
HAL Id: hal-01815328
https://hal.science/hal-01815328v1

Preprint submitted on 14 Jun 2018 (v1), last revised 13 Nov 2019 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Familial monads and structural operational semantics
Tom Hirschowitz

To cite this version:

Tom Hirschowitz. Familial monads and structural operational semantics. 2018. �hal-01815328v1�

https://hal.science/hal-01815328v1
https://hal.archives-ouvertes.fr

Familial monads and structural operational semantics

TOM HIRSCHOWITZ, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, France

We propose an abstract framework for structural operational semantics, in which we prove that under
suitable hypotheses bisimilarity is a congruence. We demonstrate the flexibility of our approach by
comparing three variants of the 𝜋-calculus and recovering known congruence (and non-congruence)
results. We then refine the framework to account for soundness of bisimulation up to context, an
efficient method for reducing the size of bisimulation relations. We recover soundness of bisimulation
up to non-input context in 𝜋-calculus, and obtain a new result, soundness of wide open bisimulation
up to context.

1 INTRODUCTION
Motivation
Structural operational semantics is a method for specifying the semantics of programming
languages by induction on their syntax, introduced by Plotkin around 1980 [12]. Induction
here allows one to describe the behaviour of a program in terms of its components.

But this sort of compositionality is not enough: it is often desirable for compositionality
to transfer to equational reasoning. Specifically, in structural operational semantics, a pro-
gramming language is described as a labelled transition system, a particular kind of labelled
graph, where labels describe the kind of interaction that the considered program is hav-
ing with its environment. There is a canonical behavioural equivalence between programs
in such a labelled transition system: bisimilarity. (Well, admittedly, there are quite a few
reasonable alternatives to bisimilarity, but let us stick to it as the most widely used.) By
compositionality transferring to equational reasoning, we mean that one generally hopes
that bisimilarity is a congruence, i.e., that replacing a program fragment with a bisimilar
one does not change the bisimilarity class. A bit more formally, if two program fragments
P and Q are bisimilar, which we denote by P ∼ Q, then for any context C, we should have
C[P] ∼ C[Q].

One may hope that specifying the labelled transition system compositionally ensures
that the obtained bisimilarity is a congruence. If compositionality is meant in the sense of
structural operational semantics, this is famously known not to hold, in particular for the
𝜋-calculus [14, Section 2.2.1]. This problem led to a rich variety of syntactic formats [11],
which put some constraints on structural operational semantics specifications, offering in
exchange useful guarantees like congruence of bisimilarity.

However, formats have grown to be very diverse, and also very low-level, hence they
hardly offer a satisfactory explanation of when and why bisimilarity is a congruence. The
desire for a higher-level answer to this question has led to functorial operational semantics [8,
16], in which structural operational semantics specifications are recast as distributive laws
of a comonad over a monad. While deeply developed in the set-based case, functorial op-
erational semantics does not scale well to more complex settings, notably in the presence
of variable binding, where it becomes extremely complex, as, e.g., in Fiore and Staton’s
impressive work [4].

Staton himself argues that functorial operational semantics is too abstract [15], as “one
must really squint hard to view a distributive law as a collection of rules, and to view the nat-
urality conditions of a distributive law as the conditions imposed by a concrete rule format.”

Author’s address: Tom Hirschowitz, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000, Cham-
béry, France, tom.hirschowitz@univ-smb.fr.

1

He goes on to develop a simpler approach which makes sense in any ∏W-pretopos, typ-
ically presheaf toposes. A great benefit is that variable binding is treated almost transpar-
ently. However, the notion of structural operational semantics specification remains fairly
involved, and the range of potential applications seems limited. Indeed, in ten years of ex-
istence, to our knowledge, the format has not really been further developed.

Contributions
In this paper, we propose to attack the question of when bisimilarity is a congruence from
the other end: instead of focusing on formats, we introduce a very simple, elementary set-
ting, transition categories, in which we are able to prove that bisimilarity is a congruence.
Or, rather, we try to define transition categories at just the right level of generality for the
standard proof scheme to go through. In our setting, labelled transition systems are simply
objects in a category 𝒜 , and bisimulations are defined by lifting, in the style of [7]. Further-
more, the structural operational semantics specifications are monads 𝒯 on 𝒜 , which ac-
count for both syntax and transition rules. Thus, models of the specification are𝒯 -algebras.
Our main result (Corollary 3.12) then states that whenever

• the monad 𝒯 satisfies a certain familiality [3, 17] property, and
• the considered 𝒯 -algebras, say X and Y, are compositional, in the sense that both struc-

ture maps 𝒯 (X) → X and 𝒯 (Y) → Y are functional bisimulations,

then bisimilarity is a congruence.
This leads us in Section 4 to an analysis of why standard bisimilarity is not a congruence

in the 𝜋-calculus: familiality holds; what fails is that the structure map 𝒯 (Pi) → Pi is not a
functional bisimulation. We interpret this as a lack of compositionality, hidden in the input
axiom. We then consider two standard ways of working around this issue. First, we recast
in our setting the standard result that bisimilarity is a non-input congruence [14]. Secondly,
we consider a different presentation of 𝜋-calculus, in which bisimilarity is known as wide
open bisimilarity [15], to which Corollary 3.12 applies.

Finally, we consider in Section 5 a notion of pre-bisimulation, which is perhaps closer to
the standard notion than the bisimulations of Sections 3–4. Assuming a few additional hy-
potheses, we define a factorisation system in which factoring any pre-bisimulation gives
rise to a bisimulation, thus exhibiting a tight relationship between the two notions. The ad-
vantage of pre-bisimulations is that they may be modified to a notion of pre-bisimulation up
to context, which in examples corresponds to standard bisimulations up to context [14, Sec-
tion 2.3.2]. Our main result is that any pre-bisimulation up to context embeds into some pre-
bisimulation (and hence into some bisimulation), i.e., in standard terms, pre-bisimulation
up to context is sound. This is to our knowledge the first general soundness result for bisim-
ulation up to context covering calculi with variable binding.

Related work
Theorem 12 of Staton’s paper is very close in spirit to our Corollary 3.12, but in a different ax-
iomatic setting, without any link to familiality, and at a different level of generality – indeed,
his functional bisimulations are members of an abstract class of open maps; ours are defined
concretely through a lifting property, which is key in connecting preservation of functional
bisimulations with familiality. Other related work extends the bialgebraic approach to deal
with up-to techniques [2], in the set-based case. Finally, our notion of 𝐓s-familial monad is
close in spirit to cellular analytic functors [5].

2

Plan
In Section 2, we explain in which sense structural operational semantics specifications are
monads, and models are algebras. We proceed by example, considering combinatory logic
and CCS. In Section 3, we introduce transition categories and prove our main result, to-
gether with a few corollaries. In Section 4, we analyse bisimilarity in the 𝜋-calculus through
the lens of transition categories. In Section 5, we refine the framework to account for sound-
ness of bisimulation up to context. Finally, we conclude in Section 6.

Notations and preliminaries
We assume basic familiarity with category theory [9]. Furthermore, we will use the notion
of a locally presentable category [1], though for examples it should be enough to know that
presheaf categories are locally presentable.

For any locally small category ℂ, we denote by ℂ the category of presheaves on ℂ, i.e.,
contravariant functors to sets (𝐒𝐞𝐭) and natural transformations between them. For any f ∶
c → c′ in ℂ and X ∈ ℂ the action X(f) ∶ X(c′) → X(c) is denoted by x ↦ x ⋅ f. The Yoneda
embedding is denoted by 𝐲 ∶ ℂ → ℂ, and often left implicit.

We denote by el(X) the category of elements [10] of any presheaf X: it has as objects all pairs
(c, x) with x ∈ X(c), and as morphisms (c, x) → (c′, x′) all morphisms f ∶ c → c′ in ℂ such that
x′ ⋅ f = x. We denote the corresponding morphism by f ↾ x′.

Furthermore, we often denote by n the finite set {1, …, n}.
Finally, we briefly recall the basics of weak factorisation systems [13, Sections 11.1 and

11.2]. In any category 𝒜 , a lifting problem for morphisms f and g is any commuting square
as the solid part of

A C

B D.
f g

The lifting problem has a solution when there exists a lifting as shown (dashed) making
both triangles commute.

Definition 1.1. Let f ⧄ g iff all lifting problems for f and g have at least one solution.
When f⧄ g, we say that g has the right lifting property w.r.t. f, or alternatively that f has the

left lifting property w.r.t. g. We moreover let f ⧄ denote the class of all morphisms that have
the right lifting property w.r.t. f. Similarly, for any class 𝒟 of morphisms, let 𝒟⧄ = ⋂f∈𝒟 f ⧄.
We define ⧄g and ⧄𝒟 symmetrically.

Definition 1.2. A weak factorisation system on a category 𝒜 consists of two classes of maps

ℒ and ℛ such that ℒ ⧄ = ℛ , ℒ = ⧄ℛ , and every map f ∶ A → B factors as A
l
−→ C

r
−→ B

with l ∈ ℒ and r ∈ ℛ .
Let us recall some closure properties of ℒ and ℛ .
Definition 1.3. For any ordinal 𝛾, a 𝛾-sequence is a cocontinuous functor from 𝛾 viewed

as a category, to 𝒜 . A transfinite composite of any 𝛾-sequence F ∶ 𝛾 → 𝒜 is the component
𝜆0 ∶ 𝛾(0) → F∞ of any colimiting cocone (where F∞ is the considered colimit).

Definition 1.4. A retract of f ∶ X → Y is any map g ∶ A → B for which there exists a

retraction f → g in the arrow category 𝒜 →, i.e., morphisms g
s
−→ f

r
−→ g such that r ∘ s = idg.

3

Proposition 1.5 ([13, Lemma 11.1.4]). For any factorisation system (ℒ ,ℛ), ℒ (resp. ℛ)
contains all isomorphisms and is closed under composition, retracts, coproducts (resp. products)
of arrows, and pushouts (resp. pullbacks). ℒ is furthermore closed under transfinite composition.

Cofibrantly generated weak factorisation systems are those generated from a set of maps
by lifting. They enjoy an explicit characterisation of ℒ :

Proposition 1.6 ([13, Theorem 12.2.2 and Corollary 12.2.4]). For any set 𝒥 of maps in a
locally presentable category, the classes ((⧄𝒥)⧄ and 𝒥 ⧄ form a weak factorisation system, whose
left class consists precisely of retracts of transfinite composites of pushouts of maps in 𝒥 .

2 STRUCTURAL OPERATIONAL SEMANTICS SPECIFICATIONS AS MONADS
In this section, we explain how standard structural operational semantics, through induc-
tive syntax and transition rules, may be formulated in the language of monads and their
algebras, an observation that we would attribute to Staton [15]. The first step (Section 2.1)
is to view labelled transition systems as objects in adequate presheaf categories, in which
bisimulation may be defined by a lifting property, as in presheaf models [7]. Then (Sec-
tion 2.2), we show by example how to define monads on such categories that correspond
to structural operational semantics specifications. This allows us to abstractly define what
it means for bisimilarity to be a congruence.

