ℂ the action 𝑋(𝑓) ∶ 𝑋(𝑐′) → 𝑋(𝑐) is denoted
by 𝑥 ↦ 𝑥 ⋅ 𝑓 . The Yoneda embedding is denoted by 𝐲∶ ℂ → ℂ, and often left implicit.

We denote by 𝑒𝑙(𝑋) the category of elements [14] of any presheaf 𝑋 : it has as objects all pairs
(𝑐, 𝑥) with 𝑥 ∈ 𝑋(𝑐), and as morphisms (𝑐, 𝑥) → (𝑐′, 𝑥′) all morphisms 𝑓 ∶ 𝑐 → 𝑐′ in ℂ such that
𝑥′ ⋅ 𝑓 = 𝑥. We denote the corresponding morphism by 𝑓 ↾ 𝑥′. Furthermore, we often abbreviate
(𝑐, 𝑥) to 𝑥.

Finally, we often denote by 𝑛 the finite set {1, …, 𝑛}.

4

2 STRUCTURAL OPERATIONAL SEMANTICS SPECIFICATIONS AS MONADS
In this section, we explain how to view labelled transition systems as presheaves over adequate
categories, in which bisimulation may be defined by lifting (§2.1), and then show by example
how structural operational semantics specifications naturally yield monads (§2.2), an observation
originally due to Staton [23], and how to abstractly state congruence of bisimilarity.

2.1 Labelled transition systems as objects in transition categories
Let us first view labelled transition systems as presheaves in concrete examples, and then abstract
over what we did and define transition categories and bisimulation therein.

2.1.1 Labelled transition systems. The simplest kind of labelled transition system, the one with
just one label, is adequately modelled by 𝐆𝐩𝐡, the category of (directed, multi) graphs, viewed
as presheaves over the category ⋆ [1]𝑠

𝑡
(provided one accepts the extra generality of allowing

distinct, parallel transitions between nodes). Labels may be accomodated by introduced them as
a particular graph, say 𝐴, so that labelled transition systems are graphs over 𝐴, i.e., morphisms
𝐺 → 𝐴 for some graph 𝐺. Furthermore, as is well-known, the slice category𝐆𝐩𝐡/𝐴 is equivalent
to 𝑒𝑙(𝐴), presheaves over the category of elements of 𝐴.

E.g., in CCS, labels are elements of 𝐿𝐶𝐶𝑆 = {𝜏} ∪ ⋃
𝑎∈𝒩 {𝑎, 𝑎}, where 𝒩 denotes a fixed, infinite

set of names, for example the natural numbers ℕ. Viewing this as the edge set of a one-vertex
graph 𝐴𝐶𝐶𝑆, the relevant base category ℂ𝐶𝐶𝑆 = 𝑒𝑙(𝐴𝐶𝐶𝑆) is the category freely generated by the

graph with vertices in {⋆} ⊎ 𝐿𝐶𝐶𝑆, plus, for all 𝛼 ∈ 𝐿𝐶𝐶𝑆, two edges ⋆
𝑠
−→ 𝛼

𝑡
←− ⋆.

Example 2.1. The simple labelled transition system 𝑥 𝑦 𝑧𝑎 𝑏

𝑏

𝑎

is modelled by

the presheaf 𝑋 with 𝑋(⋆) = {𝑥, 𝑦, 𝑧} 𝑋(𝑎) = {𝑒}
𝑋(𝑏) = {𝑓 , 𝑓 ′}
𝑋(𝑎) = {𝑔}

𝑥 = 𝑒 ⋅ 𝑡
𝑦 = 𝑒 ⋅ 𝑠 = 𝑓 ⋅ 𝑠 = 𝑓 ′ ⋅ 𝑠

𝑧 = 𝑓 ⋅ 𝑡 = 𝑓 ′ ⋅ 𝑡 = 𝑔 ⋅ 𝑠 = 𝑔 ⋅ 𝑡.

2.1.2 Bisimulation. Having seen how presheaves on ℂ𝐶𝐶𝑆 model labelled transition systems,
let us now explain how to define functional bisimulation by lifting, as sketched in the overview.
We will use the following efficient, standard notation [18]. In any category 𝒜 , a lifting problem
for morphisms 𝑓 and 𝑔 is a commuting square as the solid part below. The lifting problem has a
solution when there exists a lifting as shown (dashed) making both triangles commute.

𝐴 𝐶

𝐵 𝐷
𝑓 𝑔

Definition 2.2. Let 𝑓 ⧄ 𝑔 iff all lifting problems for 𝑓 and 𝑔 have at least one solution.

When 𝑓 ⧄ 𝑔, we say that 𝑔 has the right lifting property w.r.t. 𝑓 . We moreover let 𝑓 ⧄ denote the
class of all morphisms that have the right lifting property w.r.t. 𝑓 . Similarly, for any class 𝒟 of
morphisms, let 𝒟⧄ = ⋂

𝑓 ∈𝒟 𝑓 ⧄. We define ⧄𝑔 and ⧄𝒟 symmetrically.

Proposition 2.3. A morphism 𝑓 ∶ 𝑅 → 𝑋 in ℂ𝐶𝐶𝑆 is a functional bisimulation (according to the
standard definition) iff it has the right lifting property w.r.t. all maps of the form 𝑠 ∶ ⋆ → 𝛼 for 𝛼 a
label, or otherwise said, if 𝑓 ∈ 𝐓⧄

𝑠 , where 𝐓𝑠 denotes the set of all maps 𝑠 ∶ ⋆ → 𝛼.

5

Indeed, a presheaf morphism is automatically a simulation (merely because edges are mapped
to edges), and the lifting property says that for any commuting square of the form below left

⋆ 𝑅

𝛼 𝑋

𝑣

𝑠

𝑒

𝑘 𝑓

𝑣 𝑓 (𝑣)

𝑘 ⋅ 𝑡 𝑒 ⋅ 𝑡

𝑓

𝑘

𝑓

𝑒

there is a lifting 𝑘 as shown that makes both triangles commute. By Yoneda, 𝑣 denotes a vertex in
𝑅, 𝑒 an 𝛼-transition in𝑋 , and commutation of the square says that 𝑓 (𝑣) is the source of 𝑒. Existence
of 𝑘 then says that there is an 𝛼-transition 𝑘 in 𝑅 with source 𝑣, mapped by 𝑓 to 𝑒, as above right,
which is the standard definition of a functional bisimulation.

General (potentially non-functional) bisimulationsmay be defined as spans𝑋
𝑙

←− 𝑅
𝑟
−→ 𝑌 where

𝑙 and 𝑟 are functional bisimulations. Such bisimulations may have non-monic pairings 𝑅 → 𝑋×𝑌 ,
but if we consider their epi-mono factorisation 𝑅 𝑒 𝑖𝑚(𝑅) 𝑚 𝑋 × 𝑌 , we have:

Proposition 2.4. The monic factor of any bisimulation is again a bisimulation.

Proof. Consider any factorisation𝑚∘𝑒 as above. Because ⋆ is representable, its covariant hom-
functor preserves epis, i.e., if 𝑓 ∶ 𝑋 → 𝑌 is epi, then by Yoneda so is the set map

ℂ𝐶𝐶𝑆(⋆, 𝑋)
ℂ𝐶𝐶𝑆(⋆,𝑓)−−−−−−−→ ℂ𝐶𝐶𝑆(⋆, 𝑌).

Thus every lifting problem for any 𝑠 ∶ ⋆ → 𝛼 and 𝑖𝑚(ℎ) 𝑚 𝑋 ×𝑌
𝜋
−→ 𝑋 induces a lifting problem

for 𝑠 and the composite 𝜋 ∘ 𝑚 ∘ 𝑒. The latter has a lifting by hypothesis, which yields a lifting for
𝜋 ∘ 𝑚. Everything works symmetrically for the projection to 𝑌 . □

Definition 2.5. Isomorphism classes of monic bisimulations, i.e., subobjects of 𝑋 × 𝑌 that are
bisimulations, are called bisimulation relations.

Finally, for any set 𝐼 , we may define the union of relations 𝑅𝑖 ↪ 𝑋 × 𝑌 , for 𝑖 ∈ 𝐼 , as the image
of their (wide) cotupling ∑

𝑖 𝑅𝑖 → 𝑋 × 𝑌 . We then have:

Proposition 2.6. Bisimulation relations are closed under union, and admit a maximum, called
bisimilarity.

Proof. Because ⋆ is representable, it is super tiny, i.e., its covariant hom-functor preserves epis

and colimits.Thus, every lifting problem for any 𝑠 ∶ ⋆ → 𝛼 and a given union⋃𝑖 𝑅𝑖 ↪ 𝑋×𝑌
𝜋
−→ 𝑋

yields one for some 𝑅𝑖 ↪ 𝑋 × 𝑌 → 𝑋 , which has a lifting by hypothesis. Finally, presheaf
categories are well-powered, i.e., each object has only a set of subobjects. We thus in particular
only have a set of bisimulation relations.This set being closed under unions, it has a maximum. □

2.1.3 Transition categories. Let us now abstract away from the particular example of ℂ𝐶𝐶𝑆. The
structure and properties we need for deriving abstract analogues of Propositions 2.4 and 2.6 are:

Definition 2.7. A transition category is a cocomplete, finitely complete, well-powered category
𝒜 with images, equipped with

• two sets 𝐏 and 𝐋 of objects called process types and label types, respectively;

• a set 𝐓 of cospans 𝑃
𝑠
−→ 𝐿

𝑡
←− 𝑄 called transition types, in which 𝑃,𝑄 ∈ 𝐏 and 𝐿 ∈ 𝐋,

such that process types are super tiny, i.e., their covariant hom-functors preserve colimits and epis.

6

Notation 2.8. We generally denote a transition category by just 𝒜 , leaving 𝐏, 𝐋, and 𝐓 implicit.
In examples, super tininess follows from:
Remark 2.9. If 𝒜 is a presheaf category, then all representable presheaves are super tiny.
Let us now abstractly replay the above development of bisimulation and bisimilarity.
Definition 2.10. For any transition category 𝒜 , a morphism 𝑓 ∶ 𝑅 → 𝑋 is a functional bisimula-

tion iff it is in 𝐓⧄
𝑠 , where 𝐓𝑠 denotes the class of morphisms appearing as 𝑠 in some transition type.

Given any two objects 𝑋 and 𝑌 , a bisimulation is a span 𝑋
𝑠

←− 𝑅
𝑡
−→ 𝑌 , or equivalently a map

𝑅
⟨𝑠,𝑡⟩
−−→ 𝑋 × 𝑌 such that 𝑠 and 𝑡 are both functional bisimulations. When the associated pairing

𝑅 → 𝑋 × 𝑌 is monic, we call 𝑅 a bisimulation relation.
Proposition 2.11. In any transition category 𝒜 , bisimulations are closed under images, i.e., if

𝑟 ∶ 𝑅 → 𝑋 × 𝑌 is a bisimulation, then so is 𝑚 in its epi-mono factorisation 𝑅 𝑒 𝑖𝑚(𝑅) 𝑚 𝑋 × 𝑌 .
Proposition 2.12. In any transition category, bisimulation relations 𝑅 ↪ 𝑋 ×𝑌 are closed under

union, hence admit a maximum, called bisimilarity and denoted by ∼𝑋,𝑌 , or simply ∼ when 𝑋 and
𝑌 are clear from context.

As expected we have:
Example 2.13 (Graphs). Graphs form a transition category with 𝐏 = {𝐲⋆}, 𝐋 = {𝐲[1]}, and the

cospan ⋆
𝑠
−→ [1]

𝑡
←− ⋆ as unique transition type (omitting the Yoneda embedding).

Example 2.14 (CCS labels). Thecategory ℂ𝐶𝐶𝑆 forms a transition categorywith⋆ as only process

type, all other representables as label types, and all cospans ⋆
𝑠
−→ 𝛼

𝑡
←− ⋆ as transition types.

2.2 Structural operational semantics specifications as monads on transition categories
In the previous section, we have seen by example how labelled transition systems can be viewed
as objects in adequate presheaf categories, and how bisimulation can be defined by lifting in this
setting. We have then defined transition categories and bisimulation therein, which abstract over
this situation. Let us now further explain how structural operational semantics specifications may
be viewed as monads on transition categories, again starting with examples and then abstracting
away. We then consider congruence of bisimilarity.

2.2.1 First example: combinatory logic. To get a feel for why monads on transition categories
are relevant to operational semantics, let us consider the example of combinatory logic, viewed as
a labelled transition system on just one label, i.e., a graph.

Let 𝒯𝐶𝐿 denote the functor on 𝐆𝐩𝐡 mapping any graph 𝐺 to the one with
• as vertices all terms generated by the grammar 𝑀,𝑁 ∷= ⦇𝑣⦈ | 𝑆 | 𝐾 | 𝑀 𝑁, where 𝑣 ranges

over 𝐺(⋆), 𝑆 and 𝐾 are constants, and 𝑀 𝑁 stands for the application of a binary symbol
(called “application”) to 𝑀 and 𝑁 ;

• edges inductively defined by the following rules, with the given sources and targets.
𝑒 ∈ 𝐺(𝑥, 𝑦)

⦇𝑒⦈ ∶ ⦇𝑥⦈ → ⦇𝑦⦈ 𝑠𝑀,𝑁,𝑃 ∶ 𝑆 𝑀 𝑁 𝑃 → (𝑀 𝑁) (𝑀 𝑃) 𝑘𝑀,𝑁 ∶ 𝐾 𝑀 𝑁 → 𝑀

𝐿 ∶ 𝑀 → 𝑀′

𝐿 𝑁 ∶ 𝑀 𝑁 → 𝑀′ 𝑁
𝑅 ∶ 𝑁 → 𝑁 ′

𝑀 𝑅 ∶ 𝑀 𝑁 → 𝑀 𝑁 ′

7

The action of 𝒯𝐶𝐿 on morphisms is by applying the given graph morphism to vertices ⦇𝑥⦈ and
edges ⦇𝑒⦈. This functor is a monad with multiplication (a.k.a. substitution) inductively defined by

𝜇𝐺,⋆⦇𝑚⦈ = 𝑚
𝜇𝐺,⋆(𝐾) = 𝐾
𝜇𝐺,⋆(𝑆) = 𝑆

𝜇𝐺,⋆(𝑀 𝑁) = 𝜇𝐺,⋆(𝑀) 𝜇𝐺,⋆(𝑁)

𝜇𝐺,[1]⦇𝑟⦈ = 𝑟
𝜇𝐺,[1](𝑘𝑀,𝑁) = 𝑘𝜇𝐺,⋆(𝑀),𝜇𝐺,⋆(𝑁)

𝜇𝐺,[1](𝑠𝑀,𝑁,𝑃) = 𝑠𝜇𝐺,⋆(𝑀),𝜇𝐺,⋆(𝑁),𝜇𝐺,⋆(𝑃)
𝜇𝐺,[1](𝐿 𝑁) = 𝜇𝐺,[1](𝐿) 𝜇𝐺,⋆(𝑁)
𝜇𝐺,[1](𝑀 𝑅) = 𝜇𝐺,⋆(𝑀) 𝜇𝐺,[1](𝑅).

Example 2.15. Let 𝑀 = ⦇𝑀1⦈ ⦇𝑀2⦈, with 𝑀1,𝑀2 ∈ 𝒯𝐶𝐿(∅)(⋆). Then, 𝜇∅,⋆(𝑀) = 𝑀1 𝑀2.
Similarly, for 𝑘𝑃,𝑄 ∈ 𝒯𝐶𝐿(∅)(𝐾 𝑃 𝑄, 𝑃), we have 𝜇∅,[1](⦇𝑘𝑃,𝑄⦈ 𝑀) = 𝑘𝑃,𝑄 (𝑀1 𝑀2).
Of interest to us is the free algebra 𝒯𝐶𝐿(∅), which is a proof-relevant variant of combinatory

logic.

2.2.2 Example with labels: CCS. As a second example useful for illustrating labels, let us deal
with CCS. Recalling the base category ℂ𝐶𝐶𝑆 from §2.1.1:

Definition 2.16. Let 𝒯𝐶𝐶𝑆 denote the functor on ℂ𝐶𝐶𝑆 such that
• 𝒯𝐶𝐶𝑆(𝐺)(⋆) is the set of CCS terms (simplified for expository purposes) with ‘process con-

stants’ in 𝐺(⋆), i.e., generated by the grammar 𝑃,𝑄 ∷= ⦇𝑥⦈ | 0 | 𝑎.𝑃 | 𝑎.𝑃 | (𝑃|𝑄) | 𝜈𝑎.𝑃,
with 𝑥 ranging over𝐺(⋆), not considered equivalent up to renaming of bound names in 𝜈𝑎.𝑃
(𝛼-equivalence is not necessary for CCS; by contrast, it is necessary for 𝜋-calculus, which
forces us to move to a more complex base category);

• for all 𝛼 ≠ ⋆, 𝒯𝐶𝐶𝑆(𝐺)(𝛼) is the set of transition proofs 𝑃
𝛼
−→ 𝑄, much as in Boudol and

Castellani [3], inductively generated by
𝑒 ∈ 𝐺(𝛼)

⦇𝑒⦈ ∶ ⦇𝑒 ⋅ 𝑠⦈
𝛼
−→ ⦇𝑒 ⋅ 𝑡⦈ 𝑜𝑢𝑡𝑃 ∶ 𝑎.𝑃

𝑎
−→ 𝑃 𝑖𝑛𝑃 ∶ 𝑎.𝑃

𝑎
−→ 𝑃

𝑅 ∶ 𝑃
𝛼
−→ 𝑄 𝛼 ∉ {𝑎, 𝑎}

𝜈𝑎.𝑅 ∶ 𝜈𝑎.𝑃
𝛼
−→ 𝜈𝑎.𝑄

𝐿 ∶ 𝑃
𝛼
−→ 𝑃′

(𝐿|𝑄) ∶ (𝑃|𝑄)
𝛼
−→ (𝑃′|𝑄)

(+ symmetric 𝑄|𝐿)

𝐿 ∶ 𝑃
𝑎
−→ 𝑃′ 𝑅 ∶ 𝑄

𝑎
−→ 𝑄′

𝐿 ⊳ 𝑅 ∶ (𝑃|𝑄)
𝜏
−→ (𝑃′|𝑄′)

(+ sym. 𝑅 ⊲ 𝐿).

Again substitution equips𝒯𝐶𝐶𝑆 with monad structure, and the free algebra𝒯𝐶𝐶𝑆(∅) is a proof-
relevant variant of CCS.

2.2.3 Congruence of bisimilarity, abstractly. In the previous sections, we have seen two example
monads on transition categories, which have the labelled transition systems for combinatory logic
and CCS as their free algebras. Let us now reviewwhat it means for bisimilarity to be a congruence,
and then give an abstract definition in the setting of algebras for a monad on a transition category.

Standardly, given a structural operational semantics specification𝑋 , we say that bisimilarity is a
congruence when for all multi-hole contexts 𝐶 and pairs (𝑥1, 𝑦1), …, (𝑥𝑛, 𝑦𝑛) of bisimilar processes,
we have 𝐶[𝑥1, …, 𝑥𝑛] ∼ 𝐶[𝑦1, …, 𝑦𝑛].

In the abstract setting, given any monad 𝒯 on a transition category 𝒜 , we may mimick this
definition, and even slightly generalise it by considering two different 𝒯 -algebras:

8

Definition 2.17. Given a monad𝒯 on a transition category𝒜 , and𝒯 -algebras 𝑎 ∶ 𝒯 (𝑋) → 𝑋
and 𝑏 ∶ 𝒯 (𝑌) → 𝑌 , we say that bisimilarity (between 𝑋 and 𝑌) is a congruence when the map

𝒯 (∼𝑋,𝑌) → 𝒯 (𝑋 × 𝑌)
⟨𝒯 (𝜋),𝒯 (𝜋′)⟩
−−−−−−−−−→ 𝒯 (𝑋) ×𝒯 (𝑌)

𝑎×𝑏
−−→ 𝑋 × 𝑌 factors through ∼𝑋,𝑌↪ 𝑋 × 𝑌 .

3 CONGRUENCE OF BISIMILARITY
In the previous sections, we have explained in which sense monads on transition categories model
structural operational semantics specifications, and defined what it means for bisimilarity to be a
congruence in this setting.We now turn to proving it, by abstracting away each step of the standard
proof method sketched in the overview.We first consider compositionality in §3.1. Steps (i) and (ii)
are then dealt with by familiality in §3.2. Finally, in §3.3, Step (iii) requires us to refine standard
familiality into 𝐓𝑠-familiality. Relying on the theory of weak factorisation systems, we are then
able to prove congruence of bisimilarity.

