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Electromagnetic radiation emitted by a charged particle plunging from slightly below the innermost
stable circular orbit into a Schwarzschild black hole is examined. Both even- and odd-parity electro-
magnetic perturbations are considered. They are described by using gauge invariant master functions and
the regularized multipolar waveforms as well as their unregularized counterparts constructed from the
quasinormal-mode spectrum are obtained for arbitrary directions of observation and, in particular, outside
the orbital plane of the plunging particle. They are in excellent agreement and the results especially
emphasize the impact of higher harmonics on the distortion of the waveforms.

DOI: 10.1103/PhysRevD.98.024021

I. INTRODUCTION

In this article, we theoretically construct and numerically
obtain the regularized multipolar electromagnetic wave-
form generated by an electric charge plunging from slightly
below the innermost stable circular orbit (ISCO) into a
Schwarzschild black hole (BH) and analyze its late-stage
ringdown phase in terms of quasinormal modes (QNMs).
This is achieved for both even- and odd-parity electromag-
netic perturbations. Analogous problems concerning the
excitation of a BH by an electric charge and the generation
of the associated electromagnetic radiation have been
considered since the beginning of the seventies (for
pioneering works on this subject, see the lectures by
Ruffini [1] in Ref. [2] and references therein). Currently,
even if they oversimplify the accretion of charged matter by
a BH, such problems could nevertheless be of great interest
with the emergence of multimessenger astronomy which
combines the detection and analysis of gravitational waves
with those of other types of radiation for a better under-
standing of our “violent Universe.” In particular, it is
interesting to study the electromagnetic partner of the
gravitational signal during accretion of charged fluids onto
black holes [3,4] with in mind the possibility to test the BH
hypothesis (for a recent review on this subject, see Ref. [5]).
It should also be noted that, even if lots of problems
concerning energy extraction from charged particles falling
into BHs have been until now considered, the case we
intend to examine here has never before been discussed.
This is rather surprising: indeed, the ISCO as the last stable

orbit for massive particles plays a central role in the
accretion process [6].
Our paper is organized as follows. In Sec. II, after a brief

presentation of electromagnetism in the Schwarzschild
spacetime, we establish theoretically the expression of
the waveforms emitted by a charged point particle plunging
from the ISCO into the BH. Here, we work in the frequency
domain and use the standard Green’s function techniques.
Moreover, we consider both the even- and odd-parity
electromagnetic perturbations for arbitrary (l, m) modes
and work with the gauge invariant master functions
introduced by Ruffini, Tiomno and Vishveshwara in
Ref. [7] (see also Refs. [8,9]) which are solutions of the
Regge-Wheeler equation with source term. In Sec. III, we
extract from the results of Sec. II the QNM counterpart of
the waveforms corresponding to the electromagnetic ring-
ing of the BH. We have gathered all our numerical results
and their analysis in Sec. IV where we display the
regularized multipolar waveforms emitted and compare
them with the unregularized counterparts constructed
solely from the QNM spectrum. It should be noted that
our results are obtained for arbitrary directions of obser-
vation and, in particular, outside the orbital plane of the
plunging particle. In the late phase of the signals, the exact
multipolar waveforms and the associated quasinormal
ringings are in excellent agreement. Moreover, our results
especially emphasize the impact of higher harmonics on the
distortion of the waveforms. In the Conclusion, we sum-
marize the main results obtained in this article and we
consider its extension to the much more important problem
of the construction of the multipolar gravitational wave-
forms generated by a massive point particle plunging from
slightly below the ISCO into a Schwarzschild BH. In an
Appendix, we carefully examine the regularization of the
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partial amplitudes from both the theoretical and numerical
point of view. Indeed, the exact waveforms theoretically
constructed in Sec. II are integrals over the radial
Schwarzschild coordinate which are strongly divergent
near the ISCO. For odd perturbations, they can be “numeri-
cally regularized” by using Levin’s algorithm [10] but, for
even perturbations, it is necessary to reduce the degree of
divergence of these integrals by successive integrations by
parts before applying the same numerical algorithm.
Throughout this article, we adopt units such that G ¼

c ¼ 1 and we use the geometrical conventions of Ref. [11].

II. ELECTROMAGNETIC FIELD GENERATED BY
THE PLUNGING CHARGED PARTICLE

In this section, we shall obtain theoretically the expres-
sion of the even- and odd-parity waveforms emitted by a
charged point particle plunging from slightly below the
ISCO into the BH by working in the frequency domain and
using the standard Green’s function techniques. Moreover,
we shall fix the notations used throughout the whole article.
We first recall that the exterior of the Schwarzschild BH

of mass M is defined by the metric

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dσ22 ð1Þ

where fðrÞ ¼ ð1 − 2M=rÞ and dσ22 ¼ dθ2 þ sin2θdφ2

denotes the metric on the unit 2-sphere S2 and with the
Schwarzschild coordinates (t, r, θ, φ) which satisfy
t ∈� −∞;þ∞½, r ∈�2M;þ∞½, θ ∈ ½0; π� and φ ∈ ½0; 2π�.
In the following, we shall also use the so-called tortoise
coordinate r� ∈� −∞;þ∞½ defined in term of the radial
Schwarzschild coordinate r by dr=dr� ¼ fðrÞ and given by
r�ðrÞ ¼ rþ 2M ln½r=ð2MÞ − 1�. We recall that the function
r� ¼ r�ðrÞ provides a bijection from �2M;þ∞½ to �−
∞;þ∞½.