2.1 Labelled transition systems as objects in transition categories
In this section, we first explain how labelled transition systems may be viewed as presheaves
and how bisimulation may be defined by lifting. We then abstract over what we did and
define transition categories and bisimulation therein.

2.1.1 Labelled transition systems. The simplest kind of labelled transition system is the one
with just one label: this is simply graphs (provided one accepts the slightly unusual gen-
erality of allowing distinct, parallel transitions between nodes). Thus, the first category of
interest for us is 𝐆𝐩𝐡, the category of (directed, multi) graphs, viewed as presheaves over
the category

⋆ [1]
s

t

.

If one needs to consider labels, it is often enough to introduce them as a particular graph,
say A, so that labelled transition systems are graphs over A, i.e., morphisms G → A for some
graph G. But as is well-known, the slice category 𝐆𝐩𝐡/A is equivalent to el(A), presheaves
over the category of elements of A.

Our running example for this section will be CCS. The labels of CCS are elements of

{𝜏} ∪
a∈𝒩

{a, a},

where𝒩 denotes a fixed, infinite set of names, for example the natural numbersℕ. Viewing
this as the edges of a one-vertex graph A, the relevant base category ℂCCS ∶= el(A) is the
category freely generated by the graph with

• vertices ⋆ and 𝜏, plus vertices a and a for all names a,

• edges ⋆
s
−→ 𝛼

t
←− ⋆ for all 𝛼 ∈ {𝜏} ∪ ⋃a∈𝒩 {a, a}.

4

2.1.2 Bisimulation. Presheaves onℂCCS may thus be viewed as labelled transition systems,
and functional bisimulations may be defined by lifting: a morphism f ∶ R → X in ℂCCS
is a functional bisimulation iff it has the right lifting property w.r.t. all maps of the form
s ∶ ⋆ → 𝛼 for 𝛼 a label. Indeed, a presheaf morphism is automatically a simulation (merely
because edges are mapped to edges), and the lifting property says that for any commuting
square of the form below left

⋆ R

𝛼 X

v

s

e

k f

v f(v)

k ⋅ t e ⋅ t

f

k

f

e

there is a lifting k as shown that makes both triangles commute. By Yoneda, v denotes a
vertex in R, e an 𝛼-transition in X, and commutation of the square says that f(v) is the source
of e. Existence of k then says that there is an 𝛼-transition k in R with source v, mapped by f
to e, as above right, which is the standard definition of a functional bisimulation.

General (potentially non-functional) bisimulations may be defined as spans X
l
←− R

r
−→ Y

where l and r are functional bisimulations. Such bisimulations may have non-monic pairing
R → X × Y, but if we consider their epi-mono factorisation R e im(R) m X × Y, we have:

Proposition 2.1. The monic factor of any bisimulation is again a bisimulation.

Proof. Consider any factorisation m ∘ e as above. Because ⋆ is representable, its covariant
hom-functor preserves epis, i.e., if f ∶ X → Y is epi, then by Yoneda so is the set map

ℂCCS(⋆,X)
ℂCCS(⋆,f)−−−−−−−−→ ℂCCS(⋆,Y).

Thus every lifting problem for any s ∶ ⋆ → 𝛼 and m induces a lifting problem for s and the
composite m ∘ e. The latter has a lifting by hypothesis, which yields a lifting for m. □

Monic bisimulations are called bisimulation relations. Finally, we have:

Proposition 2.2. Bisimulation relations are closed under union, and admit a maximum, called
bisimilarity, which is terminal in the full subcategory of the slice ℂCCS/X × Y with objects all
bisimulations.

Proof. Presheaf categories are cocomplete so arbitrary (small) unions of subobjects exist.
Furthermore, because ⋆ is representable, it is tiny, i.e., its covariant hom-functor preserves
colimits. Thus, every lifting problem for any s ∶ ⋆ → 𝛼 and a given union⋃i Ri yields one for
some Ri, which has a lifting by hypothesis. Finally, presheaf categories are well-powered,
i.e., each object has only a set of subobjects. This set being closed under unions, it has a
maximum element. □

2.1.3 Transition categories. Reflecting on what we just did, the main ingredients are a cat-
egory equipped with a selection 𝐓 of cospans, thought of as transition types, whose maps
have domains in a certain set 𝐏 of process types, and codomains in a certain set 𝐋 of label
types. We have furthermore used the fact that presheaf categories are cocomplete and well-
powered, and that covariant hom-functors of process types preserve all colimits and epis.
A reasonable abstraction of this is:

Definition 2.3. A transition category consists of a locally presentable category 𝒜 equipped
with

5

• two sets 𝐏 and 𝐋 of objects called process types and label types, respectively;

• a set 𝐓 of cospans P
s
−→ L

t
←− Q called transition types, in which P,Q ∈ 𝐏 and L ∈ 𝐋,

such that covariant hom-functors of process types preserve all colimits and epis.

Notation 1. We generally denote a transition category by just 𝒜 , leaving 𝐏, 𝐋, and 𝐓 implicit.

We may replay the above development in any transition category:

Definition 2.4. For any transition category 𝒜 , a morphism f ∶ R → X is a functional bisim-
ulation iff it is in 𝐓⧄

s , where 𝐓s denotes the class of morphisms appearing as s in some tran-

sition type. Given any two objects X and Y, a bisimulation is a span X
s
←− R

t
−→ Y such that s

and t are both functional bisimulations. When the associated pairing R → X × Y is monic,
we call R a bisimulation relation.

Lemma 2.5. In any transition category 𝒜 , bisimulations are stable under images, i.e., if r ∶ R →
X×Y is a bisimulation, then so is the right factor of its epi-mono factorisation R e im(R) m X×Y.

Proposition 2.6. In any transition category, bisimulation relations X Y are stable under
union, hence admit a maximum, called bisimilarity and denoted by ∼X,Y, or simply ∼ when X and
Y are clear from context. Bisimilarity is also a terminal object in the full subcategory of the slice
𝒜 /X × Y with objects all bisimulations.

As expected we have:

Example 2.7 (Graphs). Graphs form a transition category with 𝐏 = {𝐲⋆}, 𝐋 = {𝐲[1]}, and the

cospan ⋆
s
−→ [1]

t
←− ⋆ as unique transition type (omitting the Yoneda embedding).

Example 2.8 (CCS labels). We consider ℂCCS as a transition category by taking ⋆ as only

process type, all other objects as label types, and all cospans ⋆
s
−→ 𝛼

t
←− ⋆ as transition types.

Remark 1. Everything in Section 3 would work with the slightly more general assumption that,
without necessarily being locally presentable, 𝒜 is regular, complete, and cocomplete, and further-
more all process types are small relative to 𝐓s-cell [6, Definition 2.1.3], where 𝐓s denotes the class of
morphisms appearing as s in some transition type. Section 5 would further require a similar small-
ness assumption but relative to copairings [s, t] ∶ P + Q → L, for (s, t) ∈ 𝐓. This is all automatic
when 𝒜 is locally presentable.

2.2 Structural operational semantics specifications as monads on transition categories
In the previous section, we have seen by example how labelled transition systems can be
viewed as objects in adequate presheaf categories, and how bisimulation can be treated in
this setting. We have then defined transition categories and bisimulation therein, which ab-
stract over this situation. Let us now further explain how structural operational semantics
specifications may be viewed as monads on transition categories, again starting with exam-
ples and then abstracting away. We first consider the definition of structural operational
semantics specifications, and then investigate congruence of bisimilarity.

2.2.1 First example: combinatory logic. To get a feel for why monads on transition categories
are relevant to operational semantics, let us consider the example of combinatory logic,
viewed as a labelled transition system on just one label, i.e., a graph.

6

Definition 2.9. Let 𝒯CL denote the functor on 𝐆𝐩𝐡 mapping any graph G = (V,E, s, t) to
the one with

• as vertices all terms generated by the grammar

M,N ∶∶= ⦅v⦆ | S | K | MN,

where v ranges over V, S and K are constants, and MN stands for the application of a
binary symbol (called “application”) to M and N;

• as edges all proofs consructed inductively following the rules

e ∈ G(x, y)
⦅e⦆ ∶ ⦅x⦆ → ⦅y⦆ sM,N,P ∶ SMNP → (MN)(MP) kM,N ∶ KMN → M

L ∶ M → M′

LN ∶ MN → M′N
R ∶ N → N′

MR ∶ MN → MN′

with the given sources and targets.

The action of 𝒯CL on morphisms is by renaming vertices and edges according to the given
graph morphism.

This functor is a monad with multiplication given by substitution, as inductively defined
by

𝜇⋆⦅m⦆ = m
𝜇⋆(K) = K
𝜇⋆(S) = S

𝜇⋆(MN) = 𝜇⋆(M)𝜇⋆(N)

𝜇[1]⦅r⦆ = r
𝜇[1](kM,N) = k𝜇⋆(M),𝜇⋆(N)

𝜇[1](sM,N,P) = s𝜇⋆(M),𝜇⋆(N),𝜇⋆(P)
𝜇[1](LN) = 𝜇[1](L)𝜇⋆(N)
𝜇[1](MR) = 𝜇⋆(M)𝜇[1](R).

Example 2.10. Let M = ⦅M1⦆⦅M2⦆, with M1,M2 ∈ 𝒯CL(H)(⋆). Then, 𝜇(M) = M1M2.
Similarly, for kP,Q ∈ 𝒯CL(H)(KPQ,P), we have 𝜇(⦅kP,Q⦆M) = kP,Q(M1M2).

Of interest to us is the free algebra 𝒯CL(∅), which is precisely combinatory logic.

2.2.2 Example with labels: CCS. In this section, as a second example useful for illustrating
labels, let us deal with CCS. Recalling the base category ℂCCS from Section 2.1.1:

Definition 2.11. Let 𝒯CCS denote the functor on ℂCCS such that

• 𝒯CCS(G)(⋆) is the set of CCS terms (simplified for expository purposes) with ‘process
constants’ in G(⋆), i.e., generated by the grammar

P,Q ∶∶= ⦅x⦆ | 0 | a.P | a.P | (P|Q) | 𝜈a.P

with x ranging over G(⋆), not considered equivalent up to renaming of bound names
in 𝜈a.P (𝛼-equivalence is not necessary for CCS, and avoiding it allows our construc-
tion to work over sets; by contrast, 𝛼-equivalence is necessary in the 𝜋-calculus, which
forces us to move to a more complex category);

7

• for all 𝛼 ≠ ⋆, 𝒯CCS(G)(𝛼) is the set of proofs of transitions P
𝛼
−→ Q, as inductively

generated by the rules

e ∈ G(𝛼)

⦅e⦆ ∶ ⦅e ⋅ s⦆
𝛼
−→ ⦅e ⋅ t⦆ a.P

a
−→ P a.P

a
−→ P

p ∶ P
a
−→ P′ q ∶ Q

a
−→ Q′

p ⋈ q ∶ (P|Q)
𝜏
−→ (P′|Q′)

p ∶ P
𝛼
−→ P′

(p|Q) ∶ (P|Q)
𝛼
−→ (P′|Q)

q ∶ Q
𝛼
−→ Q′

(P|q) ∶ (P|Q)
𝛼
−→ (P|Q′)

p ∶ P
𝛼
−→ Q

𝜈a.p ∶ 𝜈a.P
𝛼
−→ 𝜈a.Q

(a ∉ 𝛼).