3.1 Compositionality
In the overview, our proof sketch for congruence of bisimilarity started by using compositionality
of the considered algebra. Compositionality is easy to express in the abstract framework:

Definition 3.1. A 𝒯 -algebra 𝑎 ∶ 𝒯 (𝑋) → 𝑋 is compositional iff 𝑎 ∈ 𝐓⧄
𝑠 .

Concretely, this says that given any square

𝑃 𝒯 (𝑋)

𝐿 𝑋

𝑝

𝐓𝑠∋𝑠

𝑟

𝑘 𝑎

there exists a lifting 𝑘 making both triangles commute. Thinking as above of 𝑝 as a process with
variables in 𝑋 , i.e., a context applied to some processes in 𝑋 , of 𝑎 ∘ 𝑝 as its evaluation in 𝑋 , and
of 𝑟 as a transition from 𝑎 ∘ 𝑝, this says that 𝑟 may be decomposed as the evaluation 𝑎 ∘ 𝑘 of some
transition proof 𝑘 with variables in 𝑋 and domain 𝑘 ∘ 𝑠 = 𝑝.

Proposition 3.2. The free 𝒯𝐶𝐿-algebra 𝒯𝐶𝐿(∅) is compositional, i.e., 𝜇∅ ∈ 𝐓⧄
𝑠 .

Proof sketch (more detail in §A). Any 𝑀 ∈ 𝒯 2
𝐶𝐿(∅) is a process with variables in 𝒯𝐶𝐿(∅),

i.e., it has the shape𝐶[𝑀1, …,𝑀𝑛]. We need to be able to decompose any transition𝑅∶ 𝜇∅,⋆(𝑀) →
𝑁 into 𝐸[𝑒1, …, 𝑒𝑛] such that 𝜇∅,[1](𝐸[𝑒1, …, 𝑒𝑛]) = 𝑅. We proceed by induction on 𝐶. E.g., if
𝐶 = 𝐶1 𝐶2 and 𝑅 = 𝐿𝑃, then there exists 𝑖 ∈ 𝑛 such that 𝐿 ⋅ 𝑠 = 𝜇∅,⋆(𝐶1[𝑀1, …,𝑀𝑖−1])
and 𝑃 = 𝜇∅,⋆(𝐶2[𝑀𝑖, …,𝑀𝑛]). Then, by induction hypothesis, we find 𝐸′[𝑒′1, …, 𝑒′𝑖−1] such that
𝜇∅,[1](𝐸′[𝑒′1, …, 𝑒′𝑖−1]) = 𝐿, so we can pick 𝐸 = 𝐸′ 𝐶2. □

Proposition 3.3. The 𝒯𝐶𝐶𝑆-algebra 𝒯𝐶𝐶𝑆(∅) is compositional.

Proof. Similar to 𝒯𝐶𝐿, using the fact that, because we do not mod out by 𝛼-equivalence, the
𝜈𝑎 operator may be considered as a unary operator indexed by names. □

3.2 Familiality
Let us now turn to proving that𝒯 (𝑓) ∈ 𝐓⧄

𝑠 . In the overview, we announced that our treatment of
Steps (i) and (ii)would rely on familial functors. Indeed, whatwe need is a canonical decomposition
of terms 𝑝∶ 𝑃 → 𝒯 (𝑋) and transitions 𝑒 ∶ 𝐿 → 𝒯 (𝑋) into a context followed by an assignment
of its holes. The correct requirement is that 𝑝 should decompose as

𝑃
𝐶
−→ 𝒯 (𝐴)

𝒯 (ℎ)
−−−→ 𝒯 (𝑋), (5)

9

where 𝐶 is generic, in the sense of Weber [25]. Existence of decompositions (5) with generic 𝐶
is precisely the familiality of the title, which originates in familially representable functors [4], as
developed byWeber [25] under the name of parametric right adjoints, here called familial functors
following Garner and Hirschowitz [8].

Definition 3.4. Given any functor ℱ ∶ 𝒜 → 𝒳 , a morphism 𝜉∶ 𝑋 → ℱ (𝐴) is ℱ -generic, or
generic for short, when for all commuting squares of the form below

𝑋 ℱ (𝐵)

ℱ (𝐴) ℱ (𝐶)

𝜒

𝜉

ℱ (𝑓)

ℱ (ℎ) ℱ (𝑔) (6)

there exists a unique ℎ such that ℱ(ℎ) ∘ 𝜉 = 𝜒 and 𝑔 ∘ ℎ = 𝑓 .

Definition 3.5. A functor ℱ is familial when any morphism 𝑋 → ℱ (𝐴) factors as the com-
posite of some generic morphism followed by a free one, i.e., one of the form ℱ(𝑓). A monad
(𝒯 , 𝜂, 𝜇) is familial when the underlying endofunctor is, and furthermore 𝜂 and 𝜇 are cartesian
natural transformations, i.e., all their naturality squares are pullbacks.

Remark 3.6. By the pullback lemma, when the domain category has a terminal object, a natural
transformation 𝛼∶ 𝐹 → 𝐺 is cartesian iff its naturality squares of the form below are pullbacks.

𝐹𝐴 𝐹1

𝐺𝐴 𝐺1

𝐹(!)

𝛼𝐴

𝐺(!)

𝛼1

In such a decomposition (5), 𝐴 should be thought of as representing the holes of 𝐶, and ℎ as
assigning to each hole the corresponding process. Similarly, of course, each transition 𝑡 ∶ 𝐿 →

𝒯 (𝑋) should factor into 𝐿
𝐷
−→ 𝒯 (𝑅)

𝒯 (𝑘)
−−−→ 𝒯 (𝑋) with generic𝐷, and the mediating arrow∑

𝑖 𝑠𝑖
in (4) follows from genericity of 𝐶.

Example 3.7. On 𝐒𝐞𝐭, if the considered functor 𝒯 is finitary, then 𝐴 is finite, so we may simply
choose it to be the ordinal corresponding to the number 𝑛𝐶 of holes in 𝐶. Familial functors thus
coincide with standard polynomial functors [12], as we have 𝒯 (𝑋) ≅ ∑

𝐶 𝑋𝑛𝐶 .

There is a slight generalisation of the formula of Example 3.7 to presheaf categories, which will
be useful for showing that the monads 𝒯𝐶𝐿 and 𝒯𝐶𝐶𝑆 of §2.2.1 and §2.2.2 are familial:

Lemma 3.8 ([25, Remark 2.12]). An endofunctor𝒯 on any presheaf category ℂ is familial iff there
is a functor 𝐸∶ 𝑒𝑙(𝒯 (1)) → ℂ and a natural isomorphism (in 𝑋 and 𝑐):

𝒯 (𝑋)(𝑐) ≅
𝑥∈𝒯 (1)(𝑐)

ℂ(𝐸(𝑐, 𝑥), 𝑋).

Proof sketch. In presheaf categories, familiality is equivalent to pointwise familiality, i.e., exis-
tence of a generic-free factorisation for all morphisms of the form 𝐲𝑐 → 𝒯 (𝑋). Any functor of the
given form is clearly pointwise familial, for any map (𝑥, 𝜑) ∶ 𝐲𝑐 → 𝒯 (𝑋), with 𝜑∶ 𝐸(𝑐, 𝑥) → 𝑋 ,

factors as 𝐲𝑐
(𝑥,𝑖𝑑)
−−−→ 𝒯 (𝐸(𝑐, 𝑥))

𝒯 (𝜑)
−−−→ 𝒯 (𝑋). Conversely, if 𝒯 is pointwise familial, define

𝐸(𝑐, 𝑥) for any 𝑥∶ 𝐲𝑐 → 𝒯 (1) to be given by (any global choice of) generic-free factorisation
of 𝑥: 𝐲𝑐 → 𝒯 (𝐸(𝑐, 𝑥)) → 𝒯 (1). □

10

Proposition 3.9. The monad 𝒯𝐶𝐿 is familial.

Proof sketch (more detail in §A). By Lemma 3.8, it suffices to exhibit a functor𝐸∶ 𝑒𝑙(𝒯𝐶𝐿(1)) →
𝐆𝐩𝐡, such that 𝒯𝐶𝐿(𝑍)(𝑐) ≅ ∑

𝑥∈𝒯𝐶𝐿(1)(𝑐)
[𝐸(𝑐, 𝑥), 𝑍], naturally in 𝑐 and 𝑍. Now, 𝒯𝐶𝐿(1)(⋆) con-

sists of terms on a unique free variable, say ⊤, and we define 𝐸 to map any such term 𝐶 to the
discrete graph with vertices in the ordinal 𝑛𝐶, where 𝑛𝐶 is the number of occurrences of ⊤ in 𝐶.
Similarly, 𝒯𝐶𝐿[1] consists of transition derivations on just one transition axiom, say ⫪∶ ⊤ → ⊤.
On such derivations, we define 𝐸 by induction:

𝐸⦇⫪⦈ = 𝐲[1], 𝐸(𝑘𝑀,𝑁) = 𝐸(𝑀) + 𝐸(𝑁), 𝐸(𝐿 𝑁) = 𝐸(𝐿) + 𝐸(𝑁),…

𝐸 is then defined on 𝑠 ↾ 𝑅 and 𝑡 ↾ 𝑅, by straightforward induction. □

Proposition 3.10. 𝒯𝐶𝐶𝑆 is familial.

Proof. Similar, using the fact that we do not mod out by 𝛼-equivalence. □

3.3 Congruence of bisimilarity and 𝐓𝑠-familiality
Let us now get to the final Step (iii) of our proof of congruence of bisimilarity. In the overview, we
obtained by familiality of𝒯 the mediating morphism∑

𝑖 𝑠𝑖, whose very particular form allowed us
to find a lifting: we found one for each 𝑠𝑖 individually, and then took the cotupling. In the general
case, however, there is a priori no guarantee that the mediating morphism will have such a nice
form. Now, the only thing we need in order to conclude is that the mediating morphism be in
⧄(𝐓⧄

𝑠), so it is tempting to take this as an additional hypothesis. But the question is then whether
this will be expressive enough to cover our examples. E.g., will ⧄(𝐓⧄

𝑠) always contain coproduct of
maps in 𝐓𝑠 and isomorphisms? This is where basic results from weak factorisation systems [9, 18]
come to the rescue.

3.3.1 Weak factorisation systems and ⧄(𝐓⧄
𝑠). Indeed, the point is that the classes of maps ⧄(𝐓⧄

𝑠)
and 𝐓⧄

𝑠 will form a cofibrantly generated weak factorisation system. Let us start with the most
general notion:

Definition 3.11. A weak factorisation system on a category𝒜 consists of two classes of mapsℒ

and ℛ such that ℒ ⧄ = ℛ , ℒ = ⧄ℛ , and every map 𝑓 ∶ 𝐴 → 𝐵 factors as 𝐴
𝑙
−→ 𝐶

𝑟
−→ 𝐵 with

𝑙 ∈ ℒ and 𝑟 ∈ ℛ .

Cofibrantly generated weak factorisation systems are those generated from a set of maps by
lifting (this is the so-called small object argument). We introduce them in Proposition 3.15 below,
which requires us to first define transfinite composition, small objects, and relative cell complexes:

Definition 3.12. For any ordinal 𝜆, a 𝜆-sequence is a cocontinuous functor from 𝜆 viewed as a cat-
egory, to 𝒜 . A transfinite composite of any 𝜆-sequence 𝑋 ∶ 𝜆 → 𝒜 is the component 𝜌0 ∶ 𝜆(0) →
𝑐𝑜𝑙𝑖𝑚𝛽<𝜆𝑋(𝛽) of any colimiting cocone 𝜌.

Definition 3.13. Let 𝒥 denote any class of morphisms in a cocomplete category 𝒜 , and let 𝜅
denote any cardinal. An object 𝐴 ∈ 𝒜 is 𝜅-small relative to 𝒥 iff, for all 𝜅-filtered [9, Defini-
tion 2.1.12] ordinals 𝜆 and 𝜆-sequences 𝑋 ∶ 𝜆 → 𝒜 such that 𝑋(𝛽) → 𝑋(𝛽 + 1) is in 𝒥 for all
𝛽 + 1 < 𝜆, the canonical map 𝑐𝑜𝑙𝑖𝑚𝛽<𝜆𝒜 (𝐴,𝑋(𝛽)) → 𝒜 (𝐴, 𝑐𝑜𝑙𝑖𝑚𝛽<𝜆𝑋(𝛽)) is bijective. We say
that 𝐴 is small relative to 𝒥 iff it is 𝜅-small relative to 𝒥 for some 𝜅.

Definition 3.14. For any class 𝒥 of maps in a cocomplete category 𝒜 , let 𝒥 -𝑐𝑒𝑙𝑙 denote the
class of transfinite composites of pushouts of maps in 𝒥 , which we call relative𝒥 -cell complexes.

11

Proposition 3.15 ([9, Theorem 2.1.14]). For any set 𝒥 of maps in a cocomplete category, if the
domains of maps in 𝒥 are small relative to 𝒥 -𝑐𝑒𝑙𝑙, then (⧄𝒥)⧄ and 𝒥 ⧄ form a weak factorisation
system. Any so obtained weak factorisation system is called cofibrantly generated.

This applies to our abstract setting:

Proposition 3.16. In any transition category, process types are small relative to 𝐓𝑠-𝑐𝑒𝑙𝑙.
Proof. Smallness of an object 𝐴 means precisely that its covariant hom-functor preserves cer-

tain transfinite compositions, which holds for process types by super tininess. □

We thus have by Proposition 3.15:

Corollary 3.17. In any transition category, ⧄(𝐓⧄
𝑠) and 𝐓⧄

𝑠) form a weak factorisation system.

The good thing with cofibrantly generated weak factorisation systems is that they enjoy an
explicit characterisation of ℒ , which we now recall.

Definition 3.18. A retract of 𝑓 ∶ 𝑋 → 𝑌 is any map 𝑔∶ 𝐴 → 𝐵 for which there exists a retraction

𝑓 → 𝑔 in the arrow category 𝒜 →, i.e., morphisms 𝑔
𝑠
−→ 𝑓

𝑟
−→ 𝑔 such that 𝑟 ∘ 𝑠 = 𝑖𝑑𝑔.

Proposition 3.19 ([9, Corollary 2.1.15]). In the setting of Proposition 3.15, the left class (⧄𝒥)⧄
consists precisely of retracts of relative𝒥 -cell complexes.

We thus have:

Corollary 3.20. In any transition category, the classes of maps (⧄(𝐓⧄
𝑠), 𝐓⧄

𝑠) form a factorisation
system whose left class consists precisely of retracts of relative 𝐓𝑠-cell complexes. In particular, ⧄(𝐓⧄

𝑠)
contains coproducts of maps in 𝐓𝑠 and of isomorphisms.

3.3.2 Congruence of bisimilarity. Being assured that ⧄(𝐓⧄
𝑠) is large enough for our purposes, let

us now return to congruence of bisimilarity.

Definition 3.21. A monad (𝒯 , 𝜂, 𝜇) on a transition category𝒜 is 𝐓𝑠-familial when it is familial
and furthermore for any commuting diagram

𝑃 𝐿

𝒯 (𝐴) 𝒯 (𝑅)

𝑠

𝐶

𝒯 (𝑠′)

𝐷

where 𝑠 ∈ 𝐓𝑠 and 𝐶 and 𝐷 are generic, then 𝑠′ ∈ ⧄(𝐓⧄
𝑠).

Remark 3.22. By Lemma 3.8, when𝒜 is a presheaf category and 𝑃 and 𝐿 are representable, this
is equivalent to requiring that all maps of the form 𝑠′ ≅ 𝐸(𝑠 ↾ 𝑥) (for some 𝑥 ∈ 𝒯 (1)(𝐿)) are in
⧄(𝐓⧄

𝑠). Indeed, above, take for 𝑥 the composite 𝐿
𝐷
−→ 𝒯 (𝑅)

𝒯 (!)
−−−→ 𝒯 (1): we then have 𝑅 ≅ 𝐸(𝐿, 𝑥),

𝐴 ≅ 𝐸(𝑃, 𝑥 ⋅ 𝑠), and 𝑠′ ≅ 𝐸(𝑠 ↾ 𝑥).
Theorem 3.23. For any compositional algebra 𝑎 ∶ 𝒯 (𝑋) → 𝑋 for a 𝐓𝑠-familial monad 𝒯 on a

transition category, if 𝑓 ∶ 𝑅 → 𝑋 is a functional bisimulation, so is 𝒯 (𝑅)
𝒯 (𝑓)
−−−→ 𝒯 (𝑋)

𝑎
−→ 𝑋 .

For proving this, let us appeal to standard closure properties of weak factorisation systems:

Proposition 3.24 ([18, Lemma 11.1.4]). For any factorisation system (ℒ ,ℛ),ℒ (resp.ℛ) con-
tains all isomorphisms and is closed under composition, retracts, coproducts (resp. products) of arrows,
and pushouts (resp. pullbacks). ℒ is furthermore closed under transfinite composition.

12

Proof of Theorem 3.23. By Proposition 3.24, functional bisimulations are closed under com-
position, so it suffices to show that 𝒯 (𝑓) is one. We thus need to construct a lifting for any com-
muting square as the exterior of

𝑃 𝒯 (𝑅)

𝒯 (𝐴)

𝒯 (𝐵)

𝐿 𝒯 (𝑋).

𝑝

𝐶

𝑠

𝒯 (𝑔)

𝒯 (𝑠′) 𝒯 (𝑓)

𝐷

𝑟

𝒯 (ℎ)

𝒯 (𝑘)

We use familiality of𝒯 to factor 𝑝 as𝒯 (𝑔)∘𝐶 and 𝑟 as𝒯 (ℎ)∘𝐷with 𝐶 and𝐷 generic. Genericity
of 𝐶 then yields 𝑠′ ∶ 𝐴 → 𝐵 as shown, which is in ⧄(𝐓⧄

𝑠) by 𝐓𝑠-familiality, so we obtain a lifting 𝑘
as shown, and 𝒯 (𝑘) ∘ 𝐷 is a lifting for the whole diagram. □

Corollary 3.25. For any bisimulation 𝑅 ↪ 𝑋 × 𝑌 between compositional algebras for a 𝐓𝑠-
familial monad 𝒯 , the induced map 𝒯 (𝑅) → 𝑋 × 𝑌 is a bisimulation.

Corollary 3.26. Between any two compositional algebras for a 𝐓𝑠-familial monad𝒯 , bisimilar-
ity is a congruence.

In most examples, the considered algebra is the free one 𝒯 (∅). This is thus covered by:

Corollary 3.27. Consider any 𝐓𝑠-familial monad 𝒯 on some transition category 𝒜 such that
𝜇1 ∶ 𝒯 2(1) → 𝒯 (1) is a functional bisimulation. Then for all 𝑋 , if 𝑓 ∶ 𝑅 → 𝒯 (𝑋) is a functional

bisimulation, so is𝒯 (𝑅)
𝒯 (𝑓)
−−−→ 𝒯 2(𝑋)

𝜇𝑋−→ 𝒯 (𝑋), and hence bisimilarity in𝒯 (𝑋) is a congruence.

Proof. Because 𝒯 is familial, all naturality squares for 𝜇 are pullbacks, so 𝜇𝑋 is a functional
bisimulation by Proposition 3.24. We conclude by the theorem. □

The case of §5.2 is an exception: the 𝜋-calculus is a free algebra for a certain monad 𝒯𝜋, but
considered as an algebra for a certain submonad of 𝒯𝜋, and as such not free.

4 BISIMULATION UP TO CONTEXT
In this section, we consider an alternative notion of bisimulation in transition categories, pre-
bisimulations, whichwe relate to bisimulations by showing that under amild additional hypothesis
any pre-bisimulation embeds into some bisimulation. We then define a notion of pre-bisimulation
up to context, which in examples corresponds to bisimulation up to context. Finally, we prove
that pre-bisimulation up to context is sound, in the sense that any pre-bisimulation up to context
embeds into some pre-bisimulation (and hence into some bisimulation).

4.1 Pre-bisimulations
In Definition 2.10, we defined functional bisimulations through a lifting property, which is flexible
enough to, e.g., exclude some transitions from the considered labelled transition systems 𝑋 and 𝑌 .
The following is in fact closer to the ordinary definition of a bisimulation.

