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Abstract
In this paper, we consider the usual linear regression model in the case where the
error process is assumed strictly stationary. We use a result from Hannan [11], who
proved a Central Limit Theorem for the usual least square estimator under general
conditions on the design and on the error process. Whatever the design satisfying
Hannan’s conditions, we define an estimator of the covariance matrix and we prove
its consistency under very mild conditions. As an application, we show how to modify
the usual tests on the linear model in this dependent context, in such a way that the
type-I error rate remains asymptotically correct, and we illustrate the performance
of this procedure through different sets of simulations.
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1. Introduction

The linear regression model is used in many domains of applied mathematics, and the
asymptotic behavior of the least square estimators is well known when the errors are
i.i.d. (independent and identically distributed) random variables. Many authors have
deepened the research on this subject, we can cite for example [3], [1], [2] and [12]
among others. However, many science and engineering data exhibit significant temporal
dependence so that the assumption of independence is violated (see for instance [6]). It
is observed in astrophysics, geophysics, biostatistics, climatology, among others. Con-
sequently all statistical procedures based on this assumption are not efficient and this
can be very problematic for the applications.

In this paper, we propose to study the usual linear regression model in the very
general framework of Hannan [11]. Let us consider the equation of the model:

Y = Xβ + ε.

The process (εi)i∈Z is assumed to be strictly stationary. The n × p matrix X is the
design and can be random or deterministic. In our framework, we consider the inter-
dependence of the variables of the design. As in Hannan, we assume that the design
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matrix X is independent of the error process. Such a model can be used for time series
regression, but also in a more general context when the residuals seem to derive from a
stationary correlated process.

Our work is based on the paper by Hannan [11], who proved a Central Limit Theorem
for the usual least square estimator under general conditions on the design and on
the error process. Let us quote that most of short-range dependent processes satisfies
Hannan’s conditions on the error process, for instance the class of linear processes with
summable coefficients and square integrable innovations, a large class of functions of
linear processes, many processes under various mixing conditions and the 2-strong stable
processes introduced byWu [15]. We refer to our previous paper [7], which presents many
classes of short range processes satisfying Hannan’s condition.

The linear regression model with dependent errors has also been studied under more
restrictive conditions. For instance, Pagan and Nicholls [14] consider the case where the
errors follow a MA(q) process, and Chib and Greenberg [8] the case where the errors
are an ARMA(p, q) process. A more general framework is used by Wu [16] for a class of
short-range dependent processes. These results are based on the asymptotic theory of
stationary processes developed by Wu in [15]. However the class of processes satisfying
the so called L2 "physical dependence measure" is included in the class of processes
satisfying Hannan’s condition (C1). In the present paper, we consider the very general
framework of Hannan in order to obtain the most robust results.

In this paper, we present an estimator of the asymptotic covariance matrix of the
normalized least square estimators of the parameters. This estimator is derived from
the estimator of the spectral density of the error process introduced in [7]. Once the
asymptotic covariance matrix is consistently estimated, it is then possible to obtain
confidence regions and test procedures for the unknown parameter β. In particular, we
shall use our general results to modify the usual Student and Fisher tests in cases where
(εi)i∈Z and the design verify the conditions of Hannan, in order to have always a type-I
error rate asymptotically correct (approximately equals to 5%).

The paper is organized as follows. In Section 2, we recall Hannan’s Central Limit
Theorem for the least square estimator. In Section 3, we focus on the estimation of
the covariance matrix under Hannan’s condition. Finally, Section 4 is devoted to the
correction of the usual Student and Fisher tests in our dependent context, and some
simulations with different models are realized.

2. Hannan’s theorem

2.1. Notations and definitions

Let us recall the equation of the linear regression model:

Y = Xβ + ε, (1)

where X is a design matrix and ε is an error process defined on a probability space
(Ω,F ,P). Let us notice that the error process ε is independent of the design X. Let X.,j

be the column j of the matrix X, and xi,j the real number at the row i and the column
j, where j is in {1, . . . , p} and i in {1, . . . , n}. The random vectors Y and ε belong to
Rn and β is a p× 1 vector of unknown parameters.

Let ‖.‖2 be the usual euclidean norm on Rn, and ‖.‖Lp be the Lp-norm on Ω, de-
fined for all random variable Z by: ‖Z‖Lp = [E (Zp)]

1
p . We say that Z is in Lp(Ω) if
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[E (Zp)]
1
p <∞.

