
HAL Id: hal-01815277
https://hal.science/hal-01815277

Submitted on 7 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lagrangian cosmological perturbation theory at
shell-crossing

Shohei Saga, Atsushi Taruya, Stéphane Colombi

To cite this version:
Shohei Saga, Atsushi Taruya, Stéphane Colombi. Lagrangian cosmological perturbation the-
ory at shell-crossing. Physical Review Letters, 2018, 121 (24), pp.241302. �10.1103/Phys-
RevLett.121.241302�. �hal-01815277�

https://hal.science/hal-01815277
https://hal.archives-ouvertes.fr


 

Lagrangian Cosmological Perturbation Theory at Shell Crossing

Shohei Saga
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

Atsushi Taruya
Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

and Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai institute for Advanced Study,
University of Tokyo, Kashiwa, Chiba 277-8568, Japan
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We consider the growth of primordial dark matter halos seeded by three crossed initial sine waves of
various amplitudes. Using a Lagrangian treatment of cosmological gravitational dynamics, we examine the
convergence properties of a high-order perturbative expansion in the vicinity of shell crossing by
comparing the analytical results with state-of-the-art high resolution Vlasov-Poisson simulations. Based on
a quantitative exploration of parameter space, we study explicitly for the first time the convergence speed of
the perturbative series and find, in agreement with intuition, that it slows down when going from quasi-one-
dimensional initial conditions (one sine wave dominating) to quasitriaxial symmetry (three sine waves with
same amplitude). In most cases, the system structure at collapse time is, as expected, very similar to what is
obtained with simple one-dimensional dynamics, except in the quasitriaxial regime, where the phase-space
sheet presents a velocity spike. In all cases, the perturbative series exhibits a generic convergence behavior
as fast as an exponential of a power law of the order of the expansion, allowing one to numerically
extrapolate it to infinite order. The results of such an extrapolation agree remarkably well with the
simulations, even at shell crossing.

DOI: 10.1103/PhysRevLett.121.241302

Introduction.—The observed large-scale structures of the
Universe are thought to be mainly the result of the
evolution through gravitational instability of small initial
fluctuations in the matter distribution, with a dominant
component given by collisionless dark matter. In the
concordance model, cold dark matter (CDM) [1–3], the
dark matter particles form, at the macroscopic level, a
smooth distribution with a virtually null initial local
velocity dispersion. This means that dark matter dynamics
follow Vlasov-Poisson equations and that the dark matter
distribution can be represented as a three-dimensional sheet
evolving in six-dimensional phase space.
In the standard CDM picture, the phase-space sheet is

initially perturbed by small Gaussian random fluctuations
in the density distribution, with a cutoff scale related to the
mass of the dark matter particle [1,4]. The first nonlinear
structures form at shell crossing, i.e., in regions of space
where the phase-space sheet first self-intersects. Primordial
dark matter halos with a power-law density profile of
logarithmic slope around −1.5 [5–8] grow around these
initial singularities through violent relaxation and then
merge together hierarchically to form larger halos with
universal but different properties [9–13]. Because of the

complexity of postcollapse dynamics, the actual processes
leading to the shape of a primordial or an evolved halo
remain a subject of debate. Indeed, there is no exact
analytical theory to predict the results of numerical sim-
ulations, although many approaches have been proposed to
tackle the problem, relying on, e.g., self-similarity [14–16]
or entropy maximization [17–20]. In this debate, the
detailed knowledge of the structure of primordial dark
matter protohalos prior to shell crossing seems essential
and even this remains a challenge in the general case.
To describe gravitational dynamics before shell crossing,

it is however possible to employ perturbation theory (PT) as
long as fluctuations in the density field remain small [21].
With Lagrangian perturbation theory (LPT) [22–28], which
uses the displacement field as a small parameter in the
expansion of the equations of motion, one can rather
realistically follow the evolution of a system in the non-
linear regime up to shell crossing or even slightly beyond.
Zel’dovich approximation [22], which corresponds to
linear order, has been widely used in the literature. It
already gives the exact solution until shell crossing in the
one-dimensional case [29] and also provides, in higher
dimension, a firm framework to study the families of
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singularities that first form at shell crossing [30–32]. In
general, higher-order PT is required to have a sufficiently
accurate description of precollapse dynamics [33–35] and
this obviously depends on the nature of initial conditions.
While the radius of convergence of the perturbative series
has been studied for LPT [36,37], the speed of such
convergence has been little investigated and remains an
important question.
In this Letter, we compare predictions of LPT up to tenth