Definition 4.1. Consider any transition category. A pre-bisimulation is a map 𝑖 ∶ 𝑅 → 𝑋×𝑌 such

that for all transition types 𝑃
𝑠
−→ 𝐿

𝑡
←− 𝑄, processes 𝑐 ∶ 𝑃 → 𝑅, and transitions 𝑟 ∶ 𝐿 → 𝑋 making

13

the solid part below left commute, there exist 𝑢 and 𝑑 as shown making the whole commute, and
symmetrically for 𝑌 .

𝑃

𝑅 𝑋
𝐿

𝑋 × 𝑌 𝑋
𝑄

𝑅 𝑋

𝜋∘𝑖

𝜋

𝜋∘𝑖

𝑟∘𝑠

𝑟

𝑟∘𝑡

𝑠

𝑡

𝑐

𝑢

𝑑

𝑖

𝑖

𝐴 𝐶

𝑈 𝑉

𝐵 𝐷

ℎ

𝑎
𝑘

𝑐

𝑙
𝑏 𝑑

(7)

Equivalently, the pre-bisimulation condition may be formulated as a weak cartesianness prop-
erty of the cospan map formed by the front face above left, relative to transition types. Indeed,
consider the category 𝒜 ∨ with cospans in 𝒜 as objects, and as morphisms all commuting di-
agrams of the form above right. Taking the top component (i.e., sending (ℎ, 𝑘, 𝑙) to ℎ) defines a
functor 𝑑𝑜𝑚∶ 𝒜 ∨ → 𝒜 .

Definition 4.2. A morphism as to the right of (7) is weakly cartesian relative to some cospan
𝐸 → 𝑊 ← 𝐹 iff, denoting by ⟨𝑈⟩ the cospan with 𝑈 as middle component (and inferring the rest
from context), for all morphisms (ℎ″, 𝑘″, 𝑙″)∶ ⟨𝑊⟩ → ⟨𝑉⟩ in𝒜 ∨, and morphisms ℎ′ ∶ 𝐸 → 𝐴 such
that ℎ ∘ ℎ′ = ℎ″, there exists 𝑘′ and 𝑙′ making the diagram below commute.

⟨𝑊⟩ 𝐸

⟨𝑈⟩ ⟨𝑉⟩ 𝐴 𝐶
(ℎ,𝑘,𝑙) ℎ

(ℎ″,𝑘″,𝑙″) ℎ″

(ℎ′,𝑘′,𝑙′) ℎ′𝑑𝑜𝑚

Remark 4.3. This is cartesianness is the sense of Grothendieck fibrations, except with weakened
universal property: it is restricted to certain cospans, and the mediating arrow need not be unique.

4.2 From pre-bisimulation to bisimulation
Let us now relate pre-bisimulation to bisimulation. Intuitively, the value of 𝑅 over transitions is
irrelevant in the definition of pre-bisimulation. But, thinking of 𝑅 as a relation, one would expect
that by completing it with all transitions that exist in 𝑋 × 𝑌 between pairs of related processes
we would get a bisimulation. This completion operation may be performed generically by a fac-
torisation system, up to an additional stratification hypothesis. Let us first define the factorisation
system in question, then introduce the needed hypothesis, and finally relate pre-bisimulation to
bisimulation (Proposition 4.8).

Proposition 4.4. In any transition category 𝒜 , the set 𝒥 = {[𝑠, 𝑡] ∶ 𝑃 + 𝑄 → 𝐿 | (𝑠, 𝑡) ∈ 𝐓}
generates a weak factorisation system, say (ℒ ,ℛ).

Proof. By Proposition 3.15 and tininess of process types. □

Definition 4.5. A transition category 𝒜 is two-level iff 𝒥 ⊆ 𝐏⧄, viewing each 𝑃′ ∈ 𝐏 as the
unique map 0 → 𝑃′.

14

Explicitly, 𝒜 is two-level when any map 𝑓 ∶ 𝑃′ → 𝐿 with 𝑃′ ∈ 𝐏 lifts through any [𝑠, 𝑡] with
codomain 𝐿, i.e., there exists 𝑘 making the following triangle commute.

𝑃 + 𝑄

𝑃′ 𝐿
𝑘

𝑓

[𝑠,𝑡] (8)

Remark 4.6. All our example transition categories are two-level.

Lemma 4.7. In any two-level transition category, we haveℒ ⊆ 𝐏⧄.

Proof. By Proposition 3.19, it suffices to show that 𝐏⧄ contains𝒥 and is stable under pushout,
transfinite composition, and retracts. First of all, 𝒥 ⊆ 𝐏⧄ holds by hypothesis. Stability under
retracts is direct, and stability under pushout and transfinite composition follows from tininess of
process types (by transfinite induction in the latter case). □

Proposition 4.8. For any pre-bisimulation 𝑖 ∶ 𝑅 → 𝑋 × 𝑌 in a two-level transition category, the

factor 𝑖 of the (ℒ ,ℛ)-factorisation 𝑅
𝑙
−→ 𝑅

𝑖
−→ 𝑋 × 𝑌 of 𝑖 is a bisimulation.

Proof. Consider any commuting square as below left. By Lemma 4.7, we find a lifting, say
𝑝′ ∶ 𝑃 → 𝑅 of 𝑝 through 𝑙 ∶ 𝑅 → 𝑅. Because 𝑅 is a pre-bisimulation, we get 𝑟′ and 𝑞′ making the
diagram below center commute.Wemay thus factor the left-hand square as below right, and hence
get the desired (dashed) lifting by 𝑖 ∈ ℛ .

𝑃 𝑅

𝑋 × 𝑌

𝐿 𝑋

𝑝

𝑠

𝑟

𝑖

𝜋

𝑃

𝑅 𝑋

𝐿

𝑋 × 𝑌 𝑋

𝑄

𝑅 𝑋

𝜋∘𝑖

𝜋

𝜋∘𝑖

𝑟∘𝑠

𝑟

𝑟∘𝑡

𝑠

𝑡

𝑝′

𝑟′

𝑞′

𝑖

𝑖

𝑅

𝑃 𝑃 + 𝑄 𝑅

𝑋 × 𝑌

𝐿 𝐿 𝑋

𝑖𝑛𝑙

𝑠

𝑝′

𝑝
𝑙

[𝑠,𝑡]

[𝑙∘𝑝′,𝑙∘𝑞′]

𝑟
𝑟′

𝑟

𝑖

𝜋

□

4.3 Pre-bisimulation up to context
After defining pre-bisimulations in the previous section, and showing that they embed into bisimu-
lations by factorisation, we now proceed in this section to defining pre-bisimulations up to context,
and showing that they embed into pre-bisimulations, hence into bisimulations, provided an addi-
tional saturation hypothesis holds.

Let𝒯 denote a familialmonad on a transition category𝒜 , and let 𝑎 ∶ 𝒯 (𝑋) → 𝑋 and 𝑏 ∶ 𝒯 (𝑌) →
𝑌 be 𝒯 -algebras.

Definition 4.9. A map 𝑖 ∶ 𝑅 → 𝑋 × 𝑌 is a pre-bisimulation up to 𝒯 iff for all transition types

𝑃
𝑠
−→ 𝐿

𝑡
←− 𝑄, processes 𝑐 ∶ 𝑃 → 𝑅, and transitions 𝑟 ∶ 𝐿 → 𝑋 making the solid part below left

commute, there exist 𝑢 and 𝑑 as shown making the whole commute, and symmetrically for 𝑌 ,

15

where the bottom square is defined on the right.

𝑃

𝑅 𝑋

𝐿

𝑋 × 𝑌 𝑋

𝑄

𝒯 (𝑅) 𝑋

𝜋∘𝑖

𝜋

𝑟∘𝑠

𝑟

𝑟∘𝑡

𝑠

𝑡

𝑐

𝑢

𝑑

𝑖

𝑋 × 𝑌 𝑋

𝒯 (𝑋) ×𝒯 (𝑌) 𝒯 (𝑋)

𝒯 (𝑋 × 𝑌)

𝒯 (𝑅) 𝒯 (𝑋) 𝑋
𝒯 (𝑖)

𝒯 (𝜋∘𝑖)

⟨𝒯 (𝜋),𝒯 (𝜋′)⟩ 𝒯 (𝜋)

𝑎×𝑏
𝜋

𝜋

𝑎

𝑎

(9)

Following Definition 4.2, this may be expressed as weak cartesianness of the front face relative
to transition types.

Before proving soundness of pre-bisimulation up to𝒯 , we need to refine 𝐓𝑠-familiality. Indeed,
in order to find the desired lifting in the proof of Theorem 3.23, we needed to assume that the
image by 𝐸 of any 𝑠 ∈ 𝐓𝑠 was in ⧄(𝐓⧄

𝑠). With pre-bisimulations, things are different, because they
are not defined by lifting. Instead, we thus use the following notion of saturated pre-bisimulation
up to 𝒯 .

Definition 4.10. Let 𝐓 denote the class of cospans (𝑠′, 𝑡′) occurring in any diagram of the form
below, where (𝑠, 𝑡) ∈ 𝐓 and 𝐶, 𝐷, and 𝐸 are generic.

𝑃 𝐿 𝑄

𝒯 (𝐴) 𝒯 (𝑅) 𝒯 (𝐵)

𝑠

𝐶

𝒯 (𝑠′)

𝐷

𝑡

𝐸

𝒯 (𝑡′)

A pre-bisimulation up to 𝒯 is saturated iff the front face to the left of (9) is weakly cartesian
relative to all cospans in 𝐓.

Theorem 4.11. For any familial monad 𝒯 , compositional 𝒯 -algebras 𝑎 ∶ 𝒯 (𝑋) → 𝑋 and
𝑏 ∶ 𝒯 (𝑌) → 𝑌 , and saturated pre-bisimulation 𝑖 ∶ 𝑅 → 𝑋 × 𝑌 up to 𝒯 , the following map is a
pre-bisimulation:

𝒯 (𝑅)
𝒯 (𝑖)
−−−→ 𝒯 (𝑋 × 𝑌)

⟨𝒯 (𝜋),𝒯 (𝜋′)⟩
−−−−−−−−−→ 𝒯 (𝑋) ×𝒯 (𝑌)

𝑎×𝑏
−−→ 𝑋 × 𝑌. (10)

Proof. Let 𝑎′ denote the map𝒯 (𝑋 ×𝑌)
𝒯 (𝜋)
−−−→ 𝒯 (𝑋)

𝑎
−→ 𝑋 and define 𝑏′ symmetrically. Then,

let 𝑖′𝑋 ∶ 𝒯 (𝑅) → 𝑋 denote the map 𝒯 (𝑅)
𝒯 (𝑖)
−−−→ 𝒯 (𝑋 × 𝑌)

𝑎′
−→ 𝑋 , and define 𝑖′𝑌 ∶ 𝒯 (𝑅) → 𝑌

symmetrically. Then, letting 𝑖′ denote the map (10), we have 𝑖′ = ⟨𝑖′𝑋 , 𝑖′𝑌⟩, 𝑖′𝑋 = 𝜋 ∘ 𝑖′, and 𝑖′𝑌 =
𝜋′ ∘ 𝑖′,… Now, the cube below left commutes (notably using the monad algebra laws), which means
that it forms a square as below right in 𝒜 ∨,

16

𝒯 (𝑅) 𝒯 (𝑋)

𝒯 (𝑅) 𝑋

𝒯 (𝑋 × 𝑌) 𝒯 (𝑋)

𝑋 × 𝑌 𝑋

𝒯 2(𝑅) 𝒯 (𝑋)

𝒯 (𝑅) 𝑋,

𝒯 (𝜋)

𝑎

𝒯 (𝜋∘𝑖)

𝒯 (𝑖)

𝒯 (𝑖′)

𝜇𝑅
𝒯 (𝑖′𝑋)

𝑖′𝑋
𝑎

𝑖′𝑋

𝑎

⟨𝑎′,𝑏′⟩ 𝜋
𝑖′

𝑖′

𝒯 (𝑖, 𝑖′) 𝒯 (𝑖𝑑𝑋 , 𝑖𝑑𝑋)

(𝑖′, 𝑖′) (𝑖𝑑𝑋 , 𝑖𝑑𝑋)

𝒯 (𝜋∘𝑖,𝜋,𝑖′𝑋)

(𝑖𝑑𝒯 (𝑅),⟨𝑎′,𝑏′⟩,𝜇𝑅)

(𝑖′𝑋 ,𝜋,𝑖′𝑋)

(𝑎,𝑎,𝑎)

whose top arrow is precisely the componentwise image by 𝒯 of the front face to the left of (9).
Notation 4.12. Open arrow heads denote arrows of the form 𝒯 (−), and commutation of a dia-

gram of such arrows means that the underlying arrows, without 𝒯 , agree.
By symmetry, it suffices to prove that the bottom map (𝑖′𝑋 , 𝜋, 𝑖′𝑋) is weakly cartesian relative

to transition types. . Let us thus consider a map 𝑟 ∶ (𝑠, 𝑡) → (𝑖𝑑𝑋 , 𝑖𝑑𝑋), where (𝑠, 𝑡) ∈ 𝐓 denotes
any transition type, whose top component 𝑑𝑜𝑚(𝑟) factors through 𝑑𝑜𝑚(𝑖′𝑋 , 𝜋, 𝑖′𝑋) = 𝑖′𝑋 , say as

𝑃
𝑐
−→ 𝒯 (𝑅)

𝑖′𝑋−→ 𝑋 . By compositionality of 𝑋 , 𝑟 factors as (𝑠, 𝑡)
𝑟′
−→ 𝒯 (𝑖𝑑𝑋 , 𝑖𝑑𝑋)

𝑎
−→ (𝑖𝑑𝑋 , 𝑖𝑑𝑋), so

we get a diagram like the solid part of

(𝑠, 𝑡) 𝑃

𝒯 (𝑠′, 𝑡′) 𝒯 (𝐴)

𝒯 (𝑖, 𝑖′) 𝒯 (𝑖𝑑𝑋 , 𝑖𝑑𝑋) 𝒯 (𝑅) 𝒯 (𝑋)

(𝑖′, 𝑖′) (𝑖𝑑𝑋 , 𝑖𝑑𝑋) 𝒯 (𝑅) 𝑋.

𝑟′

𝒯 (ℎ,𝑘,𝑙)

(𝑖′𝑋 ,𝜋,𝑖′𝑋)

𝑑𝑜𝑚(𝑟′)

𝑐 𝒯 (ℎ)

𝑖′𝑋

𝑎

𝑑𝑜𝑚

By familiality of𝒯 , we get a componentwise generic-free factorisation of 𝑟′, shown dashed below.
By genericity of its top component, we get a morphism ℎ as shown. Finally, by weak cartesianness
of (𝑖, 𝑖′) → (𝑖𝑑𝑋 , 𝑖𝑑𝑋) relative to 𝐓, we obtain a morphism (ℎ, 𝑘, 𝑙) as shown, which yields the

desired lifting, namely the composite (𝑠, 𝑡) → 𝒯 (𝑠′, 𝑡′)
𝒯 (ℎ,𝑘,𝑙)
−−−−−→ 𝒯 (𝑖, 𝑖′) → (𝑖′, 𝑖′). □

Corollary 4.13. For any familial monad𝒯 and compositional𝒯 -algebras 𝑎 ∶ 𝒯 (𝑋) → 𝑋 and
𝑏 ∶ 𝒯 (𝑌) → 𝑌 , any saturated pre-bisimulation up to 𝒯 embeds into some bisimulation.

Proof. By Theorem 4.11 and Proposition 4.8. □

In order to easily apply the theorem, although we do not have any precise characterisation like
that of ⧄(𝐓⧄

𝑠), we do have:
Proposition 4.14. If 𝐓 consists (up to isomorphism) of coproducts of isomorphisms and cospans

in 𝐓, then all pre-bisimulations up to 𝒯 are saturated.

Example 4.15. As an example application, bisimulation up to context is sound for combinatory
logic and CCS.

17

5 THREE SHADES OF 𝜋-CALCULUS
Let us now consider a more significant example than combinatory logic and CCS: the 𝜋-calculus.
Unlike in CCS, we have to mod out by 𝛼-equivalence, because channel names may be input, hence
substituted deep in process terms, which may force renaming. We essentially follow the presenta-
tion of Sangiorgi and Walker [21, §1.3], using a simplified variant for expository purposes.

In §5.1, wemake a first attempt at covering𝜋-calculus using our approach.Wemanage to design
a familial monad, 𝒯𝜋, over a certain presheaf category 𝔹, which faithfully encodes the desired la-
belled transition system. However, as bisimilarity is known not to be a congruence in𝜋, something
is bound to fail. And indeed, we show that the initial𝒯𝜋-algebra𝒯𝜋(∅) of processes is not compo-
sitional. We rectify this in a standard way in §5.2, by defining a familial submonad, 𝒯 −

𝜋 , such that
the 𝒯 −

𝜋 -algebra 𝒯𝜋(∅) is compositional, thus recovering the known facts that (1) standard bisim-
ilarity is a congruence for all operators but input, and (2) bisimulation up to non-input context is
sound. We finally consider in §5.3 a different, though still standard, way of remedying the non-
congruence problem. This consists in restricting attention to relations, called wide open [7, 19, 23]
that are stable under channel renaming. We do this by working over a different base category 𝔽,
and adapting the definition of 𝒯𝜋, yielding a new familial monad 𝒯 +

𝜋 . We recover the known
results that wide-open bisimilarity is a congruence and that wide-open bisimulation up to context
is sound.

5.1 Basic approach
In this section, we illustrate our approach by examining the failure of congruence for standard
bisimilarity in 𝜋. We analyse the problem, which allows us to consider two different solutions in
the next two sections.

Naively adaptating what we did with CCS to the 𝜋-calculus, we could try considering a similar
base category with CCS labels replaced with𝜋-calculus labels, 𝜏, 𝑜𝑎,𝑏, 𝜄𝑎,𝑏, etc. However, this setting

cannot accomodate the input axiom: 𝑎(𝑐).𝑃
𝜄𝑎,𝑏−→ 𝑃[𝑐 ↦ 𝑏]. Indeed, this requires a definition of

renaming, for which a standard, inductive definition stumbles upon the base case: it does not
make any sense to replace 𝑐 with 𝑏 in ⦇𝑥⦈. We thus consider a different base category.

Definition 5.1. Let 𝔹 denote the subcategory of 𝐒𝐞𝐭𝑜𝑝 with finite subsets of 𝒩 as objects and
bijections as morphisms, augmented with

• objects 𝜏𝛾, 𝑜𝛾,𝑎,𝑏, 𝑜𝜈𝛾,𝑎,𝑐, 𝜄𝛾,𝑎,𝑏, and 𝜄𝜈𝛾,𝑎,𝑐 for all 𝛾 ∈ 𝒫𝑓 (𝒩), 𝑎, 𝑏 ∈ 𝛾, and 𝑐 ∉ 𝛾,
• morphisms, arranged by transition types (denoting by 𝛾, 𝑐 the (disjoint) union 𝛾⊎ {𝑐} – here

but not, e.g., in 𝑜𝛾,𝑎,𝑏: input and output labels have three arguments, a 𝛾 and two names; we
rely on context to disambiguate):

𝛾
𝑠
−→ 𝜏𝛾

𝑡
←− 𝛾 𝛾

𝑠
−→ 𝑜𝛾,𝑎,𝑏

𝑡
←− 𝛾 𝛾

𝑠
−→ 𝜄𝛾,𝑎,𝑏

𝑡
←− 𝛾 𝛾

𝑠
−→ 𝑜𝜈𝛾,𝑎,𝑐

𝑡
←− 𝛾, 𝑐 𝛾

𝑠
−→ 𝜄𝜈𝛾,𝑎,𝑐

𝑡
←− 𝛾, 𝑐 ,

• plus, for all transition types 𝛾
𝑠
−→ 𝛼

𝑡
←− 𝛾, 𝛿 and bijections ℎ∶ 𝛾 −∼ 𝛾′ and 𝑘 ∶ 𝛿 −∼ 𝛿′ such

that 𝛾′ ∩ 𝛿′ = ∅, a morphism (ℎ, 𝑘) ∶ (ℎ, 𝑘) ⋅ 𝛼 → 𝛼, where
(ℎ, 𝑘) ⋅ 𝜏𝛾 = 𝜏𝛾′ and (ℎ, 𝑘) ⋅ 𝛼𝛾,𝑎,𝑏 = 𝛼𝛾′,ℎ(𝑎),(ℎ+𝑘)(𝑏) for 𝛼 ∈ {𝑜, 𝜄, 𝑜𝜈, 𝜄𝜈},

satisfying the obvious equations:

𝛾 𝛼 𝛾, 𝛿

𝛾′ (ℎ, 𝑘) ⋅ 𝛼 𝛾′, 𝛿′.