The error process (εi)i∈Z is assumed to be strictly stationary with zero mean. More-
over, for all i in Z, εi is supposed to be in L2(Ω). More precisely, the error process
satisfies, for all i in Z:

εi = ε0 ◦ Ti,

where T : Ω→ Ω is a bijective bimeasurable transformation preserving the probability
measure P. Note that any strictly stationary process can be represented in this way.

Let (Fi)i∈Z be a non-decreasing filtration built as follows, for all i:

Fi = T−i(F0).

where F0 is a sub-σ-algebra of F such that F0 ⊆ T−1(F0). For instance, one can choose
the past σ-algebra before time 0: F0 = σ(εk, k ≤ 0), and then Fi = σ(εk, k ≤ i). In that
case, ε0 is F0-measurable.

As in Hannan, we shall always suppose that F−∞ =
⋂
i∈Z
Fi is trivial. Moreover ε0 is

assumed F∞-measurable. These implie that the εi’s are all regular random variables in
the following sense:

Definition 2.1.1 (Regular random variable). Let Z be a random variable in L1(Ω). We
say that Z is regular with respect to the filtration (Fi)i∈Z if E(Z|F−∞) = E(Z) almost
surely and if Z is F∞-measurable.

Hence there exists a spectral density f for the error process, defined on [−π, π]. The
autocovariance function γ of the process ε then satisfies:

γ(k) = Cov(εm, εm+k) = E(εmεm+k) =
∫ π

−π
eikλf(λ)dλ.

Furthermore we denote by Γn the covariance matrix of the error process:

Γn = [γ(j − l)]1≤j,l≤n . (2)

2.2. Hannan’s Central Limit Theorem

Let β̂ be the usual least square estimator for the unknown vector β. Given the design
X, Hannan [11] has shown a Central Limit Theorem for β̂ when the error process is
stationary. In this section, the conditions for applying this theorem are recalled.

Let (Pj)j∈Z be a family of projection operators, defined for all j in Z and for any Z
in L2(Ω) by:

Pj(Z) = E(Z|Fj)− E(Z|Fj−1).

We shall always assume that Hannan’s condition on the error process is satisfied:∑
i∈Z
‖P0(εi)‖L2 < +∞. (C1)
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Note that this condition implies that:∑
k∈Z
|γ(k)| <∞, (3)

(see for instance [9]).
Hannan’s condition provides a very general framework for stationary processes. The

hypothesis (C1) is a sharp condition to have a Central Limit Theorem for the partial
sum sequence (see the paper of Dedecker, Merlevède and Volný [9] for more details).
Notice that the condition (3) implies that the error process is short-range dependent.
However, Hannan’s condition is satisfied for most short-range dependent stationary
processes. The reader can see the paper [7] where some examples checking Hannan’s
condition are developed.

Let us now recall Hannan’s assumptions on the design. Let us introduce:

dj(n) = ‖X.,j‖2 =

√√√√ n∑
i=1

x2
i,j ,

and let D(n) be the diagonal matrix with diagonal term dj(n) for j in {1, . . . , p}.
Following Hannan, we also require that the columns of the design X satisfy, almost

surely, the following conditions:

∀j ∈ {1, . . . , p}, lim
n→∞

dj(n) =∞, (C2)

and:

∀j, l ∈ {1, . . . , p}, lim
n→∞

sup1≤i≤n |xi,j |
dj(n) = 0. (C3)

Moreover, we assume that the following limits exist:

∀j, l ∈ {1, . . . , p}, ρj,l(k) = lim
n→∞

n−k∑
m=1

xm,jxm+k,l

dj(n)dl(n) . (C4)

Note that Conditions (C2) and (C3) correspond to the usual Lindeberg’s conditions
for linear statistics in the i.i.d. case. In the dependent case, we also need Condition (C4).

The p× p matrix formed by the coefficients ρj,l(k) is called R(k):

R(k) = [ρj,l(k)] =
∫ π

−π
eikλFX(dλ), a.s. (4)

where FX is the spectral measure associated with the matrix R(k). The matrix R(0) is
supposed to be positive definite:

R(0) > 0, a.s. (C5)
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Let then F and G be the matrices:

F = 1
2π

∫ π

−π
FX(dλ), a.s.

G = 1
2π

∫ π

−π
FX(dλ)⊗ f(λ), a.s.