Again substitution equips 𝒯CCS with monad structure, and the free algebra 𝒯CCS(∅) is
precisely (our simplified variant of) CCS.

2.2.3 Stating congruence of bisimilarity, abstractly. In the previous sections, we have seen
two example monads on transition categories, which have the labelled transition systems
for combinatory logic and CCS as their free algebras. Let us now review what it means for
bisimilarity to be a congruence, and then again give an abstract account in the setting of
algebras for a monad on some transition category.

Standardly, given a structural operational semantics specifications X, we say that bisim-
ilarity is a congruence when for all multi-hole contexts C and pairs (x1, y1), …, (xn, yn) of
pairwise bisimilar processes, we have C[x1, …, xn] ∼ C[y1, …, yn].

In the abstract setting, given any monad 𝒯 on a transition category 𝒜 , we may mimick
this definition, and even slightly generalise it by considering two different 𝒯 -algebras:

Definition 2.12. Given a monad𝒯 on a transition category𝒜 , and𝒯 -algebras a ∶ 𝒯 (X) →
X and b ∶ 𝒯 (Y) → Y, we say that bisimilarity (between X and Y) is a congruence when the
image of

𝒯 (∼X,Y) → 𝒯 (X × Y)
⟨𝒯 (𝜋),𝒯 (𝜋′)⟩
−−−−−−−−−−−−→ 𝒯 (X) × 𝒯 (Y)

a×b
−−−→ X × Y (1)

embeds into ∼X,Y.

3 CONGRUENCE OF BISIMILARITY
In the previous sections, we have defined (functional) bisimulation (relations) in transition
categories and stated what it means for bisimilarity to be a congruence for a given monad.
We now turn to proving it. We first briefly sketch the standard proof method, and then
analyse each step in terms of monads on transition categories.

3.1 Standard proof method
The standard way to prove that bisimilarity is a congruence is to show that for any bisim-
ulation R, 𝒯 (R) is again a bisimulation, with projection to X × Y given by (1). This goes
roughly as follows:

(i) Any given pair (x, y) in X × Y related for 𝒯 (R) has the form
(a(C[x1, …, xn]), b(C[y1, …, yn])),

for some context C, with each (xi, yi) ∈ R.

(ii) By compositionality, any transition x
𝛼
−→ x′ may be written as a(C[p1, …, pn]) with each

pi a transition xi
𝛼i−→ x′i in X, for some label type 𝛼i.

8

(iii) Because R is a bisimulation, we find (q1, …, qn) such that each (pi, qi) ∈ R, so that
C[(p1, q1), …, (pn, qn)] ∈ 𝒯 (R). But the latter is projected to a(C[p1, …, pn]) and
b(C[q1, …, qn]), respectively, which shows that Y matches the given X-transition.

We will show that, making adequate hypotheses on 𝒯 , X, and Y, this proof method
may be reproduced in the abstract setting. We introduce familiality in Section 3.2, then
compositionality in Section 3.3, and finally prove congruence of bisimilarity in Section 3.4.

3.2 Familiality
In order for Step (i) above to work in the abstract setting, we need to be able to decompose
any x ∈ 𝒯 (X) into a context C and a map (x1, …, xn) ∶ n → X from the holes of C to X.
Categorically, thinking of maps x ∶ P → 𝒯 (Z) as contexts of type P with holes filled with
processes from Z, we need any such x to canonically factor as a generic context C followed
by an assignment of its holes, say A to Z, as in

P
C
−→ 𝒯 (A)

𝒯 (h)
−−−−→ 𝒯 (Z). (2)

Here, A represents the collection of holes of C. In (i) above, we would have A = n. Simi-
larly, each transition t ∶ L → 𝒯 (Z) should factor canonically as a generic transition context
followed by an assignment of its holes to Z, as in

L
D
−→ 𝒯 (R)

𝒯 (k)
−−−−→ 𝒯 (Z).

In order to define the involved notion of canonicity, we appeal to Carboni and John-
stone’s [3] familially representable functors, as developed by Weber [17] under the name of
parametric right adjoints, here called familial functors following [5].

Definition 3.1. Given any functor ℱ ∶ 𝒜 → 𝒳 , a morphism 𝜉 ∶ X → ℱ(A) is ℱ -generic,
or generic for short, when for all commuting squares of the form below

X ℱ(B)

ℱ (A) ℱ (C)

𝜒

𝜉

ℱ (f)

ℱ (h) ℱ (g) (3)

there exists a unique h such that ℱ(h) ∘ 𝜉 = 𝜒 and g ∘ h = f.

Definition 3.2. A functor ℱ is familial when any morphism X → ℱ(A) factors into some
generic morphism followed by a free one, i.e., one of the form ℱ(f). A monad (𝒯 , 𝜂, 𝜇) is
familial when the underlying endofunctor is, and furthermore 𝜂 and 𝜇 are cartesian natural
transformations, i.e., all their naturality squares are pullbacks.

Remark 2. By the pullback lemma, when the domain category has a terminal object, a natural
transformation 𝛼 ∶ F → G is cartesian iff its naturality squares of the form below are pullbacks.

FA F1

GA G1

F(!)

𝛼A

G(!)

𝛼1

Let us now show the monads 𝒯CL and 𝒯CCS of Sections 2.2.1 and 2.2.2 are familial. The
main tool for doing so is the following characterisation of familial endofunctors on presheaf
categories:

9

Lemma 3.3 ([17, Remark 2.12]). An endofunctor 𝒯 on ℂ is familial iff there is a functor E ∶
el(𝒯 (1)) → ℂ and a natural isomorphism (in X and c):

𝒯 (X)(c) ≅
x∈𝒯 (1)(c)

ℂ(E(c, x),X).

Proof sketch. In presheaf categories, familiality is equivalent to pointwise familiality, i.e.,
existence of a generic-free factorisation for all morphisms of the form 𝐲c → 𝒯 (X). But point-
wise familiality is equivalent to existence of generic-free factorisations for all morphisms of
the form 𝐲c → 𝒯 (1) (this follows directly by unique lifting). By Yoneda, each x ∈ 𝒯 (X)(c)
is thus determined up to isomorphism by the choice of a generic-free factorisation

𝐲c
𝜉
−→ 𝒯 (E(c,𝒯 (!) ∘ x))

𝒯 (!)
−−−−→ 𝒯 (1) of the composite 𝐲c

x
−→ 𝒯 (X)

𝒯 (!)
−−−−→ 𝒯 (1),

together with a map 𝜑 ∶ E(c,𝒯 (!) ∘ x) → X. □

Proposition 3.4. The monad 𝒯CL is familial.

Proof. By Lemma 3.3, it suffices to exhibit a functor E ∶ el(𝒯CL(1)) → 𝐆𝐩𝐡 from the cate-
gory of elements of 𝒯CL(1) to graphs, such that 𝒯CL(Z)(c) ≅ ∑x∈𝒯CL(1)(c)[E(c, x),Z], naturally
in c and Z. Now, 𝒯CL(1)(⋆) consists of closed terms on a unique free variable, say ⊥, and
we define E to map any such term C to the discrete graph with nC as vertices, where nC is
the number of occurrences of ⊥ in C. Similarly, 𝒯CL[1] consists of transition derivations on
just one transition axiom, say ⫫∶ ⊥ → ⊥. On such derivations, we define E by induction:

E⦅⫫⦆ = 𝐲[1]
E(sM,N,P) = E(M) + E(N) + E(P)

E(kM,N) = E(M) + E(N)
E(LN) = E(L) + E(N)
E(MR) = E(M) + E(R).

Finally, we need to define E on s and t. We again proceed inductively:
• For the variable case, we have E⦅⊥⦆ = ⋆ and E⦅⫫⦆ = [1], so we let E(s ↾⫫) be just s and

E(t ↾⫫) be t.
• For sM,N,P, we have E(MNP) ≅ E(M) + E(N) + E(P) and E((MN)(MP)) = E(M) + E(N) +

E(M) + E(P), so we pick the obvious maps

E(M) + E(N) + E(P) → E(M) + E(N) + E(P) ← E(M) + E(N) + E(M) + E(P)

for E(s ↾ sM,N,P) and E(t ↾ sM,N,P).
• We proceed similarly for kM,N.

• For LN, we get inductively E(M)
E(s↾L)
−−−−−→ E(L)

E(t↾L)
←−−−−− E(M′), which induces

E(M) + E(N)
E(s↾L)+E(N)
−−−−−−−−−−→ E(L) + E(N)

E(t↾L)+E(N)
←−−−−−−−−−− E(M′) + E(N).

• We proceed similarly for MR. □

Proposition 3.5. 𝒯CCS is familial.

Proof. Similar, using the fact that we do not mod out by 𝛼-equivalence. □

10

3.3 Compositionality
Now that Step (i) has been taken care of, we need to express compositionality in the abstract
framework:

Definition 3.6. A 𝒯 -algebra a ∶ 𝒯 (X) → X is compositional iff a ∈ 𝐓⧄
s .

Concretely, this says that given any square

P 𝒯 (X)

L X

p

𝐓s∋s

r

k a

there exists a lifting k making both triangles commute. Thinking as above of p as a process
with variables in X, i.e., a context applied to some processes in X, of a ∘p as its evaluation in
X, and of r as a transition from a ∘ p, this says that r may be decomposed as the evaluation
a ∘ k of some transition context k with domain k ∘ s = p.

Proposition 3.7. The free 𝒯CL-algebra 𝒯CL(∅) is compositional.

Proof. Compositionality amounts to showing that for any transition E ∶ 𝜇∅(M) → Y,
there exists N and

R ∈ 𝒯CL(𝒯CL(∅))(M,N)
such that E = 𝜇∅(R) (and Y = 𝜇∅(N)). Here, M is merely a term with variables in 𝒯CL(∅),
otherwise said a pair of a context C with a certain number of free variables occurrences
(ordered from left to right), say x1, …, xn, together with n terms M1, …,Mn. We denote this
by M = C[M1, …,Mn]. We proceed by induction on C and case analysis on E:

• If C = ⦅x1⦆ (and n = 1), then we have

𝜇∅(M) = 𝜇∅(C[M1]) = 𝜇∅⦅M1⦆ = M1.

Thus, E is in fact a transition M1 → Y, so that taking N = ⦅Y⦆ and R = ⦅E⦆, we get
𝜇∅(R) = E as desired.