𝑠

ℎ

𝑠

(ℎ,𝑘)

𝑡

ℎ+𝑘

𝑡

(11)

18

Notation 5.2. For general presheaves𝑋 , we denote the action𝑋(𝑐′)
𝑋(𝑓)
−−−→ 𝑋(𝑐) of any 𝑓 ∶ 𝑐 → 𝑐′

in the base by 𝑥 ↦ 𝑥 ⋅ 𝑓 . However, for 𝑓 ∶ 𝛾 −∼ 𝛾′ in sets, although 𝑓 acts contravariantly as a map
𝛾′ → 𝛾 in 𝔹, it acts covariantly as a set-map, so we often write 𝑓 ⋅ 𝑥 instead. We use the same
convention for arbitrary (potentially non-bijective) maps below.

Proposition 5.3. The category 𝔹 forms a transition category, with transition types 𝐓𝜋 as above.

Let us now define our monad on 𝔹, in three stages. We first define𝒯𝜋(𝑋) on process types. We
then observe that not only bijections act on 𝒯𝜋(𝑋), but also arbitrary maps. The presheaf 𝒯𝜋(𝑋)
that we defined on process types and bijections thus extends to a functor on the category of finite
subsets of 𝒩 and all maps. We finally use this to define 𝒯𝜋(𝑋) on transitions.

For any 𝑋 ∈ 𝔹, let 𝒯𝜋(𝑋)(𝛾) denote the set of all 𝛼-equivalence classes of 𝜋-calculus terms
of the form 𝛾 ⊢ 𝑃, as defined in the top part of Figure 1. Let us then define renaming, the action
𝒯𝜋(𝛾) → 𝒯𝜋(𝛾′) of any set-map ℎ∶ 𝛾 → 𝛾′, denoted by 𝑃 ↦ ℎ ⋅ 𝑃, by straightforward induction,
as in the middle left part of Figure 1, where (𝑏 ↦ 𝑐) is the unique map {𝑏} → {𝑐}, and 𝑎𝛾 denotes
some globally chosen name not in 𝛾.

Finally, let us define 𝒯𝜋(𝑋) on transitions. For all 𝛾
𝑠
−→ 𝛼

𝑡
←− 𝛾′, 𝒯𝜋(𝑋)(𝛼) denotes the set

of 𝛼-equivalence classes of transitions 𝑃
𝛼
−→ 𝑄 with constants in 𝑋 , for 𝑃 ∈ 𝒯𝜋(𝑋)(𝛾) and 𝑄 ∈

𝒯𝜋(𝑋)(𝛾′), as defined in the bottom part of Figure 1, where

• the only binding operations are 𝑖𝑛𝑎,𝑐𝑏.𝑃, 𝜈𝑏.𝑅, and 𝑅 ⊳𝜈𝑏 𝑆 – binding 𝑏;
• a peculiarity is that in ⦇𝑥⦈(𝑓), the status of names in 𝛾 is analogous to that of ‘binding’

names in contexts, e.g., as 𝑏 in 𝑎(𝑏).�; in particular they are neither free nor bound, nor
𝛼-convertible;

• [𝑏 ↦ 𝑐] stands for the map 𝛾, 𝑏 → 𝛾 mapping 𝑏 to 𝑐 and the rest of 𝛾 to itself;
• weakening (i.e., renaming along an injective map) is used implicitly in 𝐿|𝑄 and 𝑄|𝐿;
• for 𝜈𝑏.𝑅, we define

fv(𝑜𝛾,𝑎,𝑏) = fv(𝜄𝛾,𝑎,𝑏) = fv(𝑜𝜈𝛾,𝑎,𝑏) = fv(𝜄𝜈𝛾,𝑎,𝑏) = {𝑎, 𝑏} and fv(𝜏𝛾) = ∅
and 𝜈𝑐.𝜏𝛾,𝑐 = 𝜏𝛾 𝜈𝑐.𝛼(𝛾,𝑐),𝑎,𝑏 = 𝛼𝛾,𝑎,𝑏, for 𝛼 ∈ {𝑜, 𝜄, 𝑜𝜈, 𝜄𝜈},

where 𝜈𝑐.𝛼 is defined iff 𝑐 ∉ fv(𝛼).

This almost defines an assignment 𝑜𝑏(𝔹) → 𝑜𝑏(𝔹): it remains to define the action of maps in 𝔹 on
𝒯𝜋(𝑋) and show that it is functorial. For maps of the form 𝛾 → 𝛾′, we merely use renaming; for
𝑠 and 𝑡, we use the sources and targets specified in transitions. For (ℎ, 𝑘) ∶ (ℎ, 𝑘) ⋅ 𝛼 → 𝛼, we define
(ℎ, 𝑘) ⋅ 𝑅 by induction on 𝑅 as the middle right part of Figure 1.

Finally, we prove that this is functorial, again by induction.This defines an assignment 𝑜𝑏(𝔹) →
𝑜𝑏(𝔹), which easily extends to a functor 𝒯𝜋 ∶ 𝔹 → 𝔹: the action of a morphism 𝐹 ∶ 𝑋 → 𝑌 in 𝔹
is obtained by renaming 𝑥, resp. 𝑒, according to 𝐹 in ⦇𝑥⦈(𝑓), resp. ⟪𝑒⟫(ℎ, 𝑘).

Remark 5.4 (Replication). The 𝜋-calculus standardly features additional operations like guarded
sum and replication. Guarded sum may be incorporated readily, but, depending on presentation,

replication is less easy. E.g., the compact transition rule
𝑃|!𝑃

𝛼
−→ 𝑄

!𝑃
𝛼
−→ 𝑄

does not obviously yield a

19

𝑥 ∈ 𝑋(𝛾) 𝑓 ∈ 𝐒𝐞𝐭(𝛾, 𝛾′)
𝛾′ ⊢𝑋 ⦇𝑥⦈(𝑓)

𝛾 ⊢𝑋 𝑃 𝛾 ⊢𝑋 𝑄
𝛾 ⊢𝑋 𝑃|𝑄 𝛾 ⊢𝑋 0

𝛾, 𝑎 ⊢𝑋 𝑃
𝛾 ⊢𝑋 𝜈𝑎.𝑃

𝛾 ⊢𝑋 𝑃 𝑎, 𝑏 ∈ 𝛾
𝛾 ⊢𝑋 𝑎⟨𝑏⟩.𝑃

𝛾, 𝑏 ⊢𝑋 𝑃 𝑎 ∈ 𝛾
𝛾 ⊢𝑋 𝑎(𝑏).𝑃

Process renaming
ℎ ⋅ (⦇𝑥⦈(𝑓)) = ⦇𝑥⦈(ℎ ∘ 𝑓)

ℎ ⋅ (𝑃|𝑄) = (ℎ ⋅ 𝑃)|(ℎ ⋅ 𝑄)
ℎ ⋅ 0 = 0

ℎ ⋅ 𝜈𝑎𝛾.𝑃 =
𝜈𝑎𝛾′ .((ℎ + (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑃)

ℎ ⋅ 𝑎⟨𝑏⟩.𝑃 = ℎ(𝑎)⟨ℎ(𝑏)⟩.(ℎ ⋅ 𝑃)
ℎ ⋅ 𝑎(𝑎𝛾).𝑃 =

ℎ(𝑎)(𝑎𝛾′).((ℎ + (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑃)

Transition renaming
(ℎ, 𝑘) ⋅ ⟪𝑒⟫(ℎ′, 𝑘′) = ⟪𝑒⟫(ℎ ∘ ℎ′, 𝑘 ∘ 𝑘′)

(ℎ, 𝑖𝑑) ⋅ 𝑖𝑛𝑎,𝑐𝑎𝛾.𝑃 = 𝑖𝑛ℎ(𝑎),ℎ(𝑐)𝑎𝛾′ .(ℎ+(𝑎𝛾↦𝑎𝛾′))⋅𝑃

(ℎ, 𝑖𝑑) ⋅ 𝑜𝑢𝑡𝑎,𝑐𝑃 = 𝑜𝑢𝑡ℎ(𝑎),ℎ(𝑐)ℎ⋅𝑃
(ℎ, 𝑖𝑑) ⋅ (𝑅 ⊳ 𝑆) = ((ℎ, 𝑖𝑑) ⋅ 𝑅) ⊳ ((ℎ, 𝑖𝑑) ⋅ 𝑆)

(ℎ, (𝑏 ↦ 𝑏′)) ⋅ 𝑖𝑛𝑎,𝜈𝑏𝑃 = 𝑖𝑛ℎ(𝑎),𝜈𝑏
′

(ℎ+(𝑏↦𝑏′))⋅𝑃
(ℎ, (𝑏 ↦ 𝑏′)) ⋅ ∇𝑏.𝑅 = ∇𝑏′.(ℎ + (𝑏 ↦ 𝑏′), 𝑖𝑑) ⋅ 𝑅
(ℎ, 𝑖𝑑) ⋅ (𝑅 ⊳𝜈𝑎𝛾 𝑆) =

((ℎ, (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑅) ⊳
𝜈𝑎𝛾′ ((ℎ, (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑆)

(ℎ, 𝑘) ⋅ 𝜈𝑎𝛾,𝛿.𝑅 = 𝜈𝑎𝛾,𝛿.(ℎ + (𝑎𝛾,𝛿 ↦ 𝑎𝛾′,𝛿′), 𝑘) ⋅ 𝑅
(ℎ, 𝑘) ⋅ (𝐿|𝑄) = ((ℎ, 𝑘) ⋅ 𝐿)|(ℎ ⋅ 𝑄)

+ symmetric cases.

𝑒 ∈ 𝑋(𝛼) 𝛾
𝑠
−→ 𝛼

𝑡
←− 𝛾, 𝛿 ℎ∶ 𝛾 −∼ 𝛾′ 𝑘∶ 𝛿 −∼ 𝛿′ 𝛾′ ∩ 𝛿′ = ∅

⟪𝑒⟫(ℎ, 𝑘) ∶ 𝛾′ ⊢𝑋 ⦇𝑒 ⋅ 𝑠⦈(ℎ)
(ℎ,𝑘)⋅𝛼
−−−−→ 𝛾′, 𝛿′ ⊢𝑋 ⦇𝑒 ⋅ 𝑡⦈(ℎ + 𝑘)

𝛾, 𝑏 ⊢𝑋 𝑃 𝑎, 𝑐 ∈ 𝛾

𝑖𝑛𝑎,𝑐𝑏.𝑃 ∶ 𝛾 ⊢𝑋 𝑎(𝑏).𝑃
𝜄𝛾,𝑎,𝑐
−−→ 𝛾 ⊢𝑋 [𝑏 ↦ 𝑐] ⋅ 𝑃

𝛾 ⊢𝑋 𝑃 𝑎, 𝑏 ∈ 𝛾

𝑜𝑢𝑡𝑎,𝑏𝛾⊢𝑋𝑃 ∶ 𝛾 ⊢𝑋 𝑎⟨𝑏⟩.𝑃
𝑜𝛾,𝑎,𝑏
−−−→ 𝛾 ⊢𝑋 𝑃

𝑅 ∶ 𝛾 ⊢𝑋 𝑃
𝑜𝛾,𝑎,𝑏
−−−→ 𝛾 ⊢𝑋 𝑃′ 𝑆 ∶ 𝛾 ⊢𝑋 𝑄

𝜄𝛾,𝑎,𝑏
−−−→ 𝛾 ⊢𝑋 𝑄′

𝑅 ⊳ 𝑆 ∶ 𝛾 ⊢𝑋 (𝑃|𝑄)
𝜏𝛾
−→ 𝛾 ⊢𝑋 (𝑃′|𝑄′)

+ sym. ⊲

𝛾, 𝑏 ⊢𝑋 𝑃 𝑎 ∈ 𝛾

𝑖𝑛𝑎,𝜈𝑏𝑃 ∶ 𝛾 ⊢𝑋 𝑎(𝑏).𝑃
𝜄𝜈𝛾,𝑎,𝑏
−−−→ 𝛾, 𝑏 ⊢𝑋 𝑃

𝑅 ∶ 𝛾, 𝑏 ⊢𝑋 𝑃
𝑜(𝛾,𝑏),𝑎,𝑏
−−−−−→ 𝛾, 𝑏 ⊢𝑋 𝑄 𝑎 ≠ 𝑏

∇𝑏.𝑅 ∶ 𝛾 ⊢𝑋 𝜈𝑏.𝑃
𝑜𝜈𝛾,𝑎,𝑏
−−−→ 𝛾, 𝑏 ⊢𝑋 𝑄

𝑅 ∶ 𝛾 ⊢𝑋 𝑃
𝑜𝜈𝛾,𝑎,𝑏
−−−→ 𝛾, 𝑏 ⊢𝑋 𝑃′ 𝑆 ∶ 𝛾 ⊢𝑋 𝑄

𝜄𝜈𝛾,𝑎,𝑏
−−−→ 𝛾, 𝑏 ⊢𝑋 𝑄′

𝑅 ⊳𝜈𝑏 𝑆 ∶ 𝛾 ⊢𝑋 𝑃|𝑄
𝜏𝛾
−→ 𝛾 ⊢𝑋 𝜈𝑏.(𝑃′|𝑄′)

+ sym. ⊲𝜈𝑏

𝑅 ∶ 𝛾, 𝑏 ⊢𝑋 𝑃
𝛼
−→ 𝛾, 𝑏, 𝛿 ⊢𝑋 𝑄 𝑏 ∉ fv(𝛼)

𝜈𝑏.𝑅 ∶ 𝛾 ⊢𝑋 𝜈𝑏.𝑃
𝜈𝑏.𝛼
−−→ 𝛾, 𝛿 ⊢𝑋 𝜈𝑏.𝑄

𝐿 ∶ 𝛾 ⊢𝑋 𝑃
𝛼
−→ 𝛾, 𝛿 ⊢𝑋 𝑃′ 𝛾 ⊢𝑋 𝑄

𝐿|𝑄 ∶ 𝛾 ⊢𝑋 𝑃|𝑄
𝛼
−→ 𝛾, 𝛿 ⊢𝑋 𝑃′|𝑄

+ 𝑄|𝐿

Fig. 1. Syntax, renaming, and labelled transition system for 𝜋

20

familial monad. However, the rules of Sangiorgi and Walker [21, §1.3], a variant of which is repro-
duced below (without the 𝛾’s for readability), do yield a familial monad directly.

𝑃
𝛼
−→ 𝑃′

!𝑃
𝛼
−→ 𝑃′|!𝑃

𝑃
𝑜𝛾,𝑎,𝑏
−−−→ 𝑃′ 𝑃

𝜄𝛾,𝑎,𝑏
−−−→ 𝑃″

!𝑃
𝜏𝛾
−→ (𝑃′|𝑃″)|!𝑃

𝑃
𝑜𝜈𝛾,𝑎,𝑏
−−−→ 𝑃′ 𝑃

𝜄𝜈𝛾,𝑎,𝑏
−−−→ 𝑃″

!𝑃
𝜏𝛾
−→ 𝜈𝑏.(𝑃′|𝑃″)|!𝑃

Proposition 5.5. 𝒯𝜋 forms a 𝐓𝜋
𝑠 -familial monad.

Proof. To see that 𝒯𝜋 is a familial functor, by Lemma 3.8, it is enough to exhibit a functor
𝐸∶ 𝑒𝑙(𝒯𝜋(1)) → 𝔹 such that 𝒯𝜋(𝑋)(𝑐) ≅ ∑

𝑅∈𝒯𝜋(1)(𝑐)
[𝐸(𝑐, 𝑅), 𝑋], naturally in 𝑋 and 𝑐 ∈ 𝔹. El-

ements of 𝒯𝜋(1)(𝛾) are processes of type 𝛾, over exactly one constant process, say ⊤𝛾′ of each
type 𝛾′. Elements of 𝒯𝜋(1)(𝛼) are transitions with exactly one constant transition of each type

𝛾
𝑠
−→ 𝛽

𝑡
←− 𝛾′, say ⊤𝛽, with source ⊤𝛽 ⋅ 𝑠 = ⊤𝛾 and target ⊤𝛽 ⋅ 𝑡 = ⊤𝛾′ .

On objects, we construct 𝐸 by induction on the depth of the considered derivation (globally for
all objects 𝑐 ∈ 𝔹), as in the top part of Figure 2, relying on some global choice of

• binary coproducts,
• and fresh name 𝑎𝛾 for all 𝛾 ∈ 𝒫𝑓 (𝒩), as in the definition of renaming.

The choice of 𝑎𝛾 is in fact completely irrelevant, because for all maps ℎ ∶ 𝛾 −∼ 𝛾′, 𝑘∶ 𝛿 −∼ 𝛿′ in sets,

processes 𝛾 ⊢ 𝑃, and transitions 𝑅∶ (𝛾 ⊢ 𝑃)
𝛼
−→ (𝛾, 𝛿 ⊢ 𝑄), we have by induction:

𝐸(ℎ ⋅ 𝑃) = 𝐸(𝑃) and 𝐸((ℎ, 𝑘) ⋅ 𝑅) = 𝐸(𝑅) (yes, equality!). (12)

Typically, if 𝑓 ∶ 𝛾 → 𝛾′, we have by definition 𝐸(𝑓 ⋅ ⦇⊤𝛾⦈(𝑖𝑑)) = 𝐸(⦇⊤𝛾⦈(𝑓)) = 𝐲𝛾: 𝑓 is not taken
into account.

Let us now define 𝐸 on morphisms:
• For any 𝑓 ∶ 𝛾 −∼ 𝛾′ in sets and 𝑃 ∈ 𝒯𝜋(1)(𝛾), we have 𝑓 ↾ 𝑃∶ (𝛾′, 𝑓 ⋅ 𝑃) → (𝛾, 𝑃) in 𝑒𝑙(𝒯𝜋(1))

and define 𝐸(𝑓 ↾ 𝑃) ∶ 𝐸(𝛾′, 𝑓 ⋅ 𝑃) → 𝐸(𝛾, 𝑃) to be just the identity (which makes sense by (12)).
• Similarly, for all (ℎ, 𝑘) ∶ (ℎ, 𝑘) ⋅ 𝛼 → 𝛼, let 𝐸((ℎ, 𝑘) ↾ 𝑅) = 𝑖𝑑𝐸(𝑅).

• Finally, for all 𝛾
𝑠
−→ 𝛼

𝑡
←− 𝛾, 𝛿 and 𝑅 ∈ 𝒯𝜋(1)(𝛼), we define 𝐸(𝑠 ↾ 𝑅) and 𝐸(𝑡 ↾ 𝑅) as in the

bottom part of Figure 2. Clearly, by induction,𝐸(𝑠 ↾ 𝑅) lies in ⧄((𝐓𝜋
𝑠)⧄), so that𝒯 𝜋 is𝐓𝜋

𝑠 -familial
by Remark 3.22.

This shows that 𝒯𝜋 is a 𝐓𝜋
𝑠 -familial functor. Its unit is given by variables, and multiplication is

essentially substitution, which is straightforwardly defined by induction in Figure 3. This clearly
satisfies naturality in both arguments, as well as associativity and unitality. Finally, cartesianness
of 𝜂 and 𝜇 may be checked pointwise (i.e., relative to representable presheaves), and follows by
induction. □

As announced and expected, because bisimilarity is not a congruence in 𝜋, something must fail:

Proposition 5.6. The free 𝒯𝜋-algebra, 𝒯𝜋(∅), with action given by 𝜇∅, is not compositional.