The Central Limit Theorem for the regression parameter, due to Hannan [11], can
be stated as follows:

Theorem 2.1. Let (εi)i∈Z be a stationary process with zero mean. Assume that F−∞
is trivial, ε0 is F∞-measurable, and that the sequence (εi)i∈Z satisfies Hannan’s condi-
tion (C1). Assume that the design X satisfies, almost surely, the conditions (C2), (C3),
(C4) and (C5). Then, for all bounded continuous function f :

E
(
f
(
D(n)(β̂ − β)

) ∣∣∣X) −−−→
n→∞

E
(
f(Z)

∣∣∣X) , a.s. (5)

where the distribution of Z given X is a gaussian distribution, with mean zero and
covariance matrix equal to F−1GF−1. Furthermore, there is the convergence of second
order moment: 1

E
(
D(n)(β̂ − β)(β̂ − β)tD(n)t

∣∣∣X) −−−→
n→∞

F−1GF−1, a.s. (6)

Remark 2.1. Let us notice that, by the dominated convergence theorem, the prop-
erty (5) implies that for any bounded continuous function f ,

E
(
f
(
D(n)(β̂ − β)

))
−−−→
n→∞

E (f(Z)) .

Remark 2.2. Let us notice that (6) can be proved by the dominated convergence theo-
rem. Indeed the n× n covariance matrix Γn is a symmetric Toeplitz matrix:

Γn =
n−1∑

k=−n+1
γ(k)J (k)

n ,

where J (k) is a matrix with some 1 on the k-th diagonal. We deduce that:

D(n)−1XtΓnXD(n)−1 =
n−1∑

k=−n+1
γ(k)Bk,n,

with:

Bk,n = D(n)−1XtJ (k)
n XD(n)−1.

1The transpose of a matrix X is denoted by Xt.
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For all k in {−n+ 1, . . . , n− 1}, the matrices Bk,n are equal to:

Bk,n = [ρ̂j,l(k)] if k ≥ 0,

Bk,n = [ρ̂j,l(k)]t if k ≤ −1,

where ρ̂j,l(k) =
∑n−k
m=1

xm,jxm+k,l
dj(n)dl(n) . Under Hannan’s assumptions, we know that the limits

of the ρ̂j,l(k) exist as n tends to infinity. Thus, by the dominated convergence theorem,
and thanks to (3), we deduce that:

n−1∑
k=−n+1

γ(k)Bk,n −−−→
n→∞

∞∑
k=−∞

γ(k)Bk.

where the matrices Bk are the limits of the matrices Bk,n.
Let us recall that the second order moment is equal to:

E
(
D(n)(β̂ − β)(β̂ − β)tD(n)t

∣∣∣X) = R̂(0)−1

 n−1∑
k=−n+1

γ(k)Bk,n

 R̂(0)−1,

with R̂(0) = D(n)−1XtXD(n)−1 = [ρ̂j,l(0)]1≤j,l≤p. When n tends to infinity, R̂(0) con-
verges to R(0), which is equal to R(0) =

∫ π
−π FX(dλ) = 2πF . Consequently, the sum∑∞

k=−∞ γ(k)Bk is equal to 4π2G.

3. Estimation of the covariance matrix

To obtain confidence regions or test procedures from Theorem 2.1, one needs to estimate
the limiting covariance matrix F−1GF−1. In this section, we propose an estimator of
this covariance matrix, and we show its consistency under Hannan’s conditions.

Let us first consider a preliminary random matrix defined as follows:

Γ̂n,hn =
[
K

(
j − l
hn

)
γ̂j−l

]
1≤j,l≤n

, (7)

with:

γ̂k = 1
n

n−|k|∑
j=1

εjεj+|k|, 0 ≤ |k| ≤ n− 1.

The function K is a kernel such that:
- K is nonnegative, symmetric, and K(0) = 1,
- K has compact support,
- The Fourier transform of K is integrable.

The sequence of positive reals hn is such that hn tends to infinity and hn
n tends to 0

when n tends to infinity.
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In our context, the errors (εi)1≤i≤n are not observed. Only the residuals are available:

ε̂j = Yj − (xj)tβ̂,

because only the data Y and the design X are observed. Consequently, we consider the
following estimator of Γn:

Γ̂∗n,hn =
[
K

(
j − l
hn

)
γ̂∗j−l

]
1≤j,l≤n

, (8)

with:

γ̂∗k = 1
n

n−|k|∑
j=1

ε̂j ε̂j+|k|, 0 ≤ |k| ≤ n− 1.