• If C = C1C2, then we may divide M1, …,Mn into

M1
1, …,M

1
n1 ,M

2
1, …,M

2
n2 ,

so that putting X = 𝜇∅(M), Pi = Ci[Mi
1, …,M

i
ni], and Xi = 𝜇∅(Pi), we have X = X1X2.

We then proceed by case analysis.
– If E = E1X2, for some E1 ∶ X1 → Y1, then Y = Y1X2, and by induction hypothesis

we get R1 ∶ P1 → Q1 such that 𝜇∅(R1) = E1 and 𝜇∅(Q1) = Y1. Taking R = R1P2 thus
yields 𝜇∅(R) = E1X2 as desired.

– The case E = X1E2 is similar.
– If X1 = KX′ and E = kX′,X2 , then C1 = KC′ and, putting P′ = C′[M1

1, …,M
1
n1], we have

X′ = 𝜇∅(P′) and Y = X′. Taking R = kP′,P2 then yields 𝜇∅(R) = kX′,X2 as desired.
– The case where X1 = SX′X″ and E = sX′,X″,X2 is similar. □

Proposition 3.8. The 𝒯CCS-algebra 𝒯CCS(∅) is compositional.

Proof. Similar to 𝒯CL, using the fact that, because we do not mod out by 𝛼-equivalence,
the 𝜈a operator may be considered as a unary operator indexed by names. □

11

3.4 Congruence of bisimilarity and 𝐓s-familiality
Before we state our congruence result, there is a final subtlety. Intuitively, familiality de-
composes any process in 𝒯 (X) into some context C, and a morphism from the arity of C to
X. This induces a similar property on arrows, which we require to behave well. Specifically,
we require the arity of all arrows s ∈ 𝐓s to lie in ⧄(𝐓⧄

s).
Definition 3.9. For any familial monad (𝒯 , 𝜂, 𝜇) on a transition category 𝒜 , the class

𝐓s consists of morphisms s′ occurring in any generic-free factorisation of the form below,
where s ∈ 𝐓s and D is 𝒯 -generic.

P L

𝒯 (A) 𝒯 (R)

s

C

𝒯 (s′)

D

We say that the monad is 𝐓s-familial when 𝐓s ⊆ ⧄(𝐓⧄
s).

Propositions 1.5 and 1.6 may help appreciate how general this can be in examples.
Theorem 3.10. Consider any 𝐓s-familial monad 𝒯 on some transition category 𝒜 , together

with a compositional algebra (X, a). If f ∶ R → X is a functional bisimulation, then so is 𝒯 (R)
𝒯 (f)
−−−−→

𝒯 (X)
a
−→ X.

Proof. By Proposition 1.5, functional bisimulations are closed under composition, so it
suffices to show that 𝒯 (f) is one. We thus need to construct a lifting for any commuting
square as the exterior of

P 𝒯 (R)

𝒯 (A)

𝒯 (B)

L 𝒯 (X)

p

C

s

𝒯 (g)

𝒯 (s′) 𝒯 (f)

D
r

𝒯 (h)

𝒯 (k)

We use familiality of 𝒯 to factor p as 𝒯 (g) ∘ C and r as 𝒯 (h) ∘ D with C and D generic.
Genericity of C then yields s′ ∶ A → B as shown, which is in ⧄(𝐓⧄

s) by 𝐓s-familiality, so we
obtain a lifting k as shown, and 𝒯 (k) ∘ D is a lifting for the whole diagram. □

Corollary 3.11. For any bisimulation R ∶ X Y between compositional algebras for a 𝐓s-
familial monad 𝒯 , the induced span 𝒯 (R) ∶ X Y is a bisimulation.

Corollary 3.12. Between any two compositional algebras for a 𝐓s-familial monad 𝒯 , bisimilar-
ity is a congruence.

In most examples, the considered algebras are both the free algebra 𝒯 (∅). They are thus
covered by the following

Corollary 3.13. Consider any 𝐓s-familial monad 𝒯 on some transition category 𝒜 such that
𝜇1 ∶ 𝒯 2(1) → 𝒯 (1) is a functional bisimulation. Then for all X, if f ∶ R → 𝒯 (X) is a functional

bisimulation, so is 𝒯 (R)
𝒯 (f)
−−−−→ 𝒯 2(X)

𝜇X−−→ 𝒯 (X), and hence bisimilarity in 𝒯 (X) is a congruence.

12

Proof. Because 𝒯 is familial, all naturality squares for 𝜇 are pullbacks, so 𝜇X is a func-
tional bisimulation by Proposition 1.5. We conclude by the theorem. □

Section 4.3 is an exception: the 𝜋-calculus is a free algebra for a certain monad 𝒯𝜋, but
there we consider it as an algebra for a certain submonad of 𝒯𝜋, which is hence not free.

4 THREE SHADES OF 𝜋-CALCULUS
Let us now consider a more significant example than combinatory logic and CCS: the 𝜋-
calculus. Unlike in CCS, we have to mod out by 𝛼-equivalence, because channel names
may be input, hence substituted deep in process terms, which may force renaming. We
essentially follow Sangiorgi and Walker’s presentation presentation [14, Section 1.3], using
a simplified variant for expository purposes.

After explaining in Section 4.1 why we need to move away from the simple base category
used for CCS in Section 2.2.2, we make in Section 4.2 a naive attempt at covering 𝜋-calculus
using our approach. We manage to design a familial monad, 𝒯𝜋, over a certain presheaf
category 𝔹, which faithfully encodes the desired labelled transition system. However, as
bisimilarity is known not to be a congruence in 𝜋, something is bound to fail. And indeed,
we show that the initial 𝒯𝜋-algebra 𝒯𝜋(∅) of processes is not compositional. We rectify
this in a standard way in Section 4.3, by defining a familial submonad, 𝒯 −

𝜋 , such that the
𝒯 −

𝜋 -algebra 𝒯𝜋(∅) is compositional, thus recovering the known fact that standard bisimi-
larity is a congruence for all operators but input. We finally consider in Section 4.4 a differ-
ent, though still standard, way of remedying the non-congruence problem. This consists
in restricting attention to relations that are stable under channel renaming. We do this by
working over a different base category 𝔽, and adapting the definition of 𝒯𝜋, yielding a new
familial monad 𝒯 +

𝜋 . Bisimilarity for the free 𝒯 +
𝜋 -algebra 𝒯 +

𝜋 (∅) is wide open bisimilarity,
in Staton’s sense, and we recover the result that it is a congruence.

4.1 Naive approach
Naively adaptating what we did with CCS to the 𝜋-calculus, we could try working over the
category freely generated by the graph with

• a vertex ⋆,
• vertices in L = ⋃a,b∈𝒩 {𝜏, oa,b, 𝜄a,b, o𝜈a , 𝜄𝜈b}where𝒩 is as in Section 2.2.2 a fixed, countable

set of names,
• for each 𝛼 ∈ L, edges s, t ∶ ⋆ → 𝛼.

This category forms a transition category by taking all cospans ⋆
s
−→ 𝛼

t
←− ⋆ as transition

types.
However, the 𝜋-calculus has one axiom that this setting cannot accomodate, namely the

input rule:

In

a(v).P
a(b)
−−−→ P[v ↦ b]

⋅

Indeed, this requires being able to rename variables (or, depending on the chosen presenta-
tion, to substitute names for variables). We could try to define a monad 𝒯 0

𝜋 equipped with

an inductively defined renaming operation 𝒯 0
𝜋 (⋆)

[v↦b]
−−−−−→ 𝒯 0

𝜋 (⋆), but would stumble upon

13

the base case of ⦅x⦆[v ↦ b], for x ∈ X(⋆). In that case, indeed, replacing v with b does not
make any sense. We thus need consider a different base category.

4.2 Basic approach
In this section, we illustrate our approach by examining the failure of congruence for stan-
dard bisimilarity in 𝜋. We analyse the problem, which allows us to consider two different
solutions in the next two sections.

Definition 4.1. Let 𝔹 denote the subcategory of 𝐒𝐞𝐭op with finite subsets of 𝒩 as objects
and bijections as morphisms, augmented with

• objects 𝜏𝛾, o𝛾,a,b, o𝜈𝛾,a,c, 𝜄𝛾,a,b, and 𝜄𝜈𝛾,a,c for all 𝛾 ∈ 𝒫f(𝒩), a, b ∈ 𝛾, and c ∉ 𝛾,
• morphisms giving the type of each transition:

𝛾
s
−→ 𝜏𝛾

t
←− 𝛾 𝛾

s
−→ o𝛾,a,b

t
←− 𝛾 𝛾

s
−→ 𝜄𝛾,a,b

t
←− 𝛾 𝛾

s
−→ o𝜈𝛾,a,c

t
←− 𝛾, c 𝛾

s
−→ 𝜄𝜈𝛾,a,c

t
←− 𝛾, c ,

denoting by 𝛾, c the (disjoint) union 𝛾 ⊎ {c},

• plus, for all 𝛾
s
−→ 𝛼

t
←− 𝛾, 𝛿 and bijections h ∶ 𝛾 −∼ 𝛾′ and k ∶ 𝛿 −∼ 𝛿′, a morphism

(h, k) ∶ 𝛼[h, k] → 𝛼, where

𝜏𝛾[h, k] = 𝜏𝛾′
o𝛾,a,b[h, k] = o𝛾′,h(a),h(b)
𝜄𝛾,a,b[h, k] = 𝜄𝛾′,h(a),h(b)
o𝜈𝛾,a,c[h, k] = o𝛾′,h(a),k(c)
𝜄𝜈𝛾,a,c[h, k] = 𝜄𝛾′,h(a),k(c),

satisfying the obvious equations:

𝛾 𝛼 𝛾, 𝛿

𝛾′ 𝛼[h, k] 𝛾′, 𝛿′.

s

h

s

(h,k)

t

h+k

t

(4)

Notation 2. For general presheaves X, we denote the action X(c′)
X(f)
−−−→ X(c) of any f ∶ c → c′

in the base by x ↦ x ⋅ f. However, for f ∶ 𝛾 −∼ 𝛾′ in sets, although f acts contravariantly as a map
𝛾′ → 𝛾 in 𝔹, it acts covariantly as a set-map, so we often write f ⋅ x instead.

The category 𝔹 clearly forms a transition category, with transition types 𝐓𝜋 given by all
cospans above.