A. Electromagnetic field generated by
a moving charged particle

Electromagnetic radiation of the Schwarzschild BH
excited by a charged particle (we denote by q its electric
charge) moving along a world line γ described by the
equations xμp ¼ xμpðτÞ (here τ is the proper time of the
charged particle) is governed by the wave equation

□Aμ −∇μ∇νAν ¼ −Jμ: ð2Þ

Here, Aμ is the electromagnetic potential generated by
the moving particle and Jμ is the corresponding current
given by

JμðxÞ ¼ q
Z
γ
dτ

dxμpðτÞ
dτ

δ4ðx − xpðτÞÞffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp : ð3Þ

In order to solve the wave equation (2) in the Schwarzschild
spacetime (see, e.g., Ref. [7]), we can expand the electro-
magnetic potential Aμ and the current Jμ in vector spherical

harmonics in the form Aμ¼AðeÞ
μ þAðoÞ

μ and Jμ¼JðeÞμ þJðoÞμ .
Here, and in the following, the symbols (e) and (o) are
respectively associated with even (polar) and odd (axial)
objects according they are of even or odd parity in the
antipodal transformation on the unit 2-sphere S2. We have

AðeÞ
μ ¼

Xþ∞

l¼0

Xþl

m¼−l
ðMlm

t Ylm;Mlm
r Ylm;MlmYlm

θ ;MlmYlm
φ Þ

ð4aÞ

and

AðoÞ
μ ¼

Xþ∞

l¼1

Xþl

m¼−l
ð0; 0; NlmXlm

θ ; NlmXlm
φ Þ ð4bÞ

for the potential and

JðeÞμ ¼
Xþ∞

l¼0

Xþl

m¼−l
ðJlmt Ylm;Jlmr Ylm;JlmYlm

θ ;JlmYlm
φ Þ ð5aÞ

and

JðoÞμ ¼
Xþ∞

l¼1

Xþl

m¼−l
ð0; 0; KlmXlm

θ ; KlmXlm
φ Þ ð5bÞ

for the current. Here, the componentsMlm
t ,Mlm

r ,Mlm and
Nlm of the potential as well as the components Jlmt , Jlmr ,
Jlm and Klm of the current are functions of t and r. The
angular functions Ylmðθ;φÞ are the standard scalar spheri-
cal harmonics while the angular functions Yθ

lmðθ;φÞ,
Yφ

lmðθ;φÞ, Xθ
lmðθ;φÞ and Xφ

lmðθ;φÞ are the vector
spherical harmonics which are given by

Yθ
lm ¼ ∂

∂θ Y
lm and Yφ

lm ¼ ∂
∂φYlm ð6aÞ

for the even vector spherical harmonics and by

Xθ
lm ¼ 1

sinθ
∂
∂φY

lm and Xφ
lm¼−sinθ

∂
∂θY

lm ð6bÞ

for the odd ones. It is important to recall that, due to the
relation Yl−m ¼ ð−1Þm½Ylm��, the vector spherical harmon-
ics satisfy

Yθ
l−m ¼ ð−1Þm½Yθ

lm�� and Yφ
l−m ¼ ð−1Þm½Yφ

lm��
ð7aÞ

as well as

ANTOINE FOLACCI and MOHAMED OULD EL HADJ PHYS. REV. D 98, 024021 (2018)

024021-2



Xθ
l−m¼ð−1Þm½Xθ

lm�� and Xφ
l−m¼ð−1Þm½Xφ

lm��:
ð7bÞ

By inserting (4) and (5) into the wave equation (2) and
using the properties of the spherical harmonics (see,
e.g., Ref. [12] or [13]), we can construct two gauge-

invariant functions denoted by ψ ðeÞ
lmðt; rÞ and ψ ðoÞ

lmðt; rÞ
and given by [7]

ψ ðeÞ
lm ¼ r2

� ∂
∂tM

lm
r −

∂
∂rM

lm
t

�
ð8Þ

and

ψ ðoÞ
lm ¼ lðlþ 1ÞNlm: ð9Þ

Here l ¼ 1; 2; 3… and m ¼ −l;−lþ 1;…;þl and the
(l ¼ 0, m ¼ 0) mode has been eliminated by a suitable
gauge transformation. These gauge invariant functions
satisfy the Regge-Wheeler equation