This estimator is a truncated version of the full matrix Γ̂∗n =
[
γ̂∗j−l

]
1≤j,l≤n

, preserving

the diagonal and some sub-diagonals. Following [4], Γ̂∗n,hn is called the tapered covariance
matrix estimator. The motivation for tapering comes from the fact that, for a large k,
either γ(k) is close to zero or γ̂∗k is an unreliable estimate of γ(k). Thus, prudent use
of tapering may bring considerable computational economy in the former case, and
statistical efficiency in the simulations, by keeping small or unreliable γ̂∗k out of the
calculations.

To estimate the asymptotic covariance matrix F−1GF−1, we use the estimator:

Cn = D(n)(XtX)−1XtΓ̂∗n,hnX(XtX)−1D(n). (9)

Let us denote by C the matrix F−1GF−1 and the coefficients of the matrices Cn and
C are respectively denoted by cn,(j,l) and cj,l, for all j, l in {1, . . . , p}. Our first result is
the following:

Theorem 3.1. Let hn be a sequence of positive reals such that hn →∞ as n tends to
infinity, and:

hnE
(
|ε0|2

(
1 ∧ hn

n
|ε0|2

))
−−−→
n→∞

0. (10)

Then, under the assumptions of Theorem 2.1, the estimator Cn is consistent, that is for
all j, l in {1, . . . , p}:

E
(∣∣∣cn,(j,l) − cj,l∣∣∣ ∣∣∣X) −−−→

n→∞
0, a.s. (11)

Remark 3.1. If ε0 is square integrable, then there exists hn →∞ such that (10) holds.
Furthermore if E

(
|ε0|δ+2

)
<∞ with δ in ]0, 2], then:

hnE
(
|ε0|2

(
1 ∧ hn

n
|ε0|2

))
≤ hnE

(
|ε0|2

h
δ/2
n

nδ/2 |ε0|
δ

)
≤ h

1+δ/2
n

nδ/2 E
(
|ε0|δ+2

)
.
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Thus, if hn satisfies h
1+δ/2
n

nδ/2 −−−→
n→∞

0, then (10) holds. In particular, if the random variable

ε0 has a fourth order moment, then the condition on hn is h2
n

n −−−→n→∞
0.

From this theorem, we get the non-conditional convergence in probability:

Corollary 3.1. Let hn be a sequence satisfying (10). Then the estimator Cn converges
in probability to C as n tends to infinity.

Remark 3.2. Since F−1GF−1 is assumed to be positive definite, our estimator Cn is
also asymptotically positive definite. But it has no reason to be positive definite for any
kernel and for any n. To overcome this problem, one can consider the estimator C̃n
which is built as Cn but with a positive definite kernel, like for instance the triangular
kernel.

Indeed, following Wu [17], we can define:

Γ̂∗n,hn = Γ̂∗n ? Wn,

where ? is the Hadamard (or Schur) product, which is formed by element-wise multi-
plication of matrices, and Wn is the kernel’s matrix equal to

[
K
(
j−l
hn

)]
1≤j,l≤p

. Let us

notice that the full matrix Γ̂∗n is positive definite if and only if γ̂∗0 > 0 (see [6]). Conse-
quently, by the Schur Product Theorem in matrix theory [13], since Γ̂∗n and Wn are both
positive definite, their Schur product Γ̂∗n,hn is also positive definite.

Let us recall that Cn = ΨΓ̂∗n,hnΨt with Ψ = D(n)(XtX)−1Xt. Then the estimator Cn
is positive definite if for all x 6= 0, xtΨΓ̂∗n,hnΨtx is strictly greater than 0. It is true if
γ̂∗0 > 0 and if the design X is a rank p matrix.

Combining Theorem 2.1 and Theorem 3.1, we obtain the following corollary, which
is the main result of our paper:

Corollary 3.2. Under the assumptions of Theorem 2.1 and Theorem 3.1, we get:

C
− 1

2
n

(
D(n)(β̂ − β)

)
L−−−→

n→∞
N (0, Ip), (12)

where Ip is the p× p identity matrix.

4. Tests and simulations

As an application of this main result, we show how to modify the usual tests on the
linear regression model.

4.1. Tests

Let us recall the assumptions. We consider the linear regression model (1), and we
assume that Hannan’s condition (C1) as well as the conditions (C2) to (C5) on the
design are satisfied. We also assume that ε0 is F∞-measurable and that F−∞ is trivial.
With these conditions, the usual tests can be modified and adapted to the case where
the errors are short-range dependent and for any design verifying Hannan’s conditions.
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As usual, the null hypothesis H0 means that the parameter β belongs to a vector
space with dimension strictly smaller than p, and we denote by H1 the alternative
hypothesis (meaning that H0 is not true, but (1) holds).