Let us now define our monad on 𝔹. For any X ∈ 𝔹, let 𝒯𝜋(X) denote the presheaf in
which

• 𝒯𝜋(X)(𝛾) is the set of all 𝛼-equivalence classes of 𝜋-calculus terms of the form 𝛾 ⊢ P,
as defined in the top part of Figure 1;

• renaming, the action 𝒯𝜋(𝛾) → 𝒯𝜋(𝛾′) of any set-map f ∶ 𝛾 → 𝛾′, is defined inductively:
for any g ∶ 𝛾″ → 𝛾, we set f ⋅ x⦅g⦆ = x⦅fg⦆ for the base case and rely on 𝛼-equivalence
in the case of binders;

• for all 𝛾
s
−→ 𝛼

t
←− 𝛾′, 𝒯𝜋(X)(𝛼) denotes the set of 𝛼-equivalence classes of transitions

P
𝛼
−→ Q

14

Const
x ∈ X(𝛾) f ∈ 𝐒𝐞𝐭(𝛾, 𝛾′)

𝛾′ ⊢X x⦅f⦆

Par
𝛾 ⊢X P 𝛾 ⊢X Q

𝛾 ⊢X P|Q

Zero

𝛾 ⊢X 0

Nu
𝛾, a ⊢X P
𝛾 ⊢X 𝜈a.P

Out
𝛾 ⊢X P a, b ∈ 𝛾

𝛾 ⊢X a⟨b⟩.P

In
𝛾, b ⊢X P a ∈ 𝛾

𝛾 ⊢X a(b).P

DoConst

x ∈ X(𝛼) 𝛾
s
−→ 𝛼

t
←− 𝛾, 𝛿

⟪x⟫ ∶ 𝛾 ⊢X (x ⋅ s)⦅id⦆
𝛼
−→ 𝛾, 𝛿 ⊢X (x ⋅ t)⦅id⦆

DoIn
𝛾, b ⊢X P a, c ∈ 𝛾

ina,c
b.P ∶ 𝛾 ⊢X a(b).P

𝜄𝛾,a,c
−−−−→ 𝛾 ⊢X P[b ↦ c]

DoOut
𝛾 ⊢X P a, b ∈ 𝛾

outa,b
𝛾⊢XP ∶ 𝛾 ⊢X a⟨b⟩.P

o𝛾,a,b
−−−−→ 𝛾 ⊢X P

Sync

R ∶ 𝛾 ⊢X P
o𝛾,a,b
−−−−→ 𝛾 ⊢X P′ S ∶ 𝛾 ⊢X Q

𝜄𝛾,a,b
−−−−→ 𝛾 ⊢X Q′

R ⋈ S ∶ 𝛾 ⊢X (P|Q)
𝜏𝛾
−−→ 𝛾 ⊢X (P′|Q′)

+ symmetric rule

BoundIn
𝛾, b ⊢X P a ∈ 𝛾

ina,𝜈b
P ∶ 𝛾 ⊢X a(b).P

𝜄𝜈𝛾,a,b
−−−−→ 𝛾, b ⊢X P

Open

R ∶ 𝛾, b ⊢X P
o(𝛾,b),a,b
−−−−−−→ 𝛾, b ⊢X Q a ≠ b

∇b.R ∶ 𝛾 ⊢X 𝜈b.P
o𝜈𝛾,a,b
−−−−→ 𝛾, b ⊢X Q

Close

R ∶ 𝛾 ⊢X P
o𝜈𝛾,a,b
−−−−→ 𝛾, b ⊢X P′ S ∶ 𝛾 ⊢X Q

𝜄𝜈𝛾,a,b
−−−−→ 𝛾, b ⊢X Q′

R ⋈𝜈b S ∶ 𝛾 ⊢X P|Q
𝜏𝛾
−−→ 𝛾 ⊢X 𝜈b.(P′|Q′)

+ symmetric rule

Res

R ∶ 𝛾, b ⊢X P
𝛼
−→ 𝛾, b, 𝛿 ⊢X Q b ∉ fv(𝛼)

𝜈b.R ∶ 𝛾 ⊢X 𝜈b.P
𝜈b.𝛼
−−−→ 𝛾, 𝛿 ⊢X 𝜈b.Q

Left

L ∶ 𝛾 ⊢X P
𝛼
−→ 𝛾, 𝛿 ⊢X P′ 𝛾 ⊢X Q

L|Q ∶ 𝛾 ⊢X P|Q
𝛼
−→ 𝛾, 𝛿 ⊢X P′|Q

Right

𝛾 ⊢X P R ∶ 𝛾 ⊢X Q
𝛼
−→ 𝛾, 𝛿 ⊢X Q′

P|R ∶ 𝛾 ⊢X P|Q
𝛼
−→ 𝛾, 𝛿 ⊢X P|Q′

Fig. 1. Syntax and labelled transition system for 𝜋

15

with constants in X, for P ∈ 𝒯𝜋(X)(𝛾) and Q ∈ 𝒯𝜋(X)(𝛾′), as defined in the bottom
part of Figure 1, where
– the only binding operations are ina,c

b.P, 𝜈b.R, and R ⋈𝜈b S – binding b;
– P[b ↦ c] stands for f ⋅ P with f ∶ 𝛾, b → 𝛾 mapping b to c and the rest of 𝛾 to itself;
– weakening is used implicitly in Rules Left and Right;
– in Rule Res, we define

fv(o𝛾,a,b) = {a, b}
fv(𝜄𝛾,a,b) = {a, b}
fv(o𝜈𝛾,a,b) = {a, b}
fv(𝜄𝜈𝛾,a,b) = {a, b}

fv(𝜏𝛾) = ∅

and

𝜈c.o(𝛾,c),a,b = o𝛾,a,b
𝜈c.𝜄(𝛾,c),a,b = 𝜄𝛾,a,b
𝜈c.o𝜈(𝛾,c),a,b = o𝜈𝛾,a,b
𝜈c.𝜄𝜈(𝛾,c),a,b = 𝜄𝜈𝛾,a,b

𝜈c.𝜏𝛾,c = 𝜏𝛾
where 𝜈c.𝛼 is defined iff c ∉ fv(𝛼).

Remark 3 (Replication). The 𝜋-calculus standardly features additional operations like guarded
sum and replication. Guarded sum may be incorporated readily, but replication may deserve some
comment. Indeed, according to the chosen presentation, it is more or less easy to handle. E.g., the
compact transition rule

P|!P
𝛼
−→ Q

!P
𝛼
−→ Q

,

does not appear to yield a familial monad when considered over the current base category 𝔹. Incor-
porating it appears to force us to consider a locally presentable, but non-presheaf category. Although
nothing is wrong with that, it is significantly more complicated. The rules of [14, Section 1.3], how-
ever, which would here become

𝛾 ⊢ P
𝛼
−→ 𝛾′ ⊢ P′

𝛾 ⊢ !P
𝛼
−→ 𝛾′ ⊢ P′|!P

𝛾 ⊢ P
o𝛾,a,b
−−−−→ 𝛾 ⊢ P′ 𝛾 ⊢ P

𝜄𝛾,a,b
−−−−→ 𝛾 ⊢ P″

𝛾 ⊢ !P
𝜏𝛾
−−→ 𝛾 ⊢ (P′|P″)|!P

𝛾 ⊢ P
o𝜈𝛾,a,b
−−−−→ 𝛾, b ⊢ P′ 𝛾 ⊢ P

𝜄𝜈𝛾,a,b
−−−−→ 𝛾, b ⊢ P″

𝛾 ⊢ !P
𝜏𝛾
−−→ 𝛾 ⊢ 𝜈b.(P′|P″)|!P

,

do yield a familial monad directly.

Proposition 4.2. 𝒯𝜋 forms a 𝐓𝜋
s -familial monad.

Proof. To see that 𝒯𝜋 is a familial functor, by Lemma 3.3, it is enough to define a functor
E ∶ el(𝒯𝜋(1)) → 𝔹 such that

𝒯𝜋(X)(c) ≅
R∈𝒯𝜋(1)(c)

[E(c,R),X],

naturally in X and c ∈ 𝔹. Elements of 𝒯𝜋(1)(𝛾) are processes of type 𝛾, over exactly one
constant process process, say ⊥𝛾′ of each type 𝛾′. Elements of 𝒯𝜋(1)(𝛼) are transitions with

exactly one constant transition of each type 𝛾
s
−→ 𝛽

t
←− 𝛾′, say ⊥𝛽, with source ⊥𝛽 ⋅ s = ⊥𝛾 and

target ⊥𝛽 ⋅ t = ⊥𝛾′ .

16

On objects, we construct E by induction on the depth of the considered derivation (glob-
ally for all objects c ∈ 𝔹), as in the top part of Figure 2. This is in fact only well-defined up
to isomorphism. Indeed, we need to make a global choice of coproducts, and furthermore
binders are a delicate matter. E.g., although 𝜈a.P = 𝜈b.(P[a ↦ b]) for 𝛾, a ⊢X P and b ∉ 𝛾,
the above definition of E gives E(𝛾 ⊢ 𝜈a.P) = E(𝛾, a ⊢ P) and E(𝛾 ⊢ 𝜈b.(P[a ↦ b])) =
E(𝛾, b ⊢ P[a ↦ b]). We solve this issue by picking a global choice of representatives for
𝛼-equivalence classes.

We observe in passing that for any f ∶ 𝛾 → 𝛾′ in sets and 𝛾 ⊢ P, we have by induction:

E(P[f]) ≅ E(P). (5)

Let now define E on morphisms:
• For any f ∶ 𝛾 −∼ 𝛾′ in sets and P ∈ 𝒯𝜋(1)(𝛾), we have f ↾ P ∶ (𝛾′, f ⋅ P) → (𝛾,P) in el(𝒯𝜋(1))

and define E(f ↾ P) ∶ E(𝛾′, f ⋅ P) → E(𝛾,P) by induction on P, as in the middle part of
Figure 2.

• For all 𝛾
s
−→ 𝛼

t
←− 𝛾, 𝛿 and R ∈ 𝒯𝜋(1)(𝛼), we need to pick a cospan

E(R ⋅ s)
E(s↾R)
−−−−−→ E(R)

E(t↾R)
←−−−−− E(R ⋅ t),

which extends to a definition of E on all morphisms. We do so as in the bottom part of
Figure 2. Clearly, the chosen maps lie in ⧄((𝐓𝜋

s)⧄), so that 𝒯 𝜋 is 𝐓𝜋
s -familial.

• Finally, for all (h, k) ∶ 𝛼[h, k] → 𝛼, we pick by induction the obvious isomorphism E(𝛼[h, k]) →
E(𝛼).

This shows that 𝒯𝜋 is a 𝐓𝜋
s -familial functor. Its unit is given by variables, and multiplica-

tion is essentially substitution, which (is different from renaming and) is straightforwardly
defined by induction in Figure 3. This clearly satisfies naturality in both arguments, as well
as associativity and unitality. Finally, cartesianness of 𝜂 and 𝜇 may be checked pointwise
(i.e., relative to representable presheaves), and follows by induction. □

As announced and expected, because bisimilarity is not a congruence in 𝜋, something
must fail. And it is compositionality:

Proposition 4.3. The free 𝒯𝜋-algebra, 𝒯𝜋(∅), with action given by 𝜇∅, is not compositional.