Proof. The problem comes from renaming, as embedded in constant terms ⦇𝑥⦈(𝑓). Indeed, con-
sider 𝑝 = (𝑎⟨𝑎⟩.0|𝑏(𝑐).0) (for 𝑎 ≠ 𝑏), a process involved in a standard counterexample to bisimilarity
being a congruence [21]. Letting 𝑓 ∶ {𝑎, 𝑏} → {𝑎} denote the unique suchmap, ⦇𝑝⦈(𝑓) ∈ (𝒯𝜋)2(∅){𝑎}
is mapped by 𝜇∅,{𝑎} to 𝑝′ = (𝑎⟨𝑎⟩.0|𝑎(𝑐).0). The latter process has a 𝜏-transition to 0|0, which the
former cannot match. □

21

Definition of 𝐸 on objects
Processes

𝐸(⦇⊤𝛾⦈(𝑓)) = 𝐲𝛾
𝐸(𝑃|𝑄) = 𝐸(𝑃) + 𝐸(𝑄)

𝐸(0) = ∅
𝐸(𝜈𝑎𝛾.𝑃) = 𝐸(𝑃)
𝐸(𝑎⟨𝑏⟩.𝑃) = 𝐸(𝑃)
𝐸(𝑎(𝑎𝛾).𝑃) = 𝐸(𝑃)

Transitions
𝐸(⟪⊤𝛼⟫(ℎ, 𝑘)) = 𝐲𝛼 𝐸(∇𝑏.𝑅) = 𝐸(𝑅)

𝐸(𝑖𝑛𝑎,𝑐𝑎𝛾.𝑃) = 𝐸(𝑃) 𝐸(𝑅 ⊳𝜈𝑎𝛾 𝑆) = 𝐸(𝑅) + 𝐸(𝑆)
𝐸(𝑜𝑢𝑡𝑎,𝑐𝑃) = 𝐸(𝑃) 𝐸(𝜈𝑎𝛾.𝑅) = 𝐸(𝑅)
𝐸(𝑅 ⊳ 𝑆) = 𝐸(𝑅) + 𝐸(𝑆) 𝐸(𝐿|𝑄) = 𝐸(𝐿) + 𝐸(𝑄)
𝐸(𝑖𝑛𝑎,𝜈𝑏𝑃) = 𝐸(𝑃) 𝐸(𝑃|𝑅) = 𝐸(𝑃) + 𝐸(𝑅)

Definition of 𝐸 on morphisms: cospans 𝐸(𝑅 ⋅ 𝑠)
𝐸(𝑠↾𝑅)
−−−−→ 𝐸(𝑅)

𝐸(𝑡↾𝑅)
←−−−− 𝐸(𝑅 ⋅ 𝑡)

⟪⊤𝛼⟫(ℎ, 𝑘) ∶ 𝐲𝛾 𝐲𝛼 𝐲𝛾,𝛿
𝑖𝑛𝑎,𝑐𝑎𝛾.𝑃 ∶ 𝐸(𝑎(𝑎𝛾).𝑃) = 𝐸(𝑃) 𝐸(𝑃) 𝐸(𝑃) = 𝐸([𝑎𝛾 ↦ 𝑐] ⋅ 𝑃)
𝑜𝑢𝑡𝑎,𝑐𝑃 ∶ 𝐸(𝑎⟨𝑏⟩.𝑃) = 𝐸(𝑃) 𝐸(𝑃) 𝐸(𝑃)
𝑅 ⊳ 𝑆 ∶ 𝐸(𝑃) + 𝐸(𝑄) 𝐸(𝑅) + 𝐸(𝑆) 𝐸(𝑃′) + 𝐸(𝑄′)
𝑖𝑛𝑎,𝜈𝑏𝑃 ∶ 𝐸(𝜈𝑏.𝑃) = 𝐸(𝑃) 𝐸(𝑃) 𝐸(𝑃)
∇𝑏.𝑅 ∶ 𝐸(𝜈𝑏.𝑃) = 𝐸(𝑃) 𝐸(𝑅) 𝐸(𝑄)

𝑅 ⊳𝜈𝑎𝛾 𝑆 ∶ 𝐸(𝑃) + 𝐸(𝑄) 𝐸(𝑅) + 𝐸(𝑆) 𝐸(𝑃′) + 𝐸(𝑄′)
𝜈𝑎𝛾.𝑅 ∶ 𝐸(𝜈𝑎𝛾.𝑃) = 𝐸(𝑃) 𝐸(𝑅) 𝐸(𝑄) = 𝐸(𝜈𝑎𝛾.𝑄)
𝐿|𝑄 ∶ 𝐸(𝑃) + 𝐸(𝑄) 𝐸(𝐿) + 𝐸(𝑄) 𝐸(𝑃′) + 𝐸(𝑄)
𝑃|𝑅 ∶ 𝐸(𝑃) + 𝐸(𝑄) 𝐸(𝑃) + 𝐸(𝑅) 𝐸(𝑃) + 𝐸(𝑄′)

𝐲𝑠 𝐲𝑡

𝑖𝑑 𝑖𝑑

𝑖𝑑 𝑖𝑑

𝐸(𝑠↾𝑅)+𝐸(𝑠↾𝑆) 𝐸(𝑡↾𝑅)+𝐸(𝑡↾𝑆)

𝑖𝑑 𝑖𝑑

𝐸(𝑠↾𝑅) 𝐸(𝑡↾𝑅)

𝐸(𝑠↾𝑅)+𝐸(𝑠↾𝑆) 𝐸(𝑡↾𝑅)+𝐸(𝑡↾𝑆)

𝐸(𝑠↾𝑅) 𝐸(𝑡↾𝑅)

𝐸(𝑠↾𝐿)+𝑖𝑑 𝐸(𝑡↾𝐿)+𝑖𝑑

𝑖𝑑+𝐸(𝑠↾𝑅) 𝑖𝑑+𝐸(𝑡↾𝑅)

Fig. 2. Definition of 𝐸

Processes:
𝜇𝑋,𝛾(⦇𝑝⦈(𝑓)) = 𝑓 ⋅ 𝑝

𝜇𝑋,𝛾(𝑃|𝑄) = 𝜇𝑋,𝛾(𝑃)|𝜇𝑋,𝛾(𝑄)
𝜇𝑋,𝛾(𝜈𝑎.𝑃) = 𝜈𝑎.(𝜇𝑋)𝛾,𝑎(𝑃)

𝜇𝑋,𝛾(0) = 0
𝜇𝑋,𝛾(𝑎⟨𝑏⟩.𝑃) = 𝑎⟨𝑏⟩.𝜇𝑋,𝛾(𝑃)
𝜇𝑋,𝛾(𝑎(𝑏).𝑃) = 𝑎(𝑏).𝜇𝑋,(𝛾,𝑏)(𝑃)

Transitions:
𝜇𝑋,𝛼(⟪𝑟⟫(ℎ, 𝑘)) = (ℎ, 𝑘) ⋅ 𝑟
𝜇𝑋,𝜄𝛾,𝑎,𝑐 (𝑖𝑛

𝑎,𝑐
𝑏.𝑃) = 𝑖𝑛𝑎,𝑐𝑏.𝜇𝑋,(𝛾,𝑏)(𝑃)

𝜇𝑋,𝑜𝛾,𝑎,𝑏 (𝑜𝑢𝑡
𝑎,𝑏
𝑃) = 𝑜𝑢𝑡𝑎,𝑏𝜇𝑋,𝛾(𝑃)

𝜇𝑋,𝜏𝛾 (𝑅 ⊳ 𝑆) = 𝜇𝑋,𝑜𝛾,𝑎,𝑏 (𝑅) ⊳ 𝜇𝑋,𝜄𝛾,𝑎,𝑏 (𝑆)
𝜇𝑋,𝜄𝜈𝛾,𝑎,𝑏 (𝑖𝑛

𝑎,𝜈𝑏
𝑃) = 𝑖𝑛𝑎,𝜈𝑏𝜇𝑋,(𝛾,𝑏)(𝑃)

𝜇𝑋,𝑜𝜈𝛾,𝑎,𝑏 (∇𝑏.𝑅) = ∇𝑏.𝜇𝑋,𝑜(𝛾,𝑏),𝑎,𝑏 (𝑅)
𝜇𝑋,𝜏𝛾 (𝑅 ⊳𝜈𝑏 𝑆) = 𝜇𝑋,𝑜𝜈𝛾,𝑎,𝑏 (𝑅) ⊳

𝜈𝑏 𝜇𝑋,𝜄𝜈𝛾,𝑎,𝑏 (𝑆)
𝜇𝑋,𝜈𝑐.𝛼(𝜈𝑐.𝑅) = 𝜈𝑐.𝜇𝑋,𝛼(𝑅)

𝜇𝑋,𝛼(𝐿|𝑄) = 𝜇𝑋,𝛼(𝐿)|𝜇𝑋,𝛾(𝑄)
𝜇𝑋,𝛼(𝑃|𝑅) = 𝜇𝑋,𝛾(𝑃)|𝜇𝑋,𝛼(𝑅).

Fig. 3. Monad multiplication for 𝒯𝜋

Remark 5.7. The root of the problem here is 𝑖𝑛𝑎,𝑐𝑏.𝑃, which forces the syntax for processes to feature
renaming, even if only at the level of constants ⦇𝑥⦈(𝑓). To emphasise that this does make renaming
a proper syntactic operation, it may help to realise that 𝒯𝜋 could be defined using an explicit

22

renaming operation 𝑃[𝑓] together with equations describing how it propagates down towards the
leaves, e.g., (𝑃|𝑄)[𝑓] = 𝑃[𝑓]|𝑄[𝑓], to finally integrate with constants: ⦇𝑥⦈(𝑔)[𝑓] = ⦇𝑥⦈(𝑓 ∘ 𝑔).

5.2 Non-input congruence
A first, standard way around non-congruence of bisimilarity is to elude the problematic case, and
prove that bisimilarity is a congruence for all operators but input. Our framework can cover this
by viewing 𝜋-calculus as a non-free algebra for a smaller monad 𝒯 −

𝜋 .

Definition 5.8. Let 𝒯 −
𝜋 denote the sub-functor of 𝒯𝜋 obtained by removing 𝑎(𝑏).𝑃 from the

syntax of Figure 1, replacing the rule for ⦇𝑥⦈(𝑓) by

𝑥 ∈ 𝑋(𝛾) 𝑓 ∈ 𝐈𝐧𝐣(𝛾, 𝛾′)
𝛾′ ⊢𝑋 ⦇𝑥⦈(𝑓) ,

where 𝐈𝐧𝐣(𝛾, 𝛾′) denotes the set of injective maps 𝛾 ↪ 𝛾′, and removing 𝑖𝑛𝑎,𝑐𝑏.𝑃 and 𝑖𝑛𝑎,𝜈𝑏𝑃 from the
labelled transition system of Figure 1.

Remark 5.9. We need to retain injective renaming for 𝐿|𝑄 and 𝑃|𝑅 to make sense.

We clearly obtain:

Proposition 5.10. 𝒯 −
𝜋 is a 𝐓𝜋

𝑠 -familial monad.

But this time, instead of considering 𝒯 −
𝜋 (∅), which does not even satisfy the input rule, we ob-

serve that𝒯𝜋(∅) forms a𝒯 −
𝜋 -algebra (because it satisfies all 𝜋-calculus rules, hence in particular

those of 𝒯 −
𝜋). We thus obtain:

Proposition 5.11. The 𝒯 −
𝜋 -algebra 𝒯𝜋(∅) is compositional.

This gives an alternative proof of Sangiorgi and Walker [21, Theorem 2.2.8(1)], which says that
bisimilarity is a non-input congruence Sangiorgi andWalker [21, Definition 2.1.23]. In our language:

Corollary 5.12. Bisimilarity for the 𝒯 −
𝜋 -algebra 𝒯𝜋(∅) is a congruence.

Proof. By Corollary 3.26 and Propositions 5.10 and 5.11. □

Similarly, we recover Sangiorgi and Walker [21, Lemma 2.3.21]:

Corollary 5.13. Bisimulation up to non-input context is sound.

5.3 Wide-open bisimilarity
Another standard solution to the failure of bisimilarity to be a congruence is to resort to wide-
open bisimilarity. For this, we need to modify our base category 𝔹 to include non-bijective maps
𝛾 → 𝛾′.

Definition 5.14. Let 𝔽 be defined just as 𝔹 (Definition 5.1), but including all morphisms from
𝐒𝐞𝐭𝑜𝑝 (between relevant objects), instead of just bijections.

Please note that while we include non-bijective morphisms 𝑓 ∶ 𝛾 → 𝛾′, we do not (need to)
do so for transition objects. The presheaf category 𝔽 forms a transition category with the same
transition types as 𝔹, which we denote by 𝐓+.

Let us now adapt our monad on 𝔹 to 𝔽.

23

Proposition 5.15. Replacing the rules for ⦇𝑥⦈(𝑓) and ⟪𝑒⟫(ℎ, 𝑘) in Figure 1 by

𝑥 ∈ 𝑋(𝛾)
𝛾 ⊢𝑋 ⦇𝑥⦈

𝑒 ∈ 𝑋(𝛼)
𝛾 ⊢𝑋 ⟪𝑒⟫ ,

and changing the base cases for renaming to 𝑓 ⋅ ⦇𝑥⦈ = ⦇𝑓 ⋅ 𝑥⦈ and (ℎ, 𝑘) ⋅ ⟪𝑒⟫ = ⟪(ℎ, 𝑘) ⋅ 𝑒⟫ yields a
functor 𝒯 +

𝜋 ∶ 𝔽 → 𝔽.

It is not entirely trivial that this again forms a familial monad.

Proposition 5.16. 𝒯 +
𝜋 is a 𝐓+

𝑠 -familial monad.

Proof. Most of the definitions are adapted from 𝔹 to 𝔽, modulo the following subtlety. On
objects, fresh names 𝑎𝛾 are chosen globally for all 𝛾 as in the proof of Proposition 5.5, and only
the base cases change to 𝐸⦇𝑥⦈ = 𝐲𝛾 (for 𝑥 ∈ 𝑋(𝛾)) and 𝐸⟪𝑒⟫ = 𝐲𝛼 (for 𝑒 ∈ 𝑋(𝛼)). However,
over 𝔹, we had 𝐸(𝑓 ⋅ 𝑃) = 𝐸(𝑃), which considerably eased the definition of 𝐸 on morphisms. But
because of the new treatment of renaming, this no longer holds over 𝔽. E.g., consider 𝑃 = ⦇⊤{𝑎}⦈.
We have 𝐸(𝑃) = 𝐲{𝑎}, but 𝐸((𝑎 ↦ 𝑏) ⋅ 𝑃) = 𝐲{𝑏} (where, we recall from (⁇), (𝑎 ↦ 𝑏) denotes the
unique map {𝑎} → {𝑏}), so we only get 𝐸(𝑃) ≅ 𝐸((𝑎 ↦ 𝑏) ⋅ 𝑃). The treatment of morphisms thus
needs adjustment: for ℎ ∶ 𝛾 −∼ 𝛾′ and 𝑘∶ 𝛿 −∼ 𝛿′ as in (12), we get inductively-defined, functorial
assignments

𝐸(ℎ ↾ 𝑃) ∶ 𝐸(ℎ ⋅ 𝑃) → 𝐸(𝑃) and 𝐸((ℎ, 𝑘) ↾ 𝑅) ∶ 𝐸((ℎ, 𝑘) ⋅ 𝑅) → 𝐸(𝑅).

Finally, the definitions of 𝐸(𝑠 ↾ 𝑅) and 𝐸(𝑡 ↾ 𝑅) also need adjustment for scope-changing
constructors 𝑖𝑛𝑎,𝜈𝑏𝑃 , ∇𝑏.𝑅, 𝜈𝑏.𝑅, and 𝑅 ⊳𝜈𝑏 𝑆. E.g., consider the morphism 𝑡 ↾ 𝑖𝑛𝑎,𝑐𝑏.𝑃 ∶ [𝑏 ↦ 𝑐] ⋅ 𝑃 →
𝑖𝑛𝑎,𝑐𝑏.𝑃. We have by definition 𝐸(𝑖𝑛𝑎,𝑐𝑏.𝑃) = 𝐸((𝑏 ↦ 𝑎𝛾) ⋅ 𝑃) so we define 𝐸(𝑡 ↾ 𝑖𝑛𝑎,𝑐𝑏.𝑃) to be

𝐸([𝑏 ↦ 𝑐] ⋅ 𝑃)
𝐸([𝑎𝛾↦𝑐]↾(𝑏↦𝑎𝛾)⋅𝑃)
−−−−−−−−−−−−−→ 𝐸((𝑏 ↦ 𝑎𝛾) ⋅ 𝑃).

This assignment on morphisms may be shown to be functorial by induction. For more detail
about the definition and functoriality, see §B.

It is then clear that 𝐸 makes 𝒯 +
𝜋 familial. Finally, by definition, morphisms 𝑠 ↾ 𝑅 are mapped

to coproducts of isomorphisms and maps in 𝐓+
𝑠 , up to isomorphism in the arrow category, hence

𝒯 +
𝜋 is indeed 𝐓+

𝑠 -familial. □

The compositionality problem created by 𝑥⦇𝑓 ⦈ having disappeared, we get:

Proposition 5.17. 𝒯 +
𝜋 (∅) is a compositional algebra.

Remark 5.18. It might be slightly worrying at first to observe that, e.g., 𝐸+(𝑡 ↾ 𝑖𝑛𝑎,𝑐𝑎𝛾.⊤𝛾,𝑎𝛾
), namely

𝐲𝛾
𝐲[𝑎𝛾↦𝑐]
−−−−→ 𝐲𝛾,𝑎𝛾 is definitely not a coproduct of isomorphisms or 𝑡-maps. But in fact, any bisimu-

lation is stable under renaming by construction, hence everything works smoothly.

Calling wide-open bisimilarity the largest bisimulation relation over 𝒯 +
𝜋 (∅), we get:

Proposition 5.19. Wide-open bisimilarity is a congruence.

Proof. By Corollary 3.27 and Propositions 5.16 and 5.17. □

Similarly, we recover Sangiorgi and Walker [21, Corollary 2.3.25]:

Corollary 5.20. Wide-open bisimulation up to non-input context is sound.

24

Remark 5.21. Adifferent presentation of wide-open bisimilaritymay be obtained by augmenting

𝔹 with a transition type 𝛾, 𝑎
𝑠
−→ 𝜎𝛾,𝑎,𝑏

𝑡
←− 𝛾 (for 𝑏 ∈ 𝛾), and adding the rule 𝑃

[𝑎↦𝑏]
−−−→ [𝑎 ↦ 𝑏] ⋅ 𝑃.

Remark 5.22. Similarly, open bisimilarity [21, Definition 4.6.2] may be obtained by considering
yet another base category, where instead of finite sets of names and (bijective) mapswewould have
as objects pairs (𝛾,𝐷) of a finite set 𝛾 of names and a distinction𝐷, i.e., an irreflexive relation on 𝛾,
with maps (𝛾,𝐷) → (𝛾′, 𝐷′) all maps 𝑓 ∶ 𝛾 → 𝛾′ respecting 𝐷, i.e., if (𝑎, 𝑏) ∈ 𝐷 then 𝑓 (𝑎) ≠ 𝑓 (𝑏).

6 CONCLUSION AND PERSPECTIVES
We presented a simple abstract framework for studying congruence of bisimilarity, based on fa-
milial monads and lifting properties. We then refined the framework to account for soundness of
bisimulation up to context, using a weak form of cartesianness instead of lifting properties. We
finally showed that the framework flexibly accounts for most known results about congruence
of bisimilarity and soundness of bisimulation up to context in the 𝜋-calculus. To our knowledge,
this is the first abstract framework handling both congruence of bisimilarity and soundness of
bisimulation up to context in the presence of binding.

However, although the framework provides abstract, rather general proofs of non-trivial facts,
it does not yet come with any format, i.e., means to construct instances from more basic data. An
obvious next step is thus to look for such formats, which in our casemeans automatically construct-
ing familial monads satisfying the relevant hypotheses. An intermediate step would be to show
that existing formats give rise to familial monads with compositional initial algebras. Another
potential direction is to consider questions related to congruence of bisimilarity and soundness
of bisimulation up to context, like Howe’s method, environmental bisimulation, or solutions of
process equations. We also plan to adapt the framework to weak bisimulation and other kinds of
languages, e.g., typed variants of 𝜋-calculus, functional languages, or logic programming, which
has recently been covered by the bialgebraic approach [2]. Finally, we could consider adapting
pointwise analytic monads [8] to transition categories. The point would be that they could acco-
modate structural congruence, e.g., a commutative variant of parallel composition, thus providing
a new language to study the derivation of labelled transition systems from reduction rules [22].