In order to test H0 : βj = 0 against H1 : βj 6= 0, for j in {1, . . . , p}, under the
H0-hypothesis and according to Corollary 3.2 we have:

dj(n)β̂j −−−→
n→∞

N (0, cj,j).

We introduce the following univariate test statistic:

Tj,n = dj(n)β̂j√
cn,(j,j)

. (13)

Under the H0-hypothesis, the distribution of Tj,n converges to a standard normal
distribution when n tends to infinity.

Now we want test H0: βj1 = . . . = βjp0
= 0, against H1: ∃jz ∈ {j1, . . . , jp0} such that

βjz 6= 0. By Corollary 3.2, it follows that:

C−1/2
np0


dj1(n)(β̂j1 − βj1)

...
djp0

(n)(β̂jp0
− βjp0

)

 L−−−→
n→∞

N (0p0×1, Ip0),

where Cnp0
is the covariance matrix Cn built with removing the rows and the columns

which do not belong to the discrete set {j1, . . . , jp0}. The p0 × p0 identity matrix is
denoted by Ip0 and 0p0×1 is a p0 vector of zeros.

Then under H0-hypothesis, we have:

Z1,n
...

Zp0,n

 = C−1/2
np0


dj1(n)β̂j1

...
djp0

(n)β̂jp0

 L−−−→
n→∞

N (0p0×1, Ip0),

and we define the following test statistic:

Ξ = Z2
1,n + · · ·+ Z2

p0,n. (14)

Under the H0-hypothesis, the distribution Ξ converges to a χ2-distribution with
parameter p0.

For the simulations, we shall use for the estimator Cn the kernel K defined by:
K(x) = 1 if |x| ≤ 0.8
K(x) = 5− 5|x| if 0.8 ≤ |x| ≤ 1
K(x) = 0 if |x| > 1.

This kernel verifies the conditions defined at the beginning of Section 3, and it is close to
the rectangular kernel (whose Fourier transform is not integrable). Hence, the parameter
hn can be understood as the number of covariance terms that are necessary to obtain a
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good approximation of Γn. To choose its values, we shall use the graph of the empirical
autocovariance of the residuals.

4.2. Simulations

We first simulate (Z1, . . . , Zn) according to the AR(1) equation Zk+1 = 1
2(Zk + ηk+1),

where Z1 is uniformly distributed over [0, 1] and (ηi)i≥2 is a sequence of i.i.d. random
variables with distribution B(1/2), independent of Z1. The transition kernel of the chain
(Zi)i≥1 is:

K(f)(x) = 1
2

(
f

(
x

2

)
+ f

(
x+ 1

2

))
,

and the uniform distribution on [0, 1] is the unique invariant distribution by K. Hence,
the chain (Zi)i≥1 is strictly stationary. Furthermore, it is not α-mixing in the sense
of Rosenblatt [5], but it is φ̃-dependent in the sense of Dedecker-Prieur [10] (see also
Caron-Dede [7], Section 4.4). Indeed, one can prove that the coefficients φ̃(k) of the
chain (Zi)i≥1 decrease geometrically [10]: φ̃(k) ≤ 2−k. Let now Q0,σ2 be the inverse of
the cumulative distribution function of the law N (0, σ2). Let then:

εi = Q0,σ2(Zi).

The sequence (εi)i≥1 is also a stationary Markov chain (as an invertible function of a
stationary Markov chain), and one can easily check that its φ̃(k) coefficients are exactly
equal to those of the sequence (Zi)i≥1 (hence, (εi) satisfies Hannan’s condition (C1), see
Section 5.1 in [7]). By construction, εi is N (0, σ2)-distributed, but the sequence (εi)i≥1
is not a Gaussian process (otherwise it would be mixing in the sense of Rosenblatt).
Consequently Hannan’s conditions are satisfied and the tests can be corrected as indi-
cated above. For the simulations, let us notice that the variance σ2 is chosen equal to 25.

The first model simulated with this error process is the following linear regression
model, for all i in {1, . . . , n}:

Yi = β0 + β1(i2 +Xi) + εi,

with (Xi)i≥1 a gaussian AR(1) process (the variance is equal to 9), independent of the
Markov chain (εi)i≥1. The coefficient β0 is chosen equal to 3.