Proof. The problem comes from renaming, as embedded in constant terms x⦅f⦆. Indeed,
consider p = (a⟨a⟩.0|b(c).0) (for a ≠ b), a process involved in a standard counterexample to
bisimilarity being a congruence [14]. Letting f ∶ {a, b} → {a} denote the unique such map,
p⦅f⦆ ∈ (𝒯𝜋)2(∅){a} is mapped by (𝜇∅){a} to p′ = (a⟨a⟩.0|a(c).0). The latter process has a 𝜏-
transition to 0|0, which the former cannot match. □

Remark 4. The root of the problem here is the DoIn rule, which forces the syntax for processes
to feature renaming, even if only at the level of constants x⦅f⦆. To emphasise that this does make
renaming a proper syntactic operation, it may help to realise that 𝒯𝜋 could be defined using an
explicit renaming operation P[f] together with equations describing how it propagates down towards
the leaves, e.g., (P|Q)[f] = P[f]|Q[f], to finally integrate with constants: x⦅g⦆[f] = x⦅fg⦆.

4.3 Non-input congruence
A first, standard way around a non-congruence of bisimilarity is to elude the problematic
case, and prove that bisimilarity is a congruence for all operators but input. Our framework
can encompass this by viewing 𝜋-calculus as a non-free algebra for a smaller monad 𝒯 −

𝜋 .

17

Definition of E on objects

Processes
E(⊥𝛾⦅f ∶ 𝛾 → 𝛾′⦆) = 𝐲𝛾

E(P|Q) = E(P) + E(Q)
E(0) = ∅

E(𝜈a.P) = E(P)
E(a⟨b⟩.P) = E(P)
E(a(b).P) = E(P)

Transitions
E⟪⊥𝛼⟫ = 𝐲𝛼
E(ina,c

b.P) = E(P)
E(outa,c

P) = E(P)
E(R ⋈ S) = E(R) + E(S)
E(ina,𝜈b

P) = E(P)
E(∇b.R) = E(R)

E(R ⋈𝜈b S) = E(R) + E(S)
E(L|Q) = E(L) + E(Q)
E(P|R) = E(P) + E(R).

Definition of E on morphisms: E(f ↾ P) ∶ E(𝛾′, f ⋅ P) → P(𝛾,P), for f ∶ 𝛾 −∼ 𝛾′ in sets

E(f ↾ ⊥𝛾″⦅g ∶ 𝛾″ → 𝛾⦆) = E(⊥𝛾″⦅fg⦆) = 𝐲𝛾″
id
−→ 𝐲𝛾″ = E(⊥𝛾″⦅g⦆)

E(f ↾ P|Q) = E(f ⋅ (P|Q)) = E(f ⋅ P) + E(f ⋅ Q)
E(f↾P)+E(f↾Q)
−−−−−−−−−−−−→ E(P) + E(Q) = E(P|Q)

E(f ↾ 0) = E(f ⋅ 0) = ∅
!
−→ E(0)

E(f ↾ 𝜈a.P) = E(f ⋅ 𝜈a.P) = E((f, a) ⋅ P)
E((f,a)↾P)
−−−−−−−→ E(P) = E(𝜈a.P)

E(f ↾ a⟨b⟩.P) = E(f ⋅ a⟨b⟩.P) = E(f ⋅ P)
E(f↾P)
−−−−−→ E(P) = E(a⟨b⟩.P)

E(f ↾ a(b).P) = E(f ⋅ a(b).P) = E((f, b) ⋅ P)
E((f,b)↾P)
−−−−−−−−→ E(P) = E(a(b).P)

Definition of E on morphisms: cospans E(R ⋅ s)
E(s↾R)
−−−−−→ E(R)

E(t↾R)
←−−−−− E(R ⋅ t)

⟪⊥𝛼⟫ ∶ E(𝐲𝛾) E(𝐲𝛼) E(𝐲𝛾,𝛿)
ina,c

b.P ∶ E(a(b).P) = E(P) E(P) E(P) = E(P[b ↦ c])
outa,c

P ∶ E(a⟨b⟩.P) = E(P) E(P) E(P)
R ⋈ S ∶ E(P) + E(Q) E(R) + E(S) E(P′) + E(Q′)
ina,𝜈b

P ∶ E(P) E(P) E(P)
∇b.R ∶ E(𝜈b.P) = E(P) E(R) E(Q)

R ⋈𝜈 S ∶ E(P) + E(Q) E(R) + E(S) E(P′) + E(Q′)
𝜈c.R ∶ E(𝜈c.P) = E(P) E(R) E(Q) = E(𝜈c.Q)
L|Q ∶ E(P) + E(Q) E(L) + E(Q) E(P′) + E(Q′)
P|R ∶ E(P) + E(Q) E(P) + E(Q) E(P) + E(Q′)

𝐲s 𝐲t

id id

id id

E(s↾R)+E(s↾S) E(t↾R)+E(t↾S)

id id

E(s↾R) E(t↾R)

E(s↾R)+E(s↾S) E(t↾R)+E(t↾S)

E(s↾R) E(t↾R)

E(s↾L)+id E(t↾L)+id

id+E(s↾R) id+E(t↾R)

Fig. 2. Definition of E

18

Processes:
(𝜇X)𝛾(p⦅f⦆) = p[f]
(𝜇X)𝛾(P|Q) = (𝜇X)𝛾(P)|(𝜇X)𝛾(Q)
(𝜇X)𝛾(𝜈a.P) = 𝜈a.(𝜇X)𝛾,a(P)

(𝜇X)𝛾(0) = 0
(𝜇X)𝛾(a⟨b⟩.P) = a⟨b⟩.(𝜇X)𝛾(P)
(𝜇X)𝛾(a(b).P) = a(b).(𝜇X)𝛾,b(P)

Transitions:
(𝜇X)𝛼⟪r⟫ = r

(𝜇X)𝜄𝛾,a,c (in
a,c
b.P) = ina,c

b.(𝜇X)𝛾,b(P)

(𝜇X)o𝛾,a,b (outa,b
P) = outa,b

(𝜇X)𝛾(P)
(𝜇X)𝜏𝛾 (R ⋈ S) = (𝜇X)o𝛾,a,b (R) ⋈ (𝜇X)𝜄𝛾,a,b (S)
(𝜇X)𝜄𝜈𝛾,a,b (in

a,𝜈b
P) = ina,𝜈b

(𝜇X)𝛾,b(P)
(𝜇X)o𝜈𝛾,a,b (∇b.R) = ∇b.(𝜇X)o(𝛾,b),a,b (R)
(𝜇X)𝜏𝛾 (R ⋈𝜈b S) = (𝜇X)o𝜈𝛾,a,b (R) ⋈

𝜈b (𝜇X)𝜄𝜈𝛾,a,b (S)
(𝜇X)𝜈c.𝛼(𝜈c.R) = 𝜈c.(𝜇X)𝛼(R)

(𝜇X)𝛼(L|Q) = (𝜇X)𝛼(L)|(𝜇X)𝛾(Q)
(𝜇X)𝛼(P|R) = (𝜇X)𝛾(P)|(𝜇X)𝛼(R).

Fig. 3. Monad multiplication for 𝒯𝜋

Definition 4.4. Let 𝒯 −
𝜋 denote the sub-functor of 𝒯𝜋 obtained by removing rule In from

the syntax of Figure 1, replacing rule Const by rule
Const’
x ∈ X(𝛾) f ∈ 𝐈𝐧𝐣(𝛾, 𝛾′)

𝛾′ ⊢X x⦅f⦆ ,

and removing rule DoIn from the labelled transition system of Figure 1.

Remark 5. We need to retain injective renaming for Rules Left and Right to make sense.

We clearly obtain:

Proposition 4.5. 𝒯 −
𝜋 is a 𝐓𝜋

s -familial monad.

But this time, instead of considering 𝒯 −
𝜋 (∅), which does not even satisfy the input rule,

we observe that 𝒯𝜋(∅) forms a 𝒯 −
𝜋 -algebra (because it satisfies all 𝜋-calculus rules, hence

in particular those of 𝒯 −
𝜋). We thus obtain:

Proposition 4.6. The 𝒯 −
𝜋 -algebra 𝒯𝜋(∅) is compositional.

Let us now explain how this gives an alternative proof to [14, Theorem 2.2.8(1)], which
says that bisimilarity is a non-input congruence [14, Definition 2.1.23]. In our language:

Corollary 4.7. Bisimilarity is a non-input congruence, i.e., bisimilarity for the 𝒯 −
𝜋 -algebra

𝒯𝜋(∅) is a congruence.

Proof. By Corollary 3.13, 𝐓𝜋
s -familiality of 𝒯 −

𝜋 , and compositionality of 𝒯𝜋(∅) qua 𝒯 −
𝜋 -

algebra. □

4.4 Wide open bisimilarity
Another standard solution to the failure of bisimilarity to be a congruence is to resort to
wide open bisimilarity [15]. For this„ we need to modify our base category 𝔹 to include non-
bijective maps 𝛾 → 𝛾′.

Definition 4.8. Let 𝔽 denote the subcategory of 𝐒𝐞𝐭op with finite subsets of 𝒩 as objects
and all maps as morphisms, augmented with

19

• objects 𝜏𝛾, o𝛾,a,b, o𝜈𝛾,a,c, 𝜄𝛾,a,b, and 𝜄𝜈𝛾,a,c for all 𝛾 ∈ 𝒫f(𝒩), a, b ∈ 𝛾, and c ∉ 𝛾,
• morphisms giving the type of each transition:

𝛾
s
−→ 𝜏𝛾

t
←− 𝛾 𝛾

s
−→ o𝛾,a,b

t
←− 𝛾 𝛾

s
−→ 𝜄𝛾,a,b

t
←− 𝛾 𝛾

s
−→ o𝜈𝛾,a,c

t
←− 𝛾, c 𝛾

s
−→ 𝜄𝜈𝛾,a,c

t
←− 𝛾, c ,

• plus, for all 𝛾
s
−→ 𝛼

t
←− 𝛾, 𝛿, maps h ∶ 𝛾 −∼ 𝛾′, and bijections k ∶ 𝛿 −∼ 𝛿′, a morphism

(h, k) ∶ 𝛼[h, k] → 𝛼, where

𝜏𝛾[h, k] = 𝜏𝛾′
o𝛾,a,b[h, k] = o𝛾′,h(a),h(b)
𝜄𝛾,a,b[h, k] = 𝜄𝛾′,h(a),h(b)

o𝜈𝛾,a,c[h, k] = o𝛾′,h(a),k(c)
𝜄𝜈𝛾,a,c[h, k] = 𝜄𝛾′,h(a),k(c),

satisfying equations (4).

Please note that while we include non-bijective morphisms f ∶ 𝛾 → 𝛾′, we do not (need
to) do the same for transition objects. The presheaf category 𝔽 forms a transition category
with transition types given by all cospans 𝐓+

𝜋 above.
Let us now adapt our monad on 𝔽.