REFERENCES
[1] Filippo Bonchi, Daniela Petrişan, Damien Pous, and Jurriaan Rot. 2016. A general account of coinduction up-to. Acta

Informatica (2016), 1–64. https://doi.org/10.1007/s00236-016-0271-4
[2] Filippo Bonchi and Fabio Zanasi. 2015. Bialgebraic Semantics for Logic Programming. Logical Methods in Computer

Science 11, 1 (2015). https://doi.org/10.2168/LMCS-11(1:14)2015
[3] Gérard Boudol and Ilaria Castellani. 1988. A non-interleaving semantics for CCS based on proved transitions. Funda-

menta Informaticae XI (1988).
[4] Aurelio Carboni and Peter Johnstone. 1995. Connected limits, familial representability and Artin glueing. Mathemat-

ical Structures in Computer Science 5, 4 (1995), 441–459. https://doi.org/10.1017/S0960129500001183
[5] Gian Luca Cattani, John Power, and Glynn Winskel. 1998. A Categorical Axiomatics for Bisimulation, See [20], 581–

596. https://doi.org/10.1007/BFb0055649
[6] Yves Diers. 1978. Spectres et localisations relatifs à un foncteur. Comptes rendus hebdomadaires des séances de

l’Académie des sciences 287, 15 (1978), 985–988.
[7] Marcelo P. Fiore and Sam Staton. 2006. A Congruence Rule Format for Name-Passing Process Calculi from Math-

ematical Structural Operational Semantics. In Proc. 21st Symposium on Logic in Computer Science IEEE, 49–58.
https://doi.org/10.1109/LICS.2006.7

[8] Richard H. G. Garner and Tom Hirschowitz. 2018. Shapely monads and analytic functors. Journal of Logic and
Computation 28, 1 (2018), 33–83. https://doi.org/10.1093/logcom/exx029

[9] Mark Hovey. 1999. Model Categories. Mathematical Surveys and Monographs, Volume 63, AMS (1999), Vol. 63. Amer-
ican Mathematical Society.

25

https://doi.org/10.1007/s00236-016-0271-4
https://doi.org/10.2168/LMCS-11(1:14)2015
https://doi.org/10.1017/S0960129500001183
https://doi.org/10.1007/BFb0055649
https://doi.org/10.1109/LICS.2006.7
https://doi.org/10.1093/logcom/exx029

[10] André Joyal, Mogens Nielsen, and GlynnWinskel. 1993. Bisimulation and open maps. In Proc. 8th Symposium on Logic
in Computer Science IEEE, 418–427. https://doi.org/10.1109/LICS.1993.287566

[11] Bartek Klin. 2011. Bialgebras for structural operational semantics: An introduction. Theoretical Computer Science 412,
38 (2011), 5043–5069. https://doi.org/10.1016/j.tcs.2011.03.023

[12] Joachim Kock. 2011. Polynomial functors and trees. International Mathematics Research Notices 2011, 3 (2011), 609–673.
https://doi.org/10.1093/imrn/rnq068

[13] Saunders Mac Lane. 1998. Categories for the Working Mathematician (2nd ed.). Number 5 in Graduate Texts in
Mathematics. Springer.

[14] Saunders Mac Lane and Ieke Moerdijk. 1992. Sheaves in Geometry and Logic: A First Introduction to Topos Theory.
Springer.

[15] MohammadReza Mousavi, Michel A. Reniers, and Jan Friso Groote. 2007. SOS Formats and Meta-Theory: 20 Years
After. Theoretical Computer Science 373, 3 (2007), 238–272.

[16] Gordon D. Plotkin. 1981. A Structural Approach to Operational Semantics. DAIMI Report FN-19. Computer Science
Department, Aarhus University.

[17] Damien Pous and Davide Sangiorgi. 2011. Enhancements of the bisimulation proof method. Number 52 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, Chapter 6.

[18] Emily Riehl. 2014. Categorical HomotopyTheory. Number 24 in NewMathematicalMonographs. Cambridge University
Press.

[19] Davide Sangiorgi. 1996. A theory of bisimulation for the 𝜋-calculus. Acta Informatica 33, 1 (1996), 69–97. https:
//doi.org/10.1007/s002360050036

[20] Davide Sangiorgi and Robert de Simone (Eds.). 1998. Proc. 9th International Conference on Concurrency Theory. LNCS,
Vol. 1466. Springer.

[21] Davide Sangiorgi and DavidWalker. 2001. The 𝜋-calculus – ATheory of Mobile Processes. Cambridge University Press.
[22] Peter Sewell. 1998. From Rewrite Rules to Bisimulation Congruences, See [20], 269–284.
[23] Sam Staton. 2008. General Structural Operational Semantics through Categorical Logic. In Proc. 23rd Symposium on

Logic in Computer Science 166–177. https://doi.org/10.1109/LICS.2008.43
[24] Daniele Turi and Gordon D. Plotkin. 1997. Towards a Mathematical Operational Semantics. In Proc. 12th Symposium

on Logic in Computer Science 280–291. https://doi.org/10.1109/LICS.1997.614955
[25] Mark Weber. 2007. Familial 2-functors and parametric right adjoints. Theory and Applications of Categories 18, 22

(2007), 665–732.

A PROOFS FOR 𝒯𝐶𝐿
Proof of Proposition 3.2. Compositionality means that for any transition 𝑟 ∶ 𝜇∅,⋆(𝑀) → 𝑌 ,

there exists 𝑁 and
𝑅 ∈ 𝒯𝐶𝐿(𝒯𝐶𝐿(∅))(𝑀,𝑁)

such that 𝑟 = 𝜇∅,[1](𝑅) (and𝑌 = 𝜇∅,⋆(𝑁)). Here,𝑀 is merely a termwith variables in𝒯𝐶𝐿(∅), oth-
erwise said a pair of a context 𝐶with a certain number of free variables occurrences (ordered from
left to right), say 𝑥1, …, 𝑥𝑛, together with 𝑛 terms𝑀1, …,𝑀𝑛. We denote this by𝑀 = 𝐶[𝑀1, …,𝑀𝑛].
We proceed by induction on 𝐶 and case analysis on 𝑟:

• If 𝐶 = ⦇𝑥1⦈ (and 𝑛 = 1), then we have

𝜇∅,⋆(𝑀) = 𝜇∅,⋆(𝐶[𝑀1]) = 𝜇∅,⋆⦇𝑀1⦈ = 𝑀1.
Thus, 𝑟 is in fact a transition 𝑀1 → 𝑌 , so that taking 𝑁 = ⦇𝑌⦈ and 𝑅 = ⦇𝑟⦈, we get
𝜇∅,[1](𝑅) = 𝑟 as desired.

• If 𝐶 = 𝐶1 𝐶2, then we may divide 𝑀1, …,𝑀𝑛 into

𝑀1
1, …,𝑀1

𝑛1 ,𝑀
2
1, …,𝑀2

𝑛2 ,

so that putting 𝑋 = 𝜇∅,⋆(𝑀), 𝑃𝑖 = 𝐶𝑖[𝑀𝑖
1, …,𝑀𝑖

𝑛𝑖], and 𝑋𝑖 = 𝜇∅,⋆(𝑃𝑖), we have 𝑀 = 𝑃1 𝑃2
and hence 𝑋 = 𝑋1 𝑋2. We then proceed by case analysis.
– If 𝑟 = 𝑟1 𝑋2, for some 𝑟1 ∶ 𝑋1 → 𝑌1, then 𝑌 = 𝑌1 𝑋2, and by induction hypothesis we get
𝑅1 ∶ 𝑃1 → 𝑄1 such that 𝜇∅,[1](𝑅1) = 𝑟1 and 𝜇∅,⋆(𝑄1) = 𝑌1. Taking 𝑅 = 𝑅1 𝑃2 thus yields
𝜇∅,[1](𝑅) = 𝑟1 𝑋2 as desired.

26

https://doi.org/10.1109/LICS.1993.287566
https://doi.org/10.1016/j.tcs.2011.03.023
https://doi.org/10.1093/imrn/rnq068
https://doi.org/10.1007/s002360050036
https://doi.org/10.1007/s002360050036
https://doi.org/10.1109/LICS.2008.43
https://doi.org/10.1109/LICS.1997.614955

– The case 𝑟 = 𝑋1 𝑟2 is similar.
– If 𝑋1 = 𝐾 𝑋′ and 𝑟 = 𝑘𝑋′,𝑋2 , then 𝐶1 = 𝐾 𝐶′ and, putting 𝑃′ = 𝐶′[𝑀1

1, …,𝑀1
𝑛1], we have

𝑋′ = 𝜇∅,⋆(𝑃′) and 𝑌 = 𝑋′. Taking 𝑅 = 𝑘𝑃′,𝑃2 then yields 𝜇∅,[1](𝑅) = 𝑘𝑋′,𝑋2 as desired.
– The case where 𝑋1 = 𝑆 𝑋′ 𝑋″ and 𝑟 = 𝑠𝑋′,𝑋″,𝑋2 is similar. □

Proof of Proposition 3.9. By Lemma 3.8, it suffices to exhibit a functor 𝐸∶ 𝑒𝑙(𝒯𝐶𝐿(1)) →
𝐆𝐩𝐡, such that

𝒯𝐶𝐿(𝑍)(𝑐) ≅
𝑥∈𝒯𝐶𝐿(1)(𝑐)

[𝐸(𝑐, 𝑥), 𝑍],

naturally in 𝑐 and 𝑍. Now,𝒯𝐶𝐿(1)(⋆) consists of closed terms on a unique free variable, say⊤, and
we define 𝐸 to map any such term 𝐶 to the discrete graph with vertices in the ordinal 𝑛𝐶, where
𝑛𝐶 is the number of occurrences of ⊤ in 𝐶. Similarly, 𝒯𝐶𝐿[1] consists of transition derivations on
just one transition axiom, say ⫪∶ ⊤ → ⊤. On such derivations, we define 𝐸 by induction:

𝐸⦇⫪⦈ = 𝐲[1]
𝐸(𝑠𝑀,𝑁,𝑃) = 𝐸(𝑀) + 𝐸(𝑁) + 𝐸(𝑃)
𝐸(𝑘𝑀,𝑁) = 𝐸(𝑀) + 𝐸(𝑁)

𝐸(𝐿 𝑁) = 𝐸(𝐿) + 𝐸(𝑁)
𝐸(𝑀 𝑅) = 𝐸(𝑀) + 𝐸(𝑅).

Finally, we need to define 𝐸 on 𝑠 and 𝑡. We again proceed inductively:
• For the variable case, we have 𝐸⦇⊤⦈ = ⋆ and 𝐸⦇⫪⦈ = [1], so we let 𝐸(𝑠 ↾⫪) be just 𝑠 and
𝐸(𝑡 ↾⫪) be 𝑡.

• For 𝑠𝑀,𝑁,𝑃, we have 𝐸(𝑀𝑁 𝑃) ≅ 𝐸(𝑀)+𝐸(𝑁)+𝐸(𝑃) and 𝐸((𝑀𝑁) (𝑀 𝑃)) = 𝐸(𝑀)+𝐸(𝑁)+
𝐸(𝑀) + 𝐸(𝑃), so we pick the obvious maps

𝐸(𝑀) + 𝐸(𝑁) + 𝐸(𝑃) → 𝐸(𝑀) + 𝐸(𝑁) + 𝐸(𝑃) ← 𝐸(𝑀) + 𝐸(𝑁) + 𝐸(𝑀) + 𝐸(𝑃)
for 𝐸(𝑠 ↾ 𝑠𝑀,𝑁,𝑃) and 𝐸(𝑡 ↾ 𝑠𝑀,𝑁,𝑃).

• We proceed similarly for 𝑘𝑀,𝑁 .

• For 𝐿 𝑁 , we get by induction hypothesis 𝐸(𝑀)
𝐸(𝑠↾𝐿)
−−−−→ 𝐸(𝐿)

𝐸(𝑡↾𝐿)
←−−−− 𝐸(𝑀′), which induces

𝐸(𝑀) + 𝐸(𝑁)
𝐸(𝑠↾𝐿)+𝐸(𝑁)
−−−−−−−−→ 𝐸(𝐿) + 𝐸(𝑁)

𝐸(𝑡↾𝐿)+𝐸(𝑁)
←−−−−−−−− 𝐸(𝑀′) + 𝐸(𝑁).

• We proceed similarly for 𝑀 𝑅. □

B DEFINITION OF 𝐸 ONMORPHISMS, AND FUNCTORIALITY
In this section, we give the full definition of 𝐸∶ 𝑒𝑙(𝒯 +

𝜋 (1)) → 𝔽, the functor used to show that𝒯 +
𝜋

is familial (the definition is given on objects in the body, but the definition on morphisms is a bit
elliptic), and prove its functoriality.

Before starting, let us recall that for all 𝑎 ∈ 𝛾 and 𝑏, 𝑐 ∉ 𝛾, [𝑏 ↦ 𝑎] denotes the obvious map
𝛾, 𝑏 → 𝛾, while (𝑏 ↦ 𝑐) denotes the isomorphism 𝛾, 𝑏 → 𝛾, 𝑐 – 𝛾 is implicit in the notation but
hopefully may be inferred from context.

B.1 Definition of 𝐸 on renaming
The definition is in Figure 4. On processes, this includes non-injective renaming. The pattern is:
𝐸(𝑓 ↾ 𝑋) ∶ 𝐸(𝑓 ⋅ 𝑋) → 𝐸(𝑋).

Lemma B.1 (Functoriality of 𝐸 on renaming). For all 𝛾
ℎ
−→ 𝛾′ ℎ′

−→ 𝛾″ and 𝛾 ⊢1 𝑃, we have
𝐸(ℎ′ ∘ ℎ ↾ 𝑃) = 𝐸(ℎ ↾ 𝑃) ∘ 𝐸(ℎ′ ↾ ℎ ⋅ 𝑃).

27

𝐸(ℎ ↾ ⦇⊤𝛾⦈)∶ 𝐸(ℎ ⋅ ⦇⊤𝛾⦈) = 𝐸⦇⊤𝛾′⦈ = 𝐲𝛾′
𝐲ℎ−→ 𝐲𝛾 = 𝐸⦇⊤𝛾⦈

𝐸(ℎ ↾ (𝑃|𝑄))∶ 𝐸(ℎ ⋅ (𝑃|𝑄)) = 𝐸(ℎ ⋅ 𝑃) + 𝐸(ℎ ⋅ 𝑄)
𝐸(ℎ↾𝑃)+𝐸(ℎ↾𝑄)
−−−−−−−−−−→ 𝐸(𝑃) + 𝐸(𝑄)

𝐸(ℎ ↾ 0)∶ 𝐸(ℎ ⋅ 0) = 0
𝑖𝑑
−→ 0

𝐸(ℎ ↾ 𝜈𝑎𝛾.𝑃)∶ 𝐸(ℎ ⋅ 𝜈𝑎𝛾.𝑃) = 𝐸((ℎ + (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑃)
𝐸((ℎ+(𝑎𝛾↦𝑎𝛾′))↾𝑃)
−−−−−−−−−−−−→ 𝐸(𝑃)

𝐸(ℎ ↾ 𝑎⟨𝑏⟩.𝑃) ∶ 𝐸(ℎ ⋅ 𝑎⟨𝑏⟩.𝑃) = 𝐸(ℎ ⋅ 𝑃)
𝐸(ℎ↾𝑃)
−−−−→ 𝐸(𝑃)

𝐸(ℎ ↾ 𝑎(𝑎𝛾).𝑃)∶ 𝐸(ℎ ⋅ 𝑎(𝑎𝛾).𝑃) = 𝐸((ℎ + (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑃)
𝐸(ℎ+(𝑎𝛾↦𝑎𝛾′)↾𝑃)
−−−−−−−−−−−→ 𝐸(𝑃)

𝐸((ℎ, 𝑘) ↾ ⟪⊤𝛼⟫)∶ 𝐸⟪⊤(ℎ,𝑘)⋅𝛼⟫ = 𝐲(ℎ,𝑘)⋅𝛼
𝐲(ℎ,𝑘)−−−→ 𝐲𝛼

𝐸((ℎ, 𝑖𝑑) ↾ 𝑖𝑛𝑎,𝑐𝑎𝛾.𝑃)∶ 𝐸((ℎ + (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑃)
𝐸(ℎ+(𝑎𝛾↦𝑎𝛾′)↾𝑃)
−−−−−−−−−−−→ 𝐸(𝑃)

𝐸((ℎ, 𝑖𝑑) ↾ 𝑜𝑢𝑡𝑎,𝑐𝑃)∶ 𝐸((ℎ, 𝑖𝑑) ⋅ 𝑜𝑢𝑡𝑎,𝑐𝑃) = 𝐸(ℎ ⋅ 𝑃)
𝐸(ℎ↾𝑃)
−−−−→ 𝐸(𝑃)

𝐸((ℎ, 𝑖𝑑) ↾ 𝑅 ⊳ 𝑆)∶ 𝐸((ℎ, 𝑖𝑑) ⋅ 𝑅) + 𝐸((ℎ, 𝑖𝑑) ⋅ 𝑆)
𝐸((ℎ,𝑖𝑑)↾𝑅)+𝐸((ℎ,𝑖𝑑)↾𝑆)
−−−−−−−−−−−−−−−→ 𝐸(𝑅) + 𝐸(𝑆)

𝐸((ℎ, (𝑏 ↦ 𝑏′)) ↾ 𝑖𝑛𝑎,𝜈𝑏𝑃)∶ 𝐸((ℎ + (𝑏 ↦ 𝑏′)) ⋅ 𝑃)
𝐸(ℎ+(𝑏↦𝑏′)↾𝑃)
−−−−−−−−−−→ 𝐸(𝑃)

𝐸((ℎ, (𝑏 ↦ 𝑏′)) ↾ ∇𝑏.𝑅)∶ 𝐸((ℎ + (𝑏 ↦ 𝑏′), 𝑖𝑑) ⋅ 𝑅)
𝐸((ℎ+(𝑏↦𝑏′),𝑖𝑑)↾𝑅)
−−−−−−−−−−−−→ 𝐸(𝑅)

𝐸((ℎ, 𝑖𝑑) ↾ 𝑅1 ⊳𝜈𝑎𝛾 𝑅2) ∶ ∑𝑖 𝐸((ℎ, (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑅𝑖)
∑𝑖 𝐸((ℎ,(𝑎𝛾↦𝑎𝛾′))↾𝑅𝑖)
−−−−−−−−−−−−−−→ ∑

𝑖 𝐸(𝑅𝑖)

𝐸((ℎ, 𝑘) ↾ 𝜈𝑎𝛾,𝛿.𝑅) ∶ 𝐸((ℎ + (𝑎𝛾,𝛿 ↦ 𝑎𝛾′,𝛿′), 𝑘) ⋅ 𝑅)
𝐸((ℎ+(𝑎𝛾,𝛿↦𝑎𝛾′,𝛿′),𝑘)↾𝑅)
−−−−−−−−−−−−−−−−→ 𝐸(𝑅)

𝐸((ℎ, 𝑘) ↾ (𝐿|𝑄))∶ 𝐸((ℎ, 𝑘) ⋅ 𝐿) + 𝐸(ℎ ⋅ 𝑄)
𝐸((ℎ,𝑘)↾𝐿)+𝐸(ℎ↾𝑄)
−−−−−−−−−−−−→ 𝐸(𝐿) + 𝐸(𝑄)

+ symmetric cases.

Fig. 4. Definition of 𝐸 on renaming

For all 𝑅∶ (𝛾 ⊢1 𝑃)
𝛼
−→ (𝛾, 𝛿 ⊢1 𝑄), 𝛾

ℎ
−→ 𝛾′ ℎ′

−→ 𝛾″, and 𝛿
𝑘
−→ 𝛿′

𝑘′
−→ 𝛿″, assuming 𝛾′ ∩ 𝛿′ =

𝛾″ ∩ 𝛿″ = ∅, we have
𝐸((ℎ′, 𝑘′) ∘ (ℎ, 𝑘) ↾ 𝑅) = 𝐸((ℎ, 𝑘) ↾ 𝑅) ∘ 𝐸((ℎ′, 𝑘′) ↾ (ℎ, 𝑘) ⋅ 𝑅).

Proof. We prove the first point by induction on 𝑃, and the second by induction on 𝑅, using the
former.
Case ⦇⊤𝛾⦈.

𝐸(ℎ ↾ ⦇⊤𝛾⦈) ∘ 𝐸(ℎ′ ↾ ℎ ⋅ ⦇⊤𝛾⦈) = 𝐲ℎ ∘ 𝐲ℎ′ = 𝐲ℎ′∘ℎ = 𝐸(ℎ′ ∘ ℎ ↾ ⦇⊤𝛾⦈),
where of course ℎ′ ∘ ℎ is taken in sets, not in 𝔽.
Case 𝑃|𝑄.