We test the hypothesis H0: β1 = 0, against the hypothesis H1: β1 6= 0, thanks to
the statistic Tj,n defined above (13). The estimated level of the test will be studied
for different choices of n and hn, which is linked to the number of covariance terms
considered. Under the hypothesis H0, the same test is carried out 2000 times. Then
we look at the frequency of rejection of the test when we are under H0, that is to say
the estimated level of the test. Let us specify that we want an estimated level close to 5%.

• Case β1 = 0 and hn = 1 (no correction):

n 200 400 600 800 1000
Estimated level 0.203 0.195 0.183 0.205 0.202
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Here, since hn = 1, we do not estimate any of the covariance terms. The result is
that the estimated levels are too large. This means that the test will reject the null
hypothesis too often.

The parameter hn may be chosen by analyzing the graph of the empirical autocovari-
ances, Figure 1. For this example, the shape of the empirical autocovariance suggests
to keep only 4 terms. This leads to choose hn = 5.

Figure 1. Empirical autocovariance of the residuals.

• Case β1 = 0, hn = 5:

n 200 400 600 800 1000
Estimated level 0.0845 0.065 0.0595 0.054 0.053

As suggested by the graph of the empirical autocovariances, the choice hn = 5 gives
better estimated levels than hn = 1. If one increases the size of the samples n, and the
number of estimated covariance terms, we are getting closer to the estimated level 5 %.
If n = 2000 and hn = 7, the estimated level is around 0.05.

Let us notice that even for n moderately large (n approximately 200), it is much
better to correct the test than not to do it. The estimated level goes from 20% to 8.5%.

• Case β1 = 0.00001, hn = 5:

In this example, H0 is not satisfied. We choose β1 equal to 0.00001, and we perform
the same tests as above (N = 2000) to estimate the power of the test.

n 200 400 600 800 1000
Estimated power 0.1025 0.301 0.887 1 1
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As one can see, the estimated power is always greater than 0.05, as expected. Still
as expected, the estimated power increases with the size of the samples. For n = 200,
the power of the test is around 0.10, and for n = 800, the power is around 1. As soon
as n = 800, the test always rejects the H0-hypothesis.

The second model considered is the following linear regression model, for all i in
{1, . . . , n}:

Yi = β0 + β1(log(i) + sin(i) +Xi) + β2i+ εi

Here, we test the hypothesis H0: β1 = β2 = 0 against H1: β1 6= 0 or β2 6= 0, thanks
to the statistic Ξ (14). The coefficient β0 is equal to 3, and we use the same simulation
scheme as above.

• Case β1 = β2 = 0 and hn = 1 (no correction):

n 200 400 600 800 1000
Estimated level 0.348 0.334 0.324 0.3295 0.3285

As for the first simulation, if hn = 1 the test will reject the null hypothesis too often.

As suggested by the graph of the estimated autocovariances Figure 2, it suggests to
keep only 5 terms of covariances. This leads to choose hn = 6.25.

Figure 2. Empirical autocovariance of the residuals.

• Case β1 = β2 = 0, hn = 6.25:

12



n 200 400 600 800 1000
Estimated level 0.09 0.078 0.066 0.0625 0.0595

Here, we see that the choice hn = 6.25 works well. For n = 1000, the estimated level
is around 0.06. If n = 2000 and hn = 6.25, the estimated level is around 0.05.

• Case β1 = 0.2, β2 = 0, hn = 6.25:

Now, we study the estimated power of the test. The coefficient β1 is chosen equal to
0.2 and β2 is equal to 0.

n 200 400 600 800 1000
Estimated power 0.33 0.5 0.6515 0.776 0.884

As expected, the estimated power increases with the size of the samples, and it is
around 0.9 when n = 1000.

5. Proofs

5.1. Theorem 3.1

Proof. In this proof, we use the notations introduced in Section 2 and Section 3. We
denote by V (X) the matrix equal to E

(
D(n)(β̂ − β)(β̂ − β)tD(n)t

∣∣∣X) and by vj,l its
coefficients.