Definition 4.9. Let 𝒯 +
𝜋 denote the functor defined from the rules of Figure 1, replacing

rule Const by rule

Const’
x ∈ X(𝛾)
𝛾 ⊢X x

.

It may be helpful to comment a bit on renaming. For 𝒯𝜋, in rules DoIn, Left and Right,
we made use of renaming, which was defined by induction on processes. So we defined
processes first, then renaming, and finally transitions. Here, things are similar, except that
the given presheaf X comes equipped with an action of all maps 𝛾 → 𝛾′, not just bijections.
Thus, the treatment of constants may be simplified: instead of pairs x⦅f⦆, mapped by any g
to x⦅gf⦆, we may reduce to just elements x, mapped by g to g ⋅ x (i.e., X(g)(x)).

It is not entirely trivial that this new monad is also familial.

Proposition 4.10. 𝒯 +
𝜋 is a 𝐓+

s -familial monad.

Proof. Most of the definitions are adapted straightforwardly from 𝔹 to 𝔽. The most sig-
nificant change is the action of E on t ↾ ina,c

b.P ∶ P[b ↦ c] → ina,c
b.P. Indeed, while before we

had E(P[f]) ≅ E(P) (see (5)), we now have, calling E+ the functor el(𝒯 +
𝜋 (1)) → 𝔽 making 𝒯 +

𝜋
familial: E+(⊥𝛾[f]) = E+(f ⋅ ⊥𝛾) = E+(⊥𝛾′) = 𝐲𝛾′ . So we pick for E+(t ↾ ina,c

b.P) the morphism

20

defined by induction on P as follows:

E+(t ↾ ina,c
b.⊥𝛾,b

) = (𝐲𝛾
𝐲[b↦c]−−−−−→ 𝐲𝛾,b)

E+(t ↾ ina,c
b.(P|Q)) = (E+(P[f]) + E+(Q[f])

E+(t↾ina,c
b.P)+E+(t↾ina,c

b.Q)
−−−−−−−−−−−−−−−−−−−→ E+(P) + E+(Q)

E+(t ↾ ina,c
b.0) = (∅

id
−→ ∅)

E+(t ↾ ina,c
b.𝜈d.P) = E+(P[f + id{d}])

E+(t↾ina,c
b.P)−−−−−−−−−→ E+(P)

E+(t ↾ ina,c
b. ̄d1⟨d2⟩.P

) = E+(P[f])
E+(t↾ina,c

b.P)−−−−−−−−−→ E+(P)

E+(t ↾ ina,c
b.d1(d2).P

) = E+(P[f + id{d2}])
E+(t↾ina,c

b.P)−−−−−−−−−→ E+(P).

Please observe that in the base case, the set-map [b ↦ c] ∶ 𝛾, b → 𝛾 yields a morphism in
the opposite direction in 𝔽 hence in 𝔽. □

The compositionality problem created by the presence of renaming in the syntax (as x⦅f⦆)
having disappeared, we get:

Proposition 4.11. 𝒯 +
𝜋 (∅) is a compositional algebra.

Remark 6. It might be slightly worrying at first to observe that E+(t ↾ ina,c
b.⊥𝛾,b

), namely 𝐲𝛾
𝐲[b↦c]−−−−−→

𝐲𝛾,b is definitely not a coproduct of isomorphisms or t-maps. But in fact, any bisimulation is stable
under renaming by construction, hence everything works smoothly.

Calling wide open bisimilarity the largest bisimulation relation over 𝒯 +
𝜋 (∅), we get:

Proposition 4.12. Wide open bisimilarity is a congruence.

Proof. By 𝐓+
s -familiality of 𝒯 +

𝜋 and compositionality of 𝒯 +
𝜋 (∅). □

Remark 7. Instead of changing the base category from 𝔹 to 𝔽, we could simply augment 𝔹 with

a transition type 𝛾, a
s
−→ 𝜎a,b

t
←− 𝛾, for all b ∈ 𝛾, and consider a substitution transition rule as follows

𝛾, a ⊢X P b ∈ 𝛾

Substa,b(P) ∶ 𝛾, a ⊢X P
𝜎a,b−−−→ 𝛾 ⊢X P[a ↦ b]

⋅

The induced monad is familial again, and we recover wide open bisimilarity.

Remark 8. Similarly, we could handle open bisimilarity by considering yet another base category,
where instead of finite sets of names and (bijective) maps we would have as objects pairs (𝛾,D) of
a finite set 𝛾 of names and a distinction D, i.e., an irreflexive relation on 𝛾, with maps (𝛾,D) →
(𝛾′,D′) all maps f ∶ 𝛾 → 𝛾′ respecting D, i.e., if (a, b) ∈ D then f(a) ≠ f(b). This would lead to
open bisimilarity [14, Definition 4.6.2]

5 BISIMULATION UP TO CONTEXT
In this section, we consider a different notion of bisimulation in transition categories, pre-
bisimulations, which we relate to the former by showing that under a mild additional hy-
pothesis any pre-bisimulation embeds into some bisimulation. We then define a notion

21

of pre-bisimulation up to context, which in examples corresponds to bisimulation up to con-
text. Finally, we prove that pre-bisimulation up to context is sound, in the sense that any
pre-bisimulation up to context embeds into some pre-bisimulation (and hence into some
bisimulation).

5.1 Pre-bisimulations
In Definition 2.4, we defined functional bisimulations through a lifting property, which is
flexible enough to, e.g., not consider all transitions from the considered labelled transition
systems X and Y. The following is in fact closer to the ordinary definition of a bisimulation.

Definition 5.1. Consider any transition category. A pre-bisimulation X Y is a map i ∶

R → X×Y such that for all transition types P
s
−→ L

t
←− Q, processes c ∶ P → R, and transitions

r ∶ L → X making the solid part below left commute, there exist u and d as shown making
the whole commute, and symmetrically for Y.

P

R X
L

X × Y X
Q

R X

𝜋∘i

𝜋

𝜋∘i

r∘s

r

r∘t

s

t

c

u

d

i

i

A C

U V

B D

h

a
k

c

l
b d

(6)

Equivalently, the pre-bisimulation condition may be formulated as a weak cartesianness
property of the cospan map formed by the front face above left, relative to transition types.
Indeed, consider the category 𝒜 ∨ with cospans in 𝒜 as objects, and as morphisms all com-
muting diagrams of the form above right. Taking the top component (i.e., sending (h, k, l)
to h) defines a functor dom ∶ 𝒜 ∨ → 𝒜 .

Definition 5.2. A morphism (6) is weakly cartesian relative to some cospan E → W ← F
iff, denoting by ⟨U⟩ the cospan with U as middle component (and inferring the rest from
context), for all morphisms (h″, k″, l″) ∶ ⟨W⟩ → ⟨V⟩ in 𝒜 ∨, and morphisms h′ ∶ E → A such
that h ∘ h′ = h″, there exists k′ and l′ making the diagram below commute.

⟨W⟩ E

⟨U⟩ ⟨V⟩ A C(h,k,l) h

(h″,k″,l″) h″

(h′,k′,l′) h′dom

Remark 9. This is the cartesianness condition from Grothendieck fibrations, except with weakened
universal property: it is restricted to certain cospans, and the mediating arrow need not be unique.

Intuitively, the value of R over transitions is irrelevant in the definition. But, thinking of
R as a relation, one would expect that by completing it with all transitions that exist in X×Y
between pairs of related processes we would get a bisimulation. This completion operation
may be performed generically by a factorisation system, up to an additional stratification hy-
pothesis. Let us first define the factorisation system in question, then introduce the needed
hypothesis, and finally relate pre-bisimulation to bisimulation (Proposition 5.6).

22

For any transition category 𝒜 , as we have seen, the small object argument applies, so we
can put:

Definition 5.3. Let (ℒ ,ℛ) denote the weak factorisation system cofibrantly generated by
the set 𝒥 = {[s, t] ∶ P + Q → L | (s, t) ∈ 𝐓}.

Definition 5.4. A transition category 𝒜 is two-level iff all maps [s, t] ∶ P + Q → L, for
(s, t) ∈ 𝐓 are such that any map f ∶ P′ → L with P′ ∈ 𝐏 lifts through [s, t], i.e., there exists k
making the following triangle commute.

P + Q

P′ L

k

f

[s,t] (7)

Remark 10. This is equivalent to all maps [s, t] being in 𝐏⧄, viewing each P′ ∈ 𝐏 as the unique
map 0 → P′.

Notation 3. In accordance with the previous remark, we will denote by 𝐏⧄ all maps satisfying
the right lifting property (7) w.r.t. all P′ ∈ 𝐏.

Lemma 5.5. In any two-level transition category, we have ℒ ⊆ 𝐏⧄.

Proof. By Proposition 1.6, it suffices to show that 𝐏⧄ contains 𝒥 and is stable under
pushout, transfinite composition, and retracts. First of all, 𝒥 ⊆ 𝐏⧄ holds by hypothesis.
Stability under retracts is direct, and stability under pushout and transfinite composition
follows from tininess of process types (by transfinite induction in the latter case, using ex-
istence of transfinite composites). □

Proposition 5.6. For any pre-bisimulation i ∶ R → X×Y in a two-level transition category, the

right factor i of the (ℒ ,ℛ)-factorisation R
l
−→ R

i
−→ X × Y of i is a bisimulation X Y.

Proof. Consider any commuting square as below left. By Lemma 5.5, we find a lifting,
say p′ ∶ P → R of p through l ∶ R → R. Because R is a pre-bisimulation, we get r′ and q′
making the diagram below center commute. We may thus factor the left-hand square as
below right, and hence get the desired (dashed) lifting by i ∈ ℛ .

P R

X × Y

L X

p

s

r

i

𝜋

P

R X

L

X × Y X

Q

R X

𝜋∘i

𝜋

𝜋∘i

r∘s

r

r∘t

s

t

p′

r′

q′

i

i

R

P P + Q R

X × Y

L L X

inl

s

p′

p
l

[s,t]

l∘p′,l∘q′

r
r′

r

i

𝜋

□

23

5.2 Pre-bisimulation up to context
After defining pre-bisimulations in the previous section, and showing that they induce
bisimulations by factorisation, we now proceed in this section to defining pre-bisimulations
up to context, and showing that they induce pre-bisimulations, hence bisimulations, pro-
vided an additional saturation hypothesis holds.

Let 𝒯 denote a familial monad on a transition category 𝒜 , and let a ∶ 𝒯 (X) → X and
b ∶ 𝒯 (Y) → Y be 𝒯 -algebras.

Definition 5.7. A map i ∶ R → X×Y is a pre-bisimulation up to 𝒯 iff for all transition types

P
s
−→ L

t
←− Q, processes c ∶ P → R, and transitions r ∶ L → X making the solid part below

commute, there exist u and d as shown making the whole commute, and symmetrically for
Y, where the bottom square, viewed as a triangle, is defined as on the right.