order to state-of-the-art Vlasov-Poisson simulations, for
primordial halos initially seeded by three crossed sine
waves. Such configurations are still generic, as they can be
assimilated to high peaks of a smooth random Gaussian
field [38]. Varying the amplitudes of the sine waves will
allow us to span a realistic range of initial configurations,
from quasiunidimensional to quasitriaxial. We analyze the
phase-space structure of such systems at shell crossing and
study the speed of convergence of LPT according to the
initial setup, including extrapolation to infinite order.
Setup.—In the presence of gravity, the Lagrangian

equation of motion of a matter element in the expanding
Universe is given by

d2x
dt2

þ 2H
dx
dt

¼ −
1

a2
∇xϕðxÞ; ð1Þ

where x is the comoving position, ϕ the Newton potential
obtained by solving Poisson equation,

∇2
xϕðxÞ ¼ 4πGρ̄ma2δðxÞ; ð2Þ

and where the quantities a, H ¼ a−1da=dt, ρ̄m, and δ
correspond to the scale factor of the Universe, Hubble
parameter, background mass density, and matter density
contrast, respectively. In this framework, the velocity of
each mass element is given by v ¼ adx=dt.
Here, we use a Lagrangian approach; i.e., we follow

motion as a function of initial position, the Lagrangian
coordinate q. The subsequent evolution of the position is
expressed as xðq; tÞ ¼ qþΨðq; tÞ, where Ψ represents the
displacement from initial position. Then, the velocity field
is expressed as vðq; tÞ ¼ aðtÞdΨ=dt, and, in the single flow
regime, mass conservation implies d3q ¼ f1þ δðxÞgd3x,
which leads to 1þ δðxÞ ¼ 1=J with J ¼ det ðδij þ Ψi;jÞ.
These last equations are valid until shell-crossing time tsc,
that is the first occurrence of J ¼ 0.
We start with initial conditions given by three crossed sine

waves in a periodic box covering the interval ½−L=2; L=2�:

Ψini
A ðq; tiniÞ ¼

L
2π

DþðtiniÞϵA sin
�
2π

L
qA

�
;

ðA ¼ x; y; zÞ; ð3Þ

whereDþ is the linear growth factor. The initial time tini and
parameters, ϵA < 0, jϵxj ≥ jϵyj ≥ jϵzj, are chosen such that

DþðtiniÞjϵAj ≪ 1, so only, e.g., the ratios ϵy=ϵx and ϵz=ϵx are
relevant. Our analytical investigations will cover the full
range of values of ϵy;z=ϵx, while the simulations will address
three types of configurations: quasi-one-dimensional with
jϵxj ≫ jϵy;zj, triaxial asymmetric with jϵxj > jϵyj > jϵzj,
and triaxial symmetric with jϵxj ¼ jϵyj ¼ jϵzj, denoted by
Q1D-S, ASY-S, and SYM-S, respectively.
Lagrangian perturbation theory.—In LPT, the displace-

ment field Ψ is the fundamental building block that is
considered as a small quantity. As long as function xðqÞ is a
single-valued function of q, there is no singularity in the
density field and a systematic perturbative expansion is
possible, Ψ ¼ P∞

n¼1ΨðnÞ. The evolution equation of the
displacement field at each order is obtained from Eq. (1).
Taking the divergence and the curl of this equation in
Eulerian coordinates and rewriting the expressions in
Lagrangian coordinates, a set of recurrence relations is
obtained by substituting the perturbative expansion into
Eq. (1) [36,37,39,40]:

�
T̂ −

3

2

�
ΨðnÞ

k;k ¼ −εijkεipq
X

n¼aþb

ΨðaÞ
j;p

�
T̂ −

3

4

�
ΨðbÞ

k;q

−
1

2
εijkεpqr

X
n¼aþbþc

ΨðaÞ
i;pΨ

ðbÞ
j;q

�
T̂ −

1

2

�
ΨðcÞ

k;r ;