By the triangle inequality, we have for all j, l in {1, . . . , p}:∣∣∣cn,(j,l) − cj,l∣∣∣ ≤ |vj,l − cj,l|+ ∣∣∣cn,(j,l) − vj,l∣∣∣ .
Thanks to Hannan’s Theorem 2.1, we already know that:

lim
n→∞

E
(
|vj,l − cj,l|

∣∣∣X) = 0, a.s. (15)

Then it remains to prove that:

lim
n→∞

E
(∣∣∣cn,(j,l) − vj,l∣∣∣ ∣∣∣X) = 0, a.s. (16)

The matrix V (X) is equal to:

D(n)(XtX)−1XtΓnX(XtX)−1D(n),

with Γn defined in (2), and the estimator Cn:

D(n)(XtX)−1XtΓ̂∗n,hnX(XtX)−1D(n),

with Γ̂∗n,hn defined in (8). Thanks to the convergence of Dn(XtX)−1Dn to R(0)−1, it is

13



sufficient to consider the matrices:

V ′ = D−1
n XtΓnXD−1

n

and:

C ′n = D−1
n XtΓ̂∗n,hnXD

−1
n .

We know that Γn =
∑n−1
k=−n+1 γ(k)J (k)

n . Thus we have for V ′ and C ′n the following
decomposition:

D(n)−1XtΓnXD(n)−1 =
n−1∑

k=−n+1
γ(k)Bk,n

and:

D(n)−1XtΓ̂∗n,hnXD(n)−1 =
n−1∑

k=−n+1
K

(
k

hn

)
γ̂∗kBk,n

with:

B0,n = D(n)−1XtXD(n)−1

Bk,n = D(n)−1XtJ (k)
n XD(n)−1,

and:

γ̂∗k = 1
n

n−|k|∑
j=1

ε̂j ε̂j+|k|.

Let us remark that:

Bk,n = [ρ̂j,l(k)], k ≥ 0

Bk,n = [ρ̂j,l(k)]t, k ≤ −1.

Let us compute:

∣∣∣c′n,(j,l) − v′j,l∣∣∣ =

∣∣∣∣∣∣
n−1∑

k=−n+1

(
K

(
k

hn

)
γ̂∗k − γ(k)

)
bk,nj,l

∣∣∣∣∣∣
where bk,nj,l is the coefficient (j, l) of the matrix Bk,n. We shall show that:

lim
n→∞

E

∣∣∣∣∣∣
n−1∑

k=−n+1

(
K

(
k

hn

)
γ̂∗k − γ(k)

)
bk,nj,l

∣∣∣∣∣∣
∣∣∣X
 = 0, a.s.

14



We recall that:

f(λ) = 1
2π

∞∑
k=−∞

γ(k)eikλ, γ(k) =
∫ π

−π
eikλf(λ)dλ,

where the coefficients γ(k) are the Fourier coefficients of the spectral density f(λ). We
have:

f∗n(λ) = 1
2π

n−1∑
k=−n+1

K

(
k

hn

)
γ̂∗ke

ikλ, K

(
k

hn

)
γ̂∗k =

∫ π

−π
eikλf∗n(λ)dλ

and the coefficients K
(
k
hn

)
γ̂∗k are the Fourier coefficients of the spectral density’s esti-

mator f∗n(λ). Let us define:

gn(λ) = 1
2π

n−1∑
k=−n+1

eikxBk,n,

in such a way that the matrices Bk,n are the Fourier coefficients of the function gn(λ):

Bk,n =
∫ π

−π
eikλgn(λ)dλ.

Consequently we can deduce that:

n−1∑
k=−n+1

(
K

(
k

hn

)
γ̂∗k − γ(k)

)
Bk,n =

∫ π

−π
(f∗n(λ)− f(λ)) gn(λ)(dλ).

Thus it remains to prove that, for all j, l in {1, . . . , p}:

lim
n→∞

E
(∣∣∣∣∫ π

−π
(f∗n(λ)− f(λ)) [gn(λ)]j,ldλ

∣∣∣∣ ∣∣∣X) = 0, a.s.

We have:

E
(∣∣∣∣∫ π

−π
(f∗n(λ)− f(λ)) [gn(λ)]j,ldλ

∣∣∣∣ ∣∣∣X) ≤ E
(∫ π

−π
|f∗n(λ)− f(λ)| |[gn(λ)]j,l| dλ

∣∣∣X)
≤

∫ π

−π
|[gn(λ)]j,l|E

(
|f∗n(λ)− f(λ)|

∣∣∣X) dλ
because [gn(λ)]j,l is measurable with respect to the σ-algebra generated by the design
X. Then:∫ π

−π
|[gn(λ)]j,l|E

(
|f∗n(λ)− f(λ)|

∣∣∣X) dλ
≤ sup

λ∈[−π,π]
E
(
|f∗n(λ)− f(λ)|

∣∣∣X) ∫ π

−π
|[gn(λ)]j,l| dλ.
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Theorem 3.1 of our paper [7] states that:

lim
n→∞

sup
λ∈[−π,π]

‖f∗n(λ)− f(λ)‖L1 = 0,

for a fixed design X and for the particular kernel defined by: K(x) = 1{|x|≤1} + (2 −
|x|)1{1≤|x|≤2}. But a quick look to the proof of this theorem suffices to see that this
result is available for any design X, conditionally to X:

lim
n→∞

sup
λ∈[−π,π]

E
(
|f∗n(λ)− f(λ)|

∣∣∣X) = 0, a.s.