𝐸(ℎ ↾ 𝑃|𝑄) ∘ 𝐸(ℎ′ ↾ ℎ ⋅ (𝑃|𝑄))
= (𝐸(ℎ ↾ 𝑃) + 𝐸(ℎ ↾ 𝑄)) ∘ (𝐸(ℎ′ ↾ ℎ ⋅ 𝑃) + 𝐸(ℎ′ ↾ ℎ ⋅ 𝑄)) (by definition)
= (𝐸(ℎ ↾ 𝑃) ∘ 𝐸(ℎ′ ↾ ℎ ⋅ 𝑃)) + (𝐸(ℎ ↾ 𝑄) ∘ 𝐸(ℎ′ ↾ ℎ ⋅ 𝑄)) (by interchange)
= 𝐸(ℎ′ ∘ ℎ ↾ 𝑃) + 𝐸(ℎ′ ∘ ℎ ↾ 𝑄) (by induction hypothesis)
= 𝐸(ℎ′ ∘ ℎ ↾ 𝑃|𝑄) (by definition).

28

Case 0. Trivial.
Case 𝜈𝑎𝛾.𝑃.

𝐸(ℎ ↾ 𝜈𝑎𝛾.𝑃) ∘ 𝐸(ℎ′ ↾ ℎ ⋅ 𝜈𝑎𝛾.𝑃)
= 𝐸(ℎ + (𝑎𝛾 ↦ 𝑎𝛾′) ↾ 𝑃) ∘ 𝐸(ℎ′ + (𝑎𝛾′ ↦ 𝑎𝛾″) ↾ (ℎ + (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑃) (by definition)
= 𝐸((ℎ′ ∘ ℎ) + (𝑎𝛾 ↦ 𝑎𝛾″) ↾ 𝑃) (by induction hypothesis)
= 𝐸(ℎ′ ∘ ℎ ↾ 𝜈𝑎𝛾.𝑃) (by definition).

Case 𝑎⟨𝑏⟩.𝑃.

𝐸(ℎ ↾ 𝑎⟨𝑏⟩.𝑃) ∘ 𝐸(ℎ′ ↾ ℎ ⋅ 𝑎⟨𝑏⟩.𝑃)
= 𝐸(ℎ ↾ 𝑃) ∘ 𝐸(ℎ′ ↾ ℎ ⋅ 𝑃) (by definition)
= 𝐸(ℎ′ ∘ ℎ ↾ 𝑃) (by induction hypothesis)
= 𝐸(ℎ′ ∘ ℎ ↾ 𝑎⟨𝑏⟩.𝑃) (by definition).

Case 𝑎(𝑎𝛾).𝑃.

𝐸(ℎ ↾ 𝑎(𝑎𝛾).𝑃) ∘ 𝐸(ℎ′ ↾ ℎ ⋅ 𝑎(𝑎𝛾).𝑃)
= 𝐸(ℎ + (𝑎𝛾 ↦ 𝑎𝛾′) ↾ 𝑃) ∘ 𝐸(ℎ′ + (𝑎𝛾′ ↦ 𝑎𝛾″) ↾ (ℎ + (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑃) (by definition)
= 𝐸((ℎ′ ∘ ℎ) + (𝑎𝛾 ↦ 𝑎𝛾″) ↾ 𝑃) (by induction hypothesis)
= 𝐸(ℎ′ ∘ ℎ ↾ 𝑎(𝑎𝛾).𝑃) (by definition).

Let us now consider transitions.
Case ⟪⊤𝛼⟫.

𝐸((ℎ, 𝑘) ↾ ⟪⊤𝛼⟫) ∘ 𝐸((ℎ′, 𝑘′) ↾ (ℎ, 𝑘) ⋅ ⟪⊤𝛼⟫)
= 𝐲(ℎ,𝑘) ∘ 𝐲(ℎ′,𝑘′)
= 𝐲(ℎ′∘ℎ,𝑘′∘𝑘)
= 𝐸((ℎ′ ∘ ℎ, 𝑘′ ∘ 𝑘) ↾ ⟪⊤𝛼⟫).

Case 𝑖𝑛𝑎,𝑐𝑎𝛾.𝑃.

𝐸((ℎ, 𝑖𝑑) ↾ 𝑖𝑛𝑎,𝑐𝑎𝛾.𝑃) ∘ 𝐸((ℎ
′, 𝑖𝑑) ↾ (ℎ, 𝑖𝑑) ⋅ 𝑖𝑛𝑎,𝑐𝑎𝛾.𝑃)

= 𝐸(ℎ + (𝑎𝛾 ↦ 𝑎𝛾′) ↾ 𝑃) ∘ 𝐸(ℎ′ + (𝑎𝛾′ ↦ 𝑎𝛾″) ↾ ℎ + (𝑎𝛾 ↦ 𝑎𝛾′) ⋅ 𝑃)
= 𝐸((ℎ′ ∘ ℎ) + (𝑎𝛾 ↦ 𝑎𝛾″) ↾ 𝑃) (by functoriality on processes)
= 𝐸((ℎ′ ∘ ℎ, 𝑖𝑑) ↾ 𝑖𝑛𝑎,𝑐𝑎𝛾.𝑃).

Case 𝑜𝑢𝑡𝑎,𝑏𝑃 .

𝐸((ℎ, 𝑖𝑑) ↾ 𝑜𝑢𝑡𝑎,𝑏𝑃) ∘ 𝐸((ℎ′, 𝑖𝑑) ↾ (ℎ, 𝑖𝑑) ⋅ 𝑜𝑢𝑡𝑎,𝑏𝑃)
= 𝐸(ℎ ↾ 𝑃) ∘ 𝐸(ℎ′ ↾ ℎ ⋅ 𝑃)
= 𝐸(ℎ′ ∘ ℎ ↾ 𝑃) (by functoriality on processes)
= 𝐸((ℎ′ ∘ ℎ, 𝑖𝑑) ↾ 𝑜𝑢𝑡𝑎,𝑏𝑃).

Case 𝑅 ⊳ 𝑆.

𝐸((ℎ, 𝑖𝑑) ↾ 𝑅 ⊳ 𝑆) ∘ 𝐸((ℎ′, 𝑖𝑑) ↾ (ℎ, 𝑖𝑑) ⋅ 𝑅 ⊳ 𝑆)
= (𝐸((ℎ, 𝑖𝑑) ↾ 𝑅) ∘ 𝐸((ℎ′, 𝑖𝑑) ↾ (ℎ, 𝑖𝑑) ⋅ 𝑅)) + (𝐸((ℎ, 𝑖𝑑) ↾ 𝑆) ∘ 𝐸((ℎ′, 𝑖𝑑) ↾ (ℎ, 𝑖𝑑) ⋅ 𝑆))
= 𝐸((ℎ′ ∘ ℎ, 𝑖𝑑) ↾ 𝑅) + 𝐸((ℎ′ ∘ ℎ, 𝑖𝑑) ↾ 𝑆) (by induction hypothesis)
= 𝐸((ℎ′ ∘ ℎ, 𝑖𝑑) ↾ 𝑅 ⊳ 𝑆).

29

Case 𝑖𝑛𝑎,𝜈𝑏𝑃 .

𝐸((ℎ, (𝑏 ↦ 𝑏′)) ↾ 𝑖𝑛𝑎,𝜈𝑏𝑃) ∘ 𝐸((ℎ′, (𝑏′ ↦ 𝑏″)) ↾ (ℎ, (𝑏 ↦ 𝑏′)) ⋅ 𝑖𝑛𝑎,𝜈𝑏𝑃)
= 𝐸(ℎ + (𝑏 ↦ 𝑏′) ↾ 𝑃) ∘ 𝐸(ℎ′ + (𝑏′ ↦ 𝑏″) ↾ ℎ + (𝑏 ↦ 𝑏′) ⋅ 𝑃)
= 𝐸((ℎ′ ∘ ℎ) + (𝑏 ↦ 𝑏″) ↾ 𝑃) (by functoriality on processes)
= 𝐸((ℎ′ ∘ ℎ, (𝑏 ↦ 𝑏″)) ↾ 𝑖𝑛𝑎,𝜈𝑏𝑃).

Case ∇𝑏.𝑅.

𝐸((ℎ, (𝑏 ↦ 𝑏′)) ↾ ∇𝑏.𝑅) ∘ 𝐸((ℎ′, (𝑏′ ↦ 𝑏″)) ↾ (ℎ, (𝑏 ↦ 𝑏′)) ⋅ ∇𝑏.𝑅)
= 𝐸((ℎ + (𝑏 ↦ 𝑏′), 𝑖𝑑) ↾ 𝑅) ∘ 𝐸((ℎ′ + (𝑏′ ↦ 𝑏″), 𝑖𝑑) ↾ (ℎ + (𝑏 ↦ 𝑏′), 𝑖𝑑) ⋅ 𝑅)
= 𝐸(((ℎ′ ∘ ℎ) + (𝑏 ↦ 𝑏″), 𝑖𝑑) ↾ 𝑅) (by induction hypothesis)
= 𝐸((ℎ′ ∘ ℎ, (𝑏 ↦ 𝑏″)) ↾ ∇𝑏.𝑅).

Case 𝑅 ⊳𝜈𝑎𝛾 𝑆.

𝐸((ℎ, 𝑖𝑑) ↾ 𝑅 ⊳𝜈𝑎𝛾 𝑆) ∘ 𝐸((ℎ′, 𝑖𝑑) ↾ (ℎ, 𝑖𝑑) ⋅ 𝑅 ⊳𝜈𝑎𝛾 𝑆)
= (𝐸((ℎ, (𝑎𝛾 ↦ 𝑎𝛾′)) ↾ 𝑅) ∘ 𝐸((ℎ′, (𝑎𝛾′ ↦ 𝑎𝛾″)) ↾ (ℎ, (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑅))

+ (𝐸((ℎ, (𝑎𝛾 ↦ 𝑎𝛾′)) ↾ 𝑆) ∘ 𝐸((ℎ′, (𝑎𝛾′ ↦ 𝑎𝛾″)) ↾ (ℎ, (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑆))
= 𝐸((ℎ′ ∘ ℎ, (𝑎𝛾 ↦ 𝑎𝛾″)) ↾ 𝑅) + 𝐸((ℎ′ ∘ ℎ, (𝑎𝛾 ↦ 𝑎𝛾″)) ↾ 𝑆) (by induction hypothesis)
= 𝐸((ℎ′ ∘ ℎ, 𝑖𝑑) ↾ 𝑅 ⊳𝜈𝑎𝛾 𝑆).

Case 𝜈𝑎𝛾,𝛿.𝑅.

𝐸((ℎ, 𝑘) ↾ 𝜈𝑎𝛾,𝛿.𝑅) ∘ 𝐸((ℎ′, 𝑘′) ↾ (ℎ, 𝑘) ⋅ 𝜈𝑎𝛾,𝛿.𝑅)
= (𝐸((ℎ + (𝑎𝛾,𝛿 ↦ 𝑎𝛾′,𝛿′), 𝑘) ↾ 𝑅) ∘ 𝐸((ℎ′ + (𝑎𝛾′,𝛿′ ↦ 𝑎𝛾″,𝛿″), 𝑘′) ↾ (ℎ + (𝑎𝛾,𝛿 ↦ 𝑎𝛾′,𝛿′), 𝑘) ⋅ 𝑅))
= 𝐸(((ℎ′ ∘ ℎ) + (𝑎𝛾,𝛿 ↦ 𝑎𝛾″,𝛿″), 𝑘′ ∘ 𝑘) ↾ 𝑅) (by induction hypothesis)
= 𝐸((ℎ′ ∘ ℎ, 𝑘′ ∘ 𝑘) ↾ 𝜈𝑎𝛾,𝛿.𝑅).

Case 𝐿|𝑄.

𝐸((ℎ, 𝑘) ↾ 𝐿|𝑄) ∘ 𝐸((ℎ′, 𝑘′) ↾ (ℎ, 𝑘) ⋅ (𝐿|𝑄))
= (𝐸((ℎ, 𝑘) ↾ 𝐿) + 𝐸(ℎ ↾ 𝑄)) ∘ (𝐸((ℎ′, 𝑘′) ↾ (ℎ, 𝑘) ⋅ 𝐿) + 𝐸(ℎ′ ↾ ℎ ⋅ 𝑄))
= (𝐸((ℎ, 𝑘) ↾ 𝐿) ∘ 𝐸((ℎ′, 𝑘′) ↾ (ℎ, 𝑘) ⋅ 𝐿)) + (𝐸(ℎ ↾ 𝑄) + 𝐸(ℎ′ ↾ ℎ ⋅ 𝑄))
= 𝐸((ℎ′ ∘ ℎ, 𝑘′ ∘ 𝑘) ↾ 𝐿) + 𝐸(ℎ′ ∘ ℎ ↾ 𝑄)

by induction hypothesis and functoriality on processes
= 𝐸((ℎ′ ∘ ℎ, 𝑘′ ∘ 𝑘) ↾ 𝐿|𝑄).

Cases 𝑃|𝑅, 𝑆 ⊲ 𝑅, 𝑆 ⊲𝜈𝑎𝛾 𝑅.. Symmetric. □

B.2 Definition of 𝐸 on morphisms: cospans 𝐸(𝑅 ⋅ 𝑠)
𝐸(𝑠↾𝑅)
−−−−→ 𝐸(𝑅)

𝐸(𝑡↾𝑅)
←−−−− 𝐸(𝑅 ⋅ 𝑡)

We assume that constructors are as in the figure introducing the labelled transition system, except

when visible otherwise. E.g., when we write 𝑅 ⊳ 𝑆, it is implicitly assumed that 𝑅∶ 𝑃
𝑜𝛾,𝑎,𝑏
−−−→ 𝑃′

and 𝑆∶ 𝑄
𝜄𝛾,𝑎,𝑏
−−−→ 𝑄′. By contrast, when we write 𝑖𝑛𝑎,𝑐𝑎𝛾.𝑃, we implicitly assume that the necessary

renamings have been performed.
Furthermore, 𝑖𝛿𝛾 ∶ 𝛾 ↪ 𝛾, 𝛿 denotes the inclusion.
Let us now define 𝐸 on 𝑠 ↾ 𝑅 and 𝑡 ↾ 𝑅 by induction on 𝑅:

30

⟪⊤𝛼⟫ ∶ 𝐲𝛾
𝐲𝑠−→ 𝐲𝛼

𝐲𝑡←− 𝐲𝛾,𝛿 (if 𝛾
𝑠
−→ 𝛼

𝑡
←− 𝛾, 𝛿)

𝑖𝑛𝑎,𝑐𝑎𝛾.𝑃 ∶ 𝐸(𝑃)
𝑖𝑑
−→ 𝐸(𝑃)

𝐸([𝑎𝛾↦𝑐]↾𝑃)
←−−−−−−−− 𝐸([𝑎𝛾 ↦ 𝑐] ⋅ 𝑃)

𝑜𝑢𝑡𝑎,𝑐𝑃 ∶ 𝐸(𝑃)
𝑖𝑑
−→ 𝐸(𝑃)

𝑖𝑑
←− 𝐸(𝑃)

𝑅 ⊳ 𝑆 ∶ 𝐸(𝑃) + 𝐸(𝑄)
𝐸(𝑠↾𝑅)+𝐸(𝑠↾𝑆)
−−−−−−−−−→ 𝐸(𝑅) + 𝐸(𝑆)

𝐸(𝑡↾𝑅)+𝐸(𝑡↾𝑆)
←−−−−−−−−− 𝐸(𝑃′) + 𝐸(𝑄′)

𝑖𝑛𝑎,𝜈𝑏𝑃 ∶ 𝐸((𝑏 ↦ 𝑎𝛾) ⋅ 𝑃)
𝐸((𝑏↦𝑎𝛾)↾𝑃)
−−−−−−−−→ 𝐸(𝑃)

𝑖𝑑
←− 𝐸(𝑃)

∇𝑏.𝑅 ∶ 𝐸((𝑏 ↦ 𝑎𝛾) ⋅ 𝑃)
𝐸((𝑏↦𝑎𝛾)↾𝑃)
−−−−−−−−→ 𝐸(𝑃)

𝐸(𝑠↾𝑅)
−−−−→ 𝐸(𝑅)

𝐸(𝑡↾𝑅)
←−−−− 𝐸(𝑄)

𝑅 ⊳𝜈𝑎𝛾 𝑆 ∶ 𝐸(𝑃) + 𝐸(𝑄)
𝐸(𝑠↾𝑅)+𝐸(𝑠↾𝑆)
−−−−−−−−−→ 𝐸(𝑅) + 𝐸(𝑆)

𝐸(𝑡↾𝑅)+𝐸(𝑡↾𝑆)
←−−−−−−−−− 𝐸(𝑃′) + 𝐸(𝑄′)

𝜈𝑎𝛾,𝛿.𝑅 ∶ 𝐸((𝑎𝛾,𝛿 ↦ 𝑎𝛾) ⋅ 𝑃)
𝐸((𝑎𝛾,𝛿↦𝑎𝛾)↾𝑃)
−−−−−−−−−−→ 𝐸(𝑃)

𝐸(𝑠↾𝑅)
−−−−→ 𝐸(𝑅)

𝐸(𝑡↾𝑅)
←−−−− 𝐸(𝑄)

𝐿|𝑄 ∶ 𝐸(𝑃) + 𝐸(𝑄)
𝐸(𝑠↾𝐿)+𝑖𝑑
−−−−−−→ 𝐸(𝐿) + 𝐸(𝑄)

𝐸(𝑡↾𝐿)+𝐸(𝑖𝛿𝛾↾𝑄)
←−−−−−−−−−− 𝐸(𝑃′) + 𝐸(𝑖𝛿𝛾 ⋅ 𝑄)

+ symmetric cases.

B.3 Functoriality
We have already seen that 𝐸 is functorial on morphisms of the form ℎ ↾ 𝑃 and (ℎ, 𝑘) ↾ 𝑅, for
appropriate ℎ and 𝑘. The only missing piece to its functoriality is thus:

Lemma B.2 (Functoriality for the defining eqations of 𝔽). For all 𝑅∶ (𝛾 ⊢1 𝑃)
𝛼
−→

(𝛾, 𝛿 ⊢1 𝑄), 𝛾
ℎ
−→ 𝛾′, and 𝛿

𝑘
−→ 𝛿′ such that 𝛾′ ∩ 𝛿′ = ∅, we have 𝐸((ℎ, 𝑘) ↾ 𝑅) ∘ 𝐸(𝑠 ↾ (ℎ, 𝑘) ⋅ 𝑅) =

𝐸(𝑠 ↾ 𝑅) ∘ 𝐸(ℎ ↾ 𝑃) and 𝐸((ℎ, 𝑘) ↾ 𝑅) ∘ 𝐸(𝑡 ↾ (ℎ, 𝑘) ⋅ 𝑅) = 𝐸(𝑡 ↾ 𝑅) ∘ 𝐸(ℎ + 𝑘 ↾ 𝑄).

Proof. We again proceed by induction, often abbreviating (ℎ, 𝑖𝑑) ⋅ 𝑅 to ℎ ⋅ 𝑅.
Case ⟪⊤𝛼⟫. The squares

𝐸⟪⊤𝛾′⟫ 𝐸⟪⊤𝛾⟫

𝐸⟪⊤(ℎ,𝑘)⋅𝛼⟫ 𝐸⟪⊤𝛼⟫

𝐸⟪⊤𝛾′,𝛿′⟫ 𝐸⟪⊤𝛾,𝛿⟫

𝐸(ℎ↾⟪⊤𝛾⟫)

𝐸(𝑠↾⟪⊤(ℎ,𝑘)⋅𝛼⟫) 𝐸(𝑠↾⟪⊤𝛼⟫)

𝐸((ℎ,𝑘)↾⟪⊤𝛼⟫)
𝐸(𝑡↾⟪⊤(ℎ,𝑘)⋅𝛼⟫ 𝐸(𝑡↾⟪⊤𝛼⟫)

𝐸(ℎ+𝑘↾⟪⊤𝛾,𝛿⟫)

unfold to

𝐲𝛾′ 𝐲𝛾

𝐲(ℎ,𝑘)⋅𝛼 𝐲𝛼

𝐲𝛾′,𝛿′ 𝐲𝛾,𝛿.

𝐲ℎ

𝐲𝑠 𝐲𝑠
𝐲(ℎ,𝑘)

𝐲𝑡𝐲𝑡

𝐲(ℎ+𝑘)

Case 𝑖𝑛𝑎,𝑐𝑎𝛾.𝑃.