ð4Þ

for the longitudinal part, and

εijkT̂ ΨðnÞ
j;k ¼ −εijk

X
n¼aþb

ΨðaÞ
p;jT̂ ΨðbÞ

p;k; ð5Þ

for the transverse part. Here, εijk is the Levi-Cività symbol,

Ψi;j ≡ ∂Ψi=∂qj, and T̂ stands for a differential operator,

T̂ ≡ ð∂2=∂τ2Þ þ 1
2
ð∂=∂τÞ, where τ≡ lnDþðtÞ. Thus,

according to the initial conditions given by Eq. (3), one
builds up from Eqs. (4) and (5) the perturbative solutions
for the two kinds of derivatives ∇ ·ΨðnÞ and ∇ ×ΨðnÞ.
Then, the displacement field can be consistently recon-
structed from these derivatives. This last step is nontrivial
and generally involves intricate calculations. However,
thanks to the trigonometric polynomial nature of the initial
conditions we consider, ΨðnÞ is expressed likewise after
simple algebraic manipulations.
Since the initial setup assumes a small amplitude of the

fluctuations, DþðtiniÞjϵAj ≪ 1, and we consider time suffi-
ciently close to collapse, DþðtÞjϵAj ∼ 1, taking only the
fastest-growingmode provides an accurate description of the
dynamics. With this additional simplification, we perform
the perturbative calculation in two different ways, as follows.
The first approach, quite standard, consists of usingEq. (3) as
the first-order solution, i.e., Ψð1Þðq; tÞ ¼ Ψiniðq; tÞ, and
developing higher-order calculations (LPT) up to tenth order.
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The second approach, that we denote by Q1D, assumes
quasi-one-dimensional dynamics, following in the footsteps
ofRef. [41], i.e., jϵxj ≫ jϵy;zj. In this case, one takes the exact
solution of the one-dimensional problem along the x axis
given by Zel’dovich approximation as the unperturbed

zeroth-order state: Ψð0Þ
A ðq; tÞ ¼ Ψini

x ðqx; tÞδA;x, A ¼ x, y, z,
with δA;B being the Kronecker delta. Transverse fluctuations
are considered as small first-order perturbations to this setup,

Ψð1Þ
A ðq; tÞ ¼ Ψini

y ðqy; tÞδA;y þ Ψini
z ðqz; tÞδA;z. The perturba-

tive expansion is then performed by keeping terms propor-
tional to ϵiy and ϵjz up to second order, iþ j ¼ 2 (so in this
sense we go one order beyond [41]), while keeping terms
proportional to ϵkx up to tenth order, k ¼ 10.
Vlasov simulations and phase-space structure.—To

quantitatively investigate the dynamics of our system up
to shell crossing, we perform high resolution simulations
with the state-of-the-art Vlasov-Poisson code COLDICE

[42]. This code uses a tessellation, i.e., tetrahedra, to
represent the phase-space sheet. The vertices of the
tessellation form initially a homogeneous mesh of reso-
lution ns (which corresponds to 6n3s simplices) and then
follow Lagrangian equations of motion, Eqs. (1) and (2).
The Poisson equation is solved by fast-Fourier transform on
a regular Cartesian grid of resolution ng, after deposit of the
phase-space sheet on the grid using the method of Franklin
and Kankanhalli generalized to linear order [43–45]. A
number of simulations, as listed in Table I, were performed
assuming Einstein–de Sitter cosmology.
Figure 1 shows representative examples of phase-space

portraits at shell-crossing time. As the ratios ϵy;z=ϵx
increase, the Zel’dovich approximation, which is exact
in the strictly one-dimensional case ϵy;z=ϵx ¼ 0, starts to
deviate significantly from the simulation, as expected. The
Q1D prediction provides a substantial improvement, with
an excellent match of the simulation measurements for
ϵy;z=ϵx ≪ 1 (top panel). Still, it cannot catch up to the shell-
crossing structure when ratios ϵy;z=ϵx approach unity
(middle and bottom panels). However, with a systematic
calculation of all the contributions up to tenth order, the
LPT prediction improves considerably and accurately
reproduces the shell-crossing structure seen in the simu-
lations for most of the parameter space, except in the
vicinity of ðϵy=ϵx; ϵz=ϵxÞ ¼ ð1; 1Þ (bottom panel).