Furthermore, this result is still available for all kernel K verifying the conditions at the
beginning of Section 3.

Thus it remains to find a bound for:∫ π

−π
|[gn(λ)]j,l| dλ.

Let us recall that the matrices Bk,n are equal to, for all k in {−n+ 1, . . . , n− 1}:

Bk,n = [ρ̂j,l(k)], k ≥ 0

Bk,n = [ρ̂j,l(k)]t, k ≤ −1.

By definition we have:

ρ̂j,l(k) = γ̂j,l(k)√
γ̂j,j(0)γ̂l,l(0)

. (17)

For a multivariate time series, let us recall that the cross-periodogram is defined by, for
all j, l in {1, . . . , p} [6]:

[In(λ)]j,l = 1
2π

n−1∑
k=−n+1

γ̂j,l(k)eikλ. (18)

Combining (17) and (18), the function gn(λ) is equal to, for all j, l in {1, . . . , p}:

[gn(λ)]j,l = [In(λ)]j,l√
γ̂j,j(0)γ̂l,l(0)

= 1
2π

n−1∑
k=−n+1

bk,nj,l e
ikλ.

Then using the definition of the coherence [6], we get:

|[gn(λ)]j,l| =
|[In(λ)]j,l|√
γ̂j,j(0)γ̂l,l(0)

≤
√

[In(λ)]j,j [In(λ)]l,l
γ̂j,j(0)γ̂l,l(0)

≤
√

[gn(λ)]j,j [gn(λ)]l,l ≤
1
2[gn(λ)]j,j + 1

2[gn(λ)]l,l.
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Consequently, we have:∫ π

−π
|[gn(λ)]j,l| dλ ≤

1
2

∫ π

−π
[gn(λ)]j,jdλ+ 1

2

∫ π

−π
[gn(λ)]l,ldλ ≤

1
2[B0,n]j,j + 1

2[B0,n]l,l ≤ 1,

because [B0,n]j,j = ρ̂j,j(0) = 1 and [B0,n]l,l = ρ̂l,l(0) = 1.
We deduce that, for all j, l in {1, . . . , p}:

E
(∣∣∣∣∫ π

−π
(f∗n(λ)− f(λ)) [gn(λ)]j,ldλ

∣∣∣∣ ∣∣∣X)
≤ sup

λ∈[−π,π]
E
(
|f∗n(λ)− f(λ)|

∣∣∣X) ∫ π

−π
|[gn(λ)]j,l| dλ

≤ sup
λ∈[−π,π]

E
(
|f∗n(λ)− f(λ)|

∣∣∣X) .
Since we know that:

lim
n→∞

sup
λ∈[−π,π]

E
(
|f∗n(λ)− f(λ)|

∣∣∣X) = 0, a.s.

we have proved that, for all j, l in {1, . . . , p}:

lim
n→∞

E
(∣∣∣∣∫ π

−π
(f∗n(λ)− f(λ)) [gn(λ)]j,ldλ

∣∣∣∣ ∣∣∣X) = 0, a.s.

5.2. Corollary 3.1

Proof. We want to prove that, for all j, l in {1, . . . , p}, cn,(j,l) converges in probability
to cj,l as n tends to infinity, that is, for all ε > 0:

E
(
1|cn,(j,l)−cj,l|>ε

)
−−−→
n→∞

0.

We have:

E
(
1|cn,(j,l)−cj,l|>ε

)
= E

(
E
(
1|cn,(j,l)−cj,l|>ε

∣∣∣X)) .
Thanks to Theorem 3.1 and to Markov’s inequality, we have almost surely:

E
(
1|cn,(j,l)−cj,l|>ε|X

)
≤

E
(∣∣∣cn,(j,l) − cj,l∣∣∣ ∣∣∣X)

ε
−−−→
n→∞

0.

Then, using the dominated convergence theorem, we get:

E
(
E
(
1|cn,(j,l)−cj,l|>ε

∣∣∣X)) −−−→
n→∞

0.
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