31

𝐸(ℎ ⋅ 𝑎(𝑎𝛾).𝑃) 𝐸(𝑎(𝑎𝛾).𝑃)

𝐸(ℎ ⋅ 𝑖𝑛𝑎,𝑐𝑎𝛾.𝑃) 𝐸(𝑖𝑛𝑎,𝑐𝑎𝛾.𝑃)

𝐸([ℎ, 𝑎𝛾 ↦ ℎ(𝑐)] ⋅ 𝑃) 𝐸([𝑎𝛾 ↦ 𝑐] ⋅ 𝑃)

𝐸(𝑠↾ℎ⋅𝑖𝑛𝑎,𝑐𝑎𝛾.𝑃)

𝐸(ℎ↾𝑎(𝑎𝛾).𝑃)

𝐸(𝑠↾𝑖𝑛𝑎,𝑐𝑎𝛾.𝑃)

𝐸(ℎ↾𝑖𝑛𝑎,𝑐𝑎𝛾.𝑃)𝐸(𝑡↾ℎ⋅𝑖𝑛𝑎,𝑐𝑎𝛾.𝑃) 𝐸(𝑡↾𝑖𝑛𝑎,𝑐𝑎𝛾.𝑃)

𝐸(ℎ↾[𝑎𝛾↦𝑐]⋅𝑃)

unfolds to

𝐸((ℎ + (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑃) 𝐸(𝑃)

𝐸((ℎ + (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑃) 𝐸(𝑃)

𝐸([ℎ, 𝑎𝛾 ↦ ℎ(𝑐)] ⋅ 𝑃) 𝐸([𝑎𝛾 ↦ 𝑐] ⋅ 𝑃)),

𝐸(ℎ+(𝑎𝛾↦𝑎𝛾′)↾𝑃)

𝐸(ℎ+(𝑎𝛾↦𝑎𝛾′)↾𝑃)

𝐸([𝑎𝛾′↦ℎ(𝑐)]↾𝑃′)

𝐸(ℎ↾[𝑎𝛾↦𝑐]⋅𝑃)

𝐸([𝑎𝛾↦𝑐]↾𝑃)

where 𝑃′ = (ℎ + (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑃, which commutes by Lemma B.1.
Case 𝑜𝑢𝑡𝑎,𝑏𝑃 .

𝐸(ℎ ⋅ 𝑎⟨𝑏⟩.𝑃) 𝐸(𝑎⟨𝑏⟩.𝑃)

𝐸(ℎ ⋅ 𝑜𝑢𝑡𝑎,𝑏𝑃) 𝐸(𝑜𝑢𝑡𝑎,𝑏𝑃)

𝐸(ℎ ⋅ 𝑃) 𝐸(𝑃)

𝐸(𝑠↾ℎ⋅𝑜𝑢𝑡𝑎,𝑏𝑃)

𝐸(ℎ↾𝑎⟨𝑏⟩.𝑃)

𝐸(𝑠↾𝑜𝑢𝑡𝑎,𝑏𝑃)

𝐸(ℎ↾𝑜𝑢𝑡𝑎,𝑏𝑃)
𝐸(𝑡↾ℎ⋅𝑜𝑢𝑡𝑎,𝑏𝑃) 𝐸(𝑡↾𝑜𝑢𝑡𝑎,𝑏𝑃)

𝐸(ℎ↾𝑃)

unfolds to

𝐸(ℎ ⋅ 𝑃) 𝐸(𝑃)

𝐸(ℎ ⋅ 𝑃) 𝐸(𝑃)

𝐸(ℎ ⋅ 𝑃) 𝐸(𝑃),

𝐸(ℎ↾𝑃)

𝐸(ℎ↾𝑃)

𝐸(ℎ↾𝑃)

Case 𝑅 ⊳ 𝑆.

𝐸(ℎ ⋅ (𝑃|𝑄)) 𝐸(𝑃|𝑄)

𝐸((ℎ, 𝑖𝑑) ⋅ (𝑅 ⊳ 𝑆)) 𝐸(𝑅 ⊳ 𝑆)

𝐸(ℎ ⋅ (𝑃′|𝑄′)) 𝐸(𝑃′|𝑄′)

𝐸(𝑠↾(ℎ,𝑖𝑑)⋅(𝑅⊳𝑆))

𝐸(ℎ↾(𝑃|𝑄))

𝐸(𝑠↾𝑅⊳𝑆)

𝐸((ℎ,𝑖𝑑)↾𝑅⊳𝑆)
𝐸(𝑡↾(ℎ,𝑖𝑑)⋅𝑅⊳𝑆) 𝐸(𝑡↾𝑅⊳𝑆)

𝐸(ℎ↾𝜈𝑎𝛾,𝛿.(𝑃′ |𝑄′))

unfolds to

32

𝐸(ℎ ⋅ 𝑃) + 𝐸(ℎ ⋅ 𝑄) 𝐸(𝑃) + 𝐸(𝑄)

𝐸(ℎ ⋅ 𝑅) + 𝐸(ℎ ⋅ 𝑆) 𝐸(𝑅) + 𝐸(𝑆)

𝐸(ℎ ⋅ 𝑃′) + 𝐸(ℎ ⋅ 𝑄′) 𝐸(𝑃′) + 𝐸(𝑄′),

𝐸(ℎ↾𝑃)+𝐸(ℎ↾𝑄)

𝐸(𝑠↾𝑅)+𝐸(𝑠↾𝑆)𝐸(𝑠↾ℎ⋅𝑅)+𝐸(𝑠↾ℎ⋅𝑆)
𝐸(ℎ↾𝑅)
+𝐸(ℎ↾𝑆)

𝐸(𝑡↾ℎ⋅𝑅)+𝐸(𝑡↾ℎ⋅𝑆)
𝐸(ℎ↾𝑃′)
+𝐸(ℎ↾𝑄′)

𝐸(𝑡↾𝑅)+𝐸(𝑡↾𝑆)

which commutes by induction hypothesis.
Case 𝑖𝑛𝑎,𝜈𝑏𝑃 .

𝐸(ℎ ⋅ 𝑎(𝑏).𝑃) 𝐸(𝑎(𝑏).𝑃)

𝐸((ℎ, (𝑏 ↦ 𝑏′)) ⋅ 𝑖𝑛𝑎,𝜈𝑏𝑃) 𝐸(𝑖𝑛𝑎,𝜈𝑏𝑃)

𝐸((ℎ + (𝑏 ↦ 𝑏′)) ⋅ 𝑃) 𝐸(𝑃)

𝐸(𝑠↾(ℎ,(𝑏↦𝑏′))⋅𝑖𝑛𝑎,𝜈𝑏𝑃)

𝐸(ℎ↾𝑎(𝑏).𝑃)

𝐸(𝑠↾𝑖𝑛𝑎,𝜈𝑏𝑃)

𝐸((ℎ,(𝑏↦𝑏′))↾𝑖𝑛𝑎,𝜈𝑏𝑃)
𝐸(𝑡↾(ℎ,(𝑏↦𝑏′))⋅𝑖𝑛𝑎,𝜈𝑏𝑃) 𝐸(𝑡↾𝑖𝑛𝑎,𝜈𝑏𝑃)

𝐸((ℎ+(𝑏↦𝑏′))↾𝑃)

unfolds to

𝐸((ℎ + (𝑏 ↦ 𝑎𝛾′)) ⋅ 𝑃) 𝐸((𝑏 ↦ 𝑎𝛾) ⋅ 𝑃)

𝐸((ℎ + (𝑏 ↦ 𝑏′)) ⋅ 𝑃) 𝐸(𝑃)

𝐸((ℎ + (𝑏 ↦ 𝑏′)) ⋅ 𝑃) 𝐸(𝑃),

𝐸(ℎ+(𝑎𝛾↦𝑎𝛾′)↾𝑃)

𝐸((𝑏↦𝑎𝛾)↾𝑃)𝐸((𝑏′↦𝑎𝛾′)↾𝑃′)
𝐸(ℎ+(𝑏↦𝑏′)↾𝑃)

𝐸(ℎ+(𝑏↦𝑏′)↾𝑃)

where 𝑃′ = (ℎ + (𝑏 ↦ 𝑏′)) ⋅ 𝑃, which commutes by Lemma B.1.
Case ∇𝑏.𝑅.

𝐸(ℎ ⋅ 𝜈𝑏.𝑃) 𝐸(𝜈𝑏.𝑃)

𝐸((ℎ, (𝑏 ↦ 𝑏′)) ⋅ ∇𝑏.𝑅) 𝐸(∇𝑏.𝑅)

𝐸((ℎ + (𝑏 ↦ 𝑏′)) ⋅ 𝑄) 𝐸(𝑄)

𝐸(𝑠↾(ℎ,(𝑏↦𝑏′))⋅∇𝑏.𝑅)

𝐸(ℎ↾𝜈𝑏.𝑃)

𝐸(𝑠↾∇𝑏.𝑅)

𝐸((ℎ,(𝑏↦𝑏′))↾∇𝑏.𝑅)
𝐸(𝑡↾(ℎ,(𝑏↦𝑏′))⋅∇𝑏.𝑅) 𝐸(𝑡↾∇𝑏.𝑅)

𝐸((ℎ+(𝑏↦𝑏′))↾𝑄)

unfolds to

𝐸((ℎ + (𝑏 ↦ 𝑎𝛾′)) ⋅ 𝑃) 𝐸((𝑏 ↦ 𝑎𝛾) ⋅ 𝑃)

𝐸((ℎ + (𝑏 ↦ 𝑏′)) ⋅ 𝑃) 𝐸(𝑃)

𝐸((ℎ + (𝑏 ↦ 𝑏′), 𝑖𝑑) ⋅ 𝑅) 𝐸(𝑅)

𝐸((ℎ + (𝑏 ↦ 𝑏′)) ⋅ 𝑄) 𝐸(𝑄),

𝐸(ℎ+(𝑎𝛾↦𝑎𝛾′)↾𝑃′)

𝐸((𝑏′↦𝑎𝛾′)↾𝑃″) 𝐸((𝑏↦𝑎𝛾)↾𝑃)
𝐸(ℎ+(𝑏↦𝑏′)↾𝑃)

𝐸(𝑠↾𝑅)𝐸(𝑠↾(ℎ+(𝑏↦𝑏′),𝑖𝑑)⋅𝑅)

𝐸((ℎ+(𝑏↦𝑏′),𝑖𝑑)↾𝑅)
𝐸(𝑡↾(ℎ+(𝑏↦𝑏′),𝑖𝑑)⋅𝑅)

ℎ+(𝑏↦𝑏′)↾𝑄

𝐸(𝑡↾𝑅)

33

where 𝑃′ = (𝑏 ↦ 𝑎𝛾) ⋅ 𝑃 and 𝑃″ = (ℎ + (𝑏 ↦ 𝑏′)) ⋅ 𝑃, which commutes by Lemma B.1 (top square)
and induction hypothesis.
Case 𝑅 ⊳𝜈𝑎𝛾 𝑆 (𝑆 ⊲𝜈𝑎𝛾 𝑅 is symmetric).

𝐸(ℎ ⋅ (𝑃|𝑄)) 𝐸(𝑃|𝑄)

𝐸((ℎ, 𝑖𝑑) ⋅ (𝑅 ⊳𝜈𝑎𝛾 𝑆)) 𝐸(𝑅 ⊳𝜈𝑎𝛾 𝑆)

𝐸(ℎ ⋅ 𝜈𝑎𝛾,𝛿.(𝑃′|𝑄′)) 𝐸(𝜈𝑎𝛾,𝛿.(𝑃′|𝑄′))

𝐸(𝑠↾(ℎ,𝑖𝑑)⋅(𝑅⊳𝜈𝑎𝛾𝑆))

𝐸(ℎ↾(𝑃|𝑄))

𝐸(𝑠↾𝑅⊳𝜈𝑎𝛾𝑆)

𝐸((ℎ,𝑖𝑑)↾𝑅⊳𝜈𝑎𝛾𝑆)
𝐸(𝑡↾(ℎ,𝑖𝑑)⋅𝑅⊳𝜈𝑎𝛾𝑆) 𝐸(𝑡↾𝑅⊳𝜈𝑎𝛾𝑆)

𝐸(ℎ↾𝜈𝑎𝛾,𝛿.(𝑃′ |𝑄′))

unfolds to

𝐸(ℎ ⋅ 𝑃) + 𝐸(ℎ ⋅ 𝑄) 𝐸(𝑃) + 𝐸(𝑄)

𝐸((ℎ, (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑅)
+ 𝐸((ℎ, (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑆)

𝐸(𝑅) + 𝐸(𝑆)

𝐸((ℎ + (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑃′)
+ 𝐸((ℎ + (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑄′) 𝐸(𝑃′) + 𝐸(𝑄′),

𝐸(ℎ↾𝑃)+𝐸(ℎ↾𝑄)

𝐸(𝑠↾𝑅)+𝐸(𝑠↾𝑆)
𝐸(𝑠 ↾ (ℎ, (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑅)

+ 𝐸(𝑠 ↾ (ℎ, (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑆)

𝐸((ℎ,(𝑎𝛾↦𝑎𝛾′))↾𝑅)
+𝐸((ℎ,(𝑎𝛾↦𝑎𝛾′))↾𝑆)

𝐸(𝑡 ↾ (ℎ, (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑅)
+ 𝐸(𝑡 ↾ (ℎ, (𝑎𝛾 ↦ 𝑎𝛾′)) ⋅ 𝑆)

𝐸(ℎ+(𝑎𝛾↦𝑎𝛾′)↾𝑃′)

+𝐸(ℎ+(𝑎𝛾↦𝑎𝛾′)↾𝑄′)

𝐸(𝑡↾𝑅)+𝐸(𝑡↾𝑆)

where 𝑃′ = (ℎ + (𝑏 ↦ 𝑏′)) ⋅ 𝑃, which commutes by induction hypothesis.
Case 𝜈𝑎𝛾,𝛿.𝑅.

𝐸(ℎ ⋅ 𝜈𝑎𝛾,𝛿.𝑃) 𝐸(𝜈𝑎𝛾,𝛿.𝑃)

𝐸((ℎ, 𝑘) ⋅ 𝜈𝑎𝛾,𝛿.𝑅) 𝐸(𝜈𝑎𝛾,𝛿.𝑅)

𝐸(ℎ ⋅ 𝜈𝑎𝛾,𝛿.𝑄) 𝐸(𝜈𝑎𝛾,𝛿.𝑄)

𝐸(𝑠↾(ℎ,𝑘)⋅𝜈𝑎𝛾,𝛿.𝑅)

𝐸(ℎ↾𝜈𝑎𝛾,𝛿.𝑃)

𝐸(𝑠↾𝜈𝑎𝛾,𝛿.𝑅)

𝐸((ℎ,𝑘)↾𝜈𝑎𝛾,𝛿.𝑅)
𝐸(𝑡↾(ℎ,𝑘)⋅𝜈𝑎𝛾,𝛿.𝑅)

𝐸(ℎ↾𝜈𝑎𝛾,𝛿.𝑄)

𝐸(𝑡↾𝜈𝑎𝛾,𝛿.𝑅)

unfolds to

34

𝐸((ℎ + (𝑎𝛾,𝛿 ↦ 𝑎𝛾′)) ⋅ 𝑃) 𝐸((𝑎𝛾,𝛿 ↦ 𝑎𝛾) ⋅ 𝑃)

𝐸((ℎ + (𝑎𝛾,𝛿 ↦ 𝑎𝛾′,𝛿′)) ⋅ 𝑃) 𝐸(𝑃)

𝐸((ℎ + (𝑎𝛾,𝛿 ↦ 𝑎𝛾′,𝛿′), 𝑘) ⋅ 𝑅) 𝐸(𝑅)

𝐸((ℎ + (𝑎𝛾,𝛿 ↦ 𝑎𝛾′,𝛿′)) ⋅ 𝑄) 𝐸(𝑄),

𝐸(ℎ+(𝑎𝛾↦𝑎𝛾′)↾𝑃′)

𝐸((𝑎𝛾′,𝛿′↦𝑎𝛾′)↾𝑃″) 𝐸((𝑎𝛾,𝛿↦𝑎𝛾)↾𝑃)
𝐸(ℎ+(𝑎𝛾,𝛿↦𝑎𝛾′,𝛿′)↾𝑃)

𝐸(𝑠↾𝑅)𝐸(𝑠↾(ℎ+(𝑎𝛾,𝛿↦𝑎𝛾′,𝛿′),𝑘)⋅𝑅)

𝐸((ℎ+(𝑎𝛾,𝛿↦𝑎𝛾′,𝛿′),𝑘)↾𝑅)

𝐸(ℎ+(𝑎𝛾,𝛿↦𝑎𝛾′,𝛿′)+𝑘↾𝑄)
𝐸(𝑡↾𝑅)𝐸(𝑡↾(ℎ+(𝑎𝛾,𝛿↦𝑎𝛾′,𝛿′),𝑘)⋅𝑅)

where 𝑃′ = (𝑎𝛾,𝛿 ↦ 𝑎𝛾) ⋅ 𝑃 and 𝑃″ = (ℎ + (𝑎𝛾,𝛿 ↦ 𝑎𝛾′,𝛿′)) ⋅ 𝑃, which commutes by Lemma B.1 (top
square) and by induction hypothesis.
Case 𝐿|𝑄 (𝑃|𝑅 is symmetric).

𝐸(ℎ ⋅ (𝑃|𝑄)) 𝐸(𝑃|𝑄)

𝐸((ℎ, 𝑘) ⋅ (𝐿|𝑄)) 𝐸(𝐿|𝑄)

𝐸((ℎ + 𝑘) ⋅ (𝑃′|𝑄)) 𝐸(𝑃′|𝑄)

𝐸(𝑠↾(ℎ,𝑘)⋅(𝐿|𝑄))

𝐸(ℎ↾(𝑃|𝑄))

𝐸(𝑠↾𝐿|𝑄)

𝐸((ℎ,𝑘)↾𝐿|𝑄)
𝐸(𝑡↾(ℎ,𝑘)⋅𝐿|𝑄) 𝐸(𝑡↾𝐿|𝑄)

𝐸((ℎ+𝑘)↾𝑃′ |𝑄)

unfolds to

𝐸(ℎ ⋅ 𝑃) + 𝐸(ℎ ⋅ 𝑄) 𝐸(𝑃) + 𝐸(𝑄)

𝐸((ℎ, 𝑘) ⋅ 𝐿) + 𝐸(ℎ ⋅ 𝑄) 𝐸(𝐿) + 𝐸(𝑄)

𝐸((ℎ + 𝑘) ⋅ 𝑃′) + 𝐸(𝑖𝛿′𝛾′ ⋅ ℎ ⋅ 𝑄) 𝐸(𝑃′) + 𝐸(𝑖𝛿𝛾 ⋅ 𝑄),

𝐸(ℎ↾𝑃)+𝐸(ℎ↾𝑄)

𝐸(𝑠↾𝑅)+𝑖𝑑𝐸(𝑠↾(ℎ,𝑘)⋅𝐿)+𝑖𝑑

𝐸((ℎ,𝑘)↾𝐿)+𝐸(ℎ↾𝑄)

𝐸(𝑡↾(ℎ,𝑘)⋅𝐿)+𝐸(𝑖𝛿′𝛾′↾ℎ⋅𝑄)

𝐸(ℎ+𝑘↾𝑃′)
+𝐸(ℎ+𝑘↾𝑖𝛿𝛾⋅𝑄)

𝐸(𝑡↾𝐿)+𝐸(𝑖𝛿𝛾↾𝑄)

which makes sense because (ℎ + 𝑘) ∘ 𝑖𝛿𝛾 = 𝑖𝛿′𝛾′ ∘ ℎ, and commutes by induction hypothesis and
Lemma B.1 (bottom square, right-hand term of sums). □

Altogether, we have proved:

Proposition B.3. 𝐸 is indeed a functor 𝑒𝑙(𝒯 +
𝜋 (1)) → 𝔽.

35

	Abstract
	1 Introduction
	2 Structural operational semantics specifications as monads
	2.1 Labelled transition systems as objects in transition categories
	2.2 Structural operational semantics specifications as monads on transition categories

	3 Congruence of bisimilarity
	3.1 Compositionality
	3.2 Familiality
	3.3 Congruence of bisimilarity and 𝐓ₛ-familiality

	4 Bisimulation up to context
	4.1 Pre-bisimulations
	4.2 From pre-bisimulation to bisimulation
	4.3 Pre-bisimulation up to context

	5 Three shades of π-calculus
	5.1 Basic approach
	5.2 Non-input congruence
	5.3 Wide-open bisimilarity

	6 Conclusion and perspectives
	References
	A Proofs for 𝒯CL
	B Definition of E on morphisms, and functoriality
	B.1 Definition of E on renaming
	B.2 Definition of E on morphisms: cospans E(R ⋅ s) E(s ↾ R) E(R) E(t ↾ R) E(R ⋅ t)
	B.3 Functoriality