�
−
∂2

∂t2þ
∂2

∂r2�−VlðrÞ
�
ψ ðe=oÞ
lm ðt;rÞ¼ Sðe=oÞlm ðt;rÞ ð10aÞ

with

VlðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2

�
: ð10bÞ

It is important to note that the potential VlðrÞ is the same in

the two parity sectors. Here the functions SðeÞlmðt; rÞ and

SðoÞlmðt; rÞ are source terms which depend on the trajectory
xμp ¼ xμpðτÞ of the charged particle and which can be
expressed from the components of the current (5) They
are given by

SðeÞlm ¼ −fðrÞ
�
r2

∂
∂t J

lm
r −

∂
∂r ðr

2Jlmt Þ
�

ð11Þ

and

SðoÞlm ¼ −lðlþ 1ÞfðrÞKlm: ð12Þ
We must point out that the partial amplitudes ψ ðe=oÞ

lm ðt; rÞ
permit us to obtain the electromagnetic field (E, B)
observed at spatial infinity (i.e., for r → þ∞). We have,
in particular, in the usual orthonormalized basis (êr, êθ, êφ)
of the spherical coordinate system, the electric field which
is given in the even sector by

EðeÞ ¼

���������

EðeÞ
r ¼ 0

EðeÞ
θ ¼ − 1

r

P
lm

1
lðlþ1Þ ∂rψ

ðeÞ
lmYθ

lm

EðeÞ
φ ¼ − 1

r sin θ

P
lm

1
lðlþ1Þ ∂rψ

ðeÞ
lmYφ

lm;

ð13Þ

and, in the odd sector, by

EðoÞ ¼

���������

EðoÞ
r ¼ 0

EðoÞ
θ ¼ − 1

r

P
lm

1
lðlþ1Þ ∂tψ

ðoÞ
lmXθ

lm

EðoÞ
φ ¼ − 1

r sin θ

P
lm

1
lðlþ1Þ ∂tψ

ðoÞ
lmXφ

lm:

ð14Þ

In the following, we shall not consider the magnetic field B
because its components, which can be obtained from the
Maxwell-Faraday equation, can be expressed in terms of
those of the electric field. Indeed, it should be noted that,

for r → þ∞, we have ∂tψ
ðe=oÞ
lm ¼ −∂rψ

ðe=oÞ
lm and, as a

consequence of (6a) and (6b), we can write the relations

Bðe=oÞ
θ ¼ −Eðe=oÞ

φ and Bðe=oÞ
φ ¼ þEðe=oÞ

θ : ð15Þ
In order to solve the Regge-Wheeler equation (10), we

shall work in the frequency domain by writing

ψ ðe=oÞ
lm ðt; rÞ ¼ 1ffiffiffiffiffiffi

2π
p

Z þ∞

−∞
dω ψ ðe=oÞ

ωlm ðrÞe−iωt ð16Þ

and

Sðe=oÞlm ðt; rÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dωSðe=oÞωlm ðrÞe−iωt: ð17Þ

Then, the Regge-Wheeler equation (10) reduces to�
d2

dr2�
þ ω2 − VlðrÞ

�
ψ ðe=oÞ
ωlm ðrÞ ¼ Sðe=oÞωlm ðrÞ: ð18Þ

B. Sources due to the plunging charged particle

In this article, we shall focus on the electromagnetic
radiation generated by a particle plunging into the BH from
the ISCO at rISCO ¼ 6M or, more precisely, from slightly
below the ISCO. We denote by tpðτÞ, rpðτÞ, θpðτÞ and
φpðτÞ the coordinates of the timelike geodesic followed by
the charged particle and, without loss of generality, we
consider that its trajectory lies in the BH equatorial plane,
i.e., we assume that θpðτÞ ¼ π=2. The geodesic equations
are given by [14]

fðrpÞ
dtp
dτ

¼ Ẽ; ð19aÞ

r2p
dφp

dτ
¼ L̃ ð19bÞ

and �
drp
dτ

�
2

þ L̃2

r2p
fðrpÞ −

2M
rp

¼ Ẽ2 − 1: ð19cÞ

Here Ẽ and L̃ are, respectively, the energy and angular
momentum per unit mass of the charged particle. These two
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quantities are conserved along the geodesic and given on
the ISCO by

Ẽ ¼ 2
ffiffiffi
2

p

3
and L̃ ¼ 2

ffiffiffi
3

p
M: ð20Þ

By substituting (20) into the geodesic equations (19a)–(19b),
we obtain after integration

tpðrÞ
2M

¼ 2
ffiffiffi
2

p ðr − 24MÞ
2Mð6M=r − 1Þ1=2 − 22

ffiffiffi
2

p
tan−1½ð6M=r − 1Þ1=2�

þ 2tanh−1
�
1ffiffiffi
2

p ð6M=r − 1