In the ϵy;z=ϵx ¼ 1 case, the phase-space structure is
highly stretched along the velocity axis, which reflects a
noticeable acceleration of the inward mass flow near x ¼ 0,
similarly as in spherical collapse [14,15]. This highly
contrasted dynamical behavior slows down LPT conver-
gence near ϵy;z=ϵx ¼ 1 and even the tenth-order calculation
is insufficient (see also Ref. [46] for a discussion about the
spherically symmetric case).

TABLE I. Parameters of the runs performed with COLDICE.

Designation DþðtiniÞjϵxj ðϵy=ϵx; ϵz=ϵxÞ ns ng

Q1D-S 0.012 (0.167,0.125) 256 512
ASY-Sa 0.012 (0.625,0.5) 512 512
ASY-Sb 0.012 (0.75,0.5) 512 512
ASY-SbHR 0.012 (0.75,0.5) 512 1024
ASY-Sc 0.012 (0.875,0.5) 512 512
SYM-S 0.009 (1,1) 512 512
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FIG. 1. Phase-space structure at collapse time tsc. The inter-
section of the phase-space sheet with y ¼ z ¼ 0 hyperplane is
displayed in ðx; vxÞ subspace for runs Q1D-S, ASY-SbHR, and
SYM-S, from top to bottom. The simulation (black points) is
compared to Zel’dovich approximation (gray dots), Q1D (blue
dot-dashed line), and LPT up to tenth order (red dashed line), as
well as the extrapolated method (cyan curve). In the top panel,
all the curves superpose to each other except for the gray dots.
From top to bottom, shell-crossing time tsc corresponds to
jϵxjDþðtscÞ ≈ 0.912, 0.696, and 0.576, respectively. Note that,
in the middle panel, the lower-resolution simulation, ASY-Sb,
would give undistinguishable results from ASY-SbHR, showing
that using a 5123 grid to solve the Poisson equation is sufficient to
achieve convergence of the numerical experiments.
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However, by studying the sequence of LPT predictions
as a function of order n up to n ¼ 10, it is possible
to extrapolate the asymptotic convergence at n → ∞.
Indeed, we find that the position of matter elements
at collapse time calculated at nth order with LPT,
xscðq; nÞ ¼ ½xscðq; nÞ; yscðq; nÞ; zscðq; nÞ�, is well described
by the following fitting form:

Ascðq;nÞ¼ αAðqÞþ
1

bAðqÞþcAðqÞexp ½dAðqÞneAðqÞ�
; ð6Þ

with A ¼ x, y, z and where αA, bA, cA, dA, and eA are fitting
parameters that depend on both initial conditions and
Lagrangian position q. Taking the limit n → ∞ gives the
extrapolated result at infinite order, xscðq; n → ∞Þ →
½αxðqÞ; αyðqÞ; αzðqÞ�. The same treatment can be applied

to compute shell-crossing time tscðn → ∞Þ used as the
output time for the simulations in Fig. 1, while the extrapo-
lated velocity, vscðq; n → ∞Þ, is obtained by finite time
differences on the position. Note that form Eq. (6) is not the
unique choice, but using the exponential of a power law
might be the only way to match the convergence speed of
LPT at large n.
Examination of Fig. 1 shows that the result of this

procedure (cyan curves) reproduces very well simulation
measurements, even the spiky structure in the ϵy;z=ϵx ¼ 1
case. Disagreement is at worse a few percent when
ϵy;z=ϵx < 1. Even if there are still some small mismatches,
partly attributable to a small desynchronization due to the
finite time step in the simulations, the extrapolation based
on Eq. (6) is unquestionably successful and can be used to
perform quantitative predictions over the entire parameter
space covered by ðϵy=ϵx; ϵz=ϵxÞ.
Exploration of parameter space.—Making use of the