P

R X

L

X × Y X

Q

𝒯 (R) X

𝜋∘i

𝜋

r∘s

r

r∘t

s

t

c

u

d

i

X × Y X

𝒯 (X) × 𝒯 (Y) 𝒯 (X)

𝒯 (X × Y)

𝒯 (R)
𝒯 (i)

⟨𝒯 (𝜋),𝒯 (𝜋′)⟩ 𝒯 (𝜋)

a×b
𝜋

𝜋

a

(8)

Following Definition 5.2, this may be expressed as a weak cartesianness condition relative
to transition types.

Before proving soundness of pre-bisimulation up to 𝒯 , we need to find an analogue of
𝐓s-familiality in the previous section. Indeed, in order to find the desired lifting in the proof
of Theorem 3.10, we needed to assume that the image by E of any s ∈ 𝐓s was in ⧄(𝐓⧄

s). With
pre-bisimulations, things are different, however, because they are not defined through any
lifting property. Instead, we use the following notion of saturated pre-bisimulations up to
𝒯 .

Definition 5.8. Let 𝐓 denote the class of cospans (s′, t′) occurring in any pair of generic-
free factorisations of the form below, where (s, t) ∈ 𝐓 and D is 𝒯 -generic.

P L Q

𝒯 (A) 𝒯 (R) 𝒯 (B)

s

C

𝒯 (s′)

D

t

E

𝒯 (t′)

A pre-bisimulation up to 𝒯 is saturated iff the front face in (8) is weakly cartesian relative
to all cospans in 𝐓.

Theorem 5.9. For any saturated pre-bisimulation up to 𝒯 , say i ∶ R → X × Y, where X and Y
are compositional 𝒯 -algebras with respective structure maps a ∶ 𝒯 (X) → X and b ∶ 𝒯 (Y) → Y,
the map

𝒯 (R)
𝒯 (i)
−−−−→ 𝒯 (X × Y)

⟨𝒯 (𝜋),𝒯 (𝜋′)⟩
−−−−−−−−−−−−→ 𝒯 (X) × 𝒯 (Y)

a×b
−−−→ X × Y (9)

24

is a pre-bisimulation.

Proof. Let us write
• ⟨X⟩ for the cospan (idX, idX),
• ⟨𝒯 (R)⟩ for the cospan (i′, i′), where i′ ∶ 𝒯 (R) → X × Y denotes (9),
• k ∶ R⋊ → ⟨X⟩ for the cospan map given by the front face of the left diagram in (8),
• j ∶ ⟨𝒯 (R)⟩ → ⟨X⟩ for the cospan map given by twice the right-hand diagram in (8).

By symmetry, it suffices to prove that j is weakly cartesian relative to transition types. Let
us start by observing that the cospan morphism l ∶ 𝒯 (R⋊) → ⟨𝒯 (R)⟩ below left makes the
diagram below right commute (Please note that from now on we use open arrow heads to
denote arrows of the form 𝒯 (−), and when we say that a diagram made of such arrows
commute, we mean that the underlying arrows, without 𝒯 , agree).

𝒯 (R) 𝒯 (R)

𝒯 (X × Y) 𝒯 (X × Y)

𝒯 (X × Y) X × Y

𝒯 2(X × Y) 𝒯 (X × Y)

𝒯 2(R) 𝒯 (R)

𝒯 (R⋊) ⟨𝒯 (X)⟩

⟨𝒯 (R)⟩ ⟨X⟩

𝒯 (k)

l

j

a

Now, consider a map r ∶ ⟨L⟩ → ⟨X⟩, where ⟨L⟩ denotes any cospan in 𝐓, whose top compo-
nent x factors through the top component of j, i.e.,

𝒯 (R)
𝒯 (i)
−−−−→ 𝒯 (X × Y)

𝒯 (𝜋)
−−−−→ 𝒯 (X)

a
−→ X,

say as P
c
−→ 𝒯 (R) → X. By compositionality of X, r factors as ⟨L⟩

r′
−→ ⟨𝒯 (X)⟩

a
−→ ⟨X⟩ (because

the top component of j does). By familiality of 𝒯 , we get a componentwise generic-free
factorisation of r′, say as ⟨L⟩ → ⟨𝒯 (A)⟩ ⟨𝒯 (X)⟩, as below.

⟨L⟩ P

⟨𝒯 (A)⟩ 𝒯 (B)

𝒯 (R⋊) ⟨𝒯 (X)⟩ 𝒯 (R) 𝒯 (X)

⟨𝒯 (R)⟩ ⟨X⟩ 𝒯 (R) X

r′

h

j

dom(r′)

c m

dom(j)

a

dom

By genericity of its top component, say P → ⟨𝒯 (B)⟩, we get a morphism m as shown. Finally,
by weak cartesianness of R⋊ → ⟨X⟩ relative to 𝐓, we obtain a morphism h as shown, which

yields the desired lifting, namely the composite ⟨L⟩ → ⟨𝒯 (A)⟩
h
−→ 𝒯 (R⋊)

l
−→ ⟨𝒯 (R)⟩. □

25

As before, we get a bunch of cheap, yet useful corollaries. E.g., although we do not have
any precise characterisation like that of ⧄(𝐓⧄

s), we do have:

Proposition 5.10. If 𝐓 consists of coproducts of isomorphisms and cospans in 𝐓, then all pre-
bisimulations up to 𝒯 are saturated.

Example 5.11. As an example application of the theorem, bisimulation up to 𝒯 −
𝜋 is sound

in the basic presentation of 𝜋 (Section 4.2), as is well-known [14, Lemma 2.3.21]. Another
example application: in the refined presentation of Section 4.4, bisimulation up to 𝒯 +

𝜋 is
sound, which is new to us.

6 CONCLUSION AND PERSPECTIVES
We presented a simple abstract framework for studying congruence of bisimilarity, based
on familial monads and lifting properties. We then refined the framework to account for
soundness of bisimulation up to context, using a weak form of cartesianness instead of lift-
ing properties. To my knowledge, this is the first abstract framework handling both congru-
ence of bisimilarity and soundness of bisimulation up to context in the presence of binding.

However, although the framework provides abstract, rather general proofs of non-trivial
facts, it does not come with any format, i.e., means to construct instances from more basic
data. An obvious next step is thus to look for such formats, which in our case means au-
tomatically constructing familial monads satisfying the relevant hypotheses. Another po-
tential direction is to consider questions related to congruence of bisimilarity and sound-
ness of bisimulation up to context, like Howe’s method, environmental bisimulation, or
solutions of process equations. Finally, familial monads for weak bisimulation and typed
calculi might be worth investigating.

REFERENCES
[1] Jir̆í Adámek and Jir̆í Rosicky. 1994. Locally Presentable and Accessible Categories. Cambridge University Press.

https://doi.org/10.1017/CBO9780511600579
[2] Filippo Bonchi, Daniela Petrişan, Damien Pous, and Jurriaan Rot. 2016. A general account of coinduction

up-to. Acta Informatica (2016), 1–64. https://doi.org/10.1007/s00236-016-0271-4
[3] Aurelio Carboni and Peter Johnstone. 1995. Connected Limits, Familial Representability and Artin Glueing.

Mathematical Structures in Computer Science 5, 4 (1995), 441–459. https://doi.org/10.1017/S0960129500001183
[4] Marcelo P. Fiore and Sam Staton. 2006. A Congruence Rule Format for Name-Passing Process Calculi from

Mathematical Structural Operational Semantics. In Proc. 21st Symposium on Logic in Computer Science IEEE,
49–58. https://doi.org/10.1109/LICS.2006.7

[5] Richard H. G. Garner and Tom Hirschowitz. 2018. Shapely monads and analytic functors. Journal of Logic
and Computation 28, 1 (2018), 33–83. https://doi.org/10.1093/logcom/exx029

[6] Mark Hovey. 1999. Model Categories. Mathematical Surveys and Monographs, Volume 63, AMS (1999), Vol. 63.
American Mathematical Society.

[7] André Joyal, Mogens Nielsen, and Glynn Winskel. 1993. Bisimulation and open maps. In Proc. 8th Symposium
on Logic in Computer Science IEEE, 418–427. https://doi.org/10.1109/LICS.1993.287566

[8] Bartek Klin. 2011. Bialgebras for structural operational semantics: An introduction. Theoretical Computer
Science 412, 38 (2011), 5043–5069. https://doi.org/10.1016/j.tcs.2011.03.023

[9] Saunders Mac Lane. 1998. Categories for the Working Mathematician (2nd ed.). Number 5 in Graduate Texts in
Mathematics. Springer.

[10] Saunders Mac Lane and Ieke Moerdijk. 1992. Sheaves in Geometry and Logic: A First Introduction to Topos Theory.
Springer.

[11] MohammadReza Mousavi, Michel A Reniers, and Jan Friso Groote. 2007. SOS formats and meta-theory: 20
years after. Theoretical Computer Science 373, 3 (2007), 238–272.

[12] Gordon D. Plotkin. 1981. A structural approach to operational semantics. DAIMI Report FN-19. Computer Science
Department, Aarhus University.

26

https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1007/s00236-016-0271-4
https://doi.org/10.1017/S0960129500001183
https://doi.org/10.1109/LICS.2006.7
https://doi.org/10.1093/logcom/exx029
https://doi.org/10.1109/LICS.1993.287566
https://doi.org/10.1016/j.tcs.2011.03.023

[13] Emily Riehl. 2014. Categorical Homotopy Theory. Number 24 in New Mathematical Monographs. Cambridge
University Press.

[14] Davide Sangiorgi and David Walker. 2001. The 𝜋-calculus - a theory of mobile processes. Cambridge University
Press.

[15] Sam Staton. 2008. General Structural Operational Semantics through Categorical Logic. In Proc. 23rd Sympo-
sium on Logic in Computer Science 166–177. https://doi.org/10.1109/LICS.2008.43

[16] Daniele Turi and Gordon D. Plotkin. 1997. Towards a Mathematical Operational Semantics. In Proc. 12th
Symposium on Logic in Computer Science 280–291. https://doi.org/10.1109/LICS.1997.614955

[17] Mark Weber. 2007. Familial 2-functors and parametric right adjoints. Theory and Applications of Categories 18,
22 (2007), 665–732.

27

https://doi.org/10.1109/LICS.2008.43
https://doi.org/10.1109/LICS.1997.614955

	Abstract
	1 Introduction
	2 Structural operational semantics specifications as monads
	2.1 Labelled transition systems as objects in transition categories
	2.2 Structural operational semantics specifications as monads on transition categories

	3 Congruence of bisimilarity
	3.1 Standard proof method
	3.2 Familiality
	3.3 Compositionality
	3.4 Congruence of bisimilarity and 𝐓ₛ-familiality

	4 Three shades of π-calculus
	4.1 Naive approach
	4.2 Basic approach
	4.3 Non-input congruence
	4.4 Wide open bisimilarity

	5 Bisimulation up to context
	5.1 Pre-bisimulations
	5.2 Pre-bisimulation up to context

	6 Conclusion and perspectives
	References