generic behavior described in Eq. (6), we can explore
convergence properties of LPT as well as the global
parameter dependence of the shell-crossing structure.
In agreement with intuition, LPT convergence worsens
when going from quasi-one-dimensional to quasitriaxial
symmetric, as illustrated in the top panel of Fig. 2 for
shell-crossing time. In general, few percent accuracy
requires high-order LPT. For instance, 3% accuracy exam-
ined in Fig. 2 can be achieved at third order only for
ðϵy þ ϵzÞ=ϵx ≲ 0.5, which represents merely one-eighth of
the total parameter space, and probing half the parameter
space would require seventh order.
The bottom panel of Fig. 2 focuses on the maximum

velocity vx=ðLaHÞ. As expected, for the parameters probed
by our runs, the theoretical predictions given by the black
dots are found to be in good agreement with the simu-
lations. What is more striking is the sudden augmentation
of the maximum velocity in the vicinity of ðϵy=ϵx; ϵz=ϵxÞ ¼
ð1; 1Þ. This sudden change is associated to a drastic
variation of the phase-space structure at shell crossing,
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FIG. 2. Exploration of parameter space. Top: Order at which
LPT convergence remains better than 3% when calculating shell-
crossing time. Botton: Parameter dependence of the maximum
velocity vx;max=ðLaHÞ, which is normalized to unity for
ðϵy=ϵx; ϵz=ϵxÞ ¼ ð1; 1Þ. The black dots correspond to the para-
meters used for our runs (Table I), along with measured values
of vx;max=ðLaHÞ in the simulations, to be compared to the
isocontours.
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ranging from (1,0.85) to (1,1).

PHYSICAL REVIEW LETTERS 121, 241302 (2018)

241302-4



as illustrated by Fig. 3, where we consider the case
ϵz=ϵx ¼ 1 and values of ϵy=ϵx increasing from 0.85 to
unity. As seen in this figure, the cross section of the phase-
space sheet changes drastically from a smooth “S” shape,
which is the normal behavior for most of the values of the
ratios ϵy;z=ϵx, to a spiky structure when both these ratios
approach unity, minðϵy;z=ϵxÞ≳ 0.9. While the presence of a
spiky structure in the quasitriaxial symmetric case can be
expected, as it is found in spherical collapse, the way it
appears in parameter space remains nontrivial.
Conclusion and outlook.—With Lagrangian perturbation

theory extrapolated to infinite order, we found a way to
describe accurately the phase-space structure of protohalos
growing from three initial sine waves of various ampli-
tudes, ϵx, ϵy, and ϵz, until collapse time. To validate the
theory, we used the state-of-the-art Vlasov code [42].
Based on an exploration of parameter space, we checked
that convergence of the LPT series expansion slows down
when going from quasi-one-dimensional to triaxial sym-
metric initial conditions. This exploration also shows
that a spiky structure in phase space appears when
approaching triaxial symmetry, minðϵy;z=ϵxÞ ≳ 0.9. Such
a spiky structure might correspond in the CDM paradigm
to a population of rare halos or subhalos with particular
properties and is worth being the object of future
investigations.
We are confident that our results are quite generic, even if

we considered a restricted class of initial conditions. Firstly,
as mentioned in the Introduction, three sine waves are
representative, to a large extent, of high peaks of a smooth
random Gaussian density field. Secondly, our LPT
algorithm can be generalized to any trigonometric poly-
nomial initial conditions, which will allow us in the near
future to account for tidal effects in the dynamical process
of protohalo formation. Our accurate prediction for the
collapse time may also be used in excursion set treatments
to improve predictions of the halo mass function (see
Ref. [47] for a comprehensive review).
Furthermore, our LPT calculations set up the framework

for accurate theoretical investigations beyond collapse
time. Indeed, except for rare cases, such as the triaxial
symmetric configuration, collapse is generally expected to
produce a planar singularity (as illustrated by the two top
panels of Fig. 1), meaning that near collapse time,
dynamics is quasiunidimensional [22]. Starting from the
state of the system at crossing time, it is possible to
generalize the postcollapse LPT formalism developed
in one dimension by Refs. [48,49] to the fully three-
dimensional case. Indeed, one can make use of the quasiu-
nidimensionality of the singularity at collapse time to
compute the asymptotic dynamical behavior of the system
shortly after it, with the proper Taylor expansions in space
and time. We leave this project for future work. Still,
describing the full merging history of dark matter halos
will remain a challenge.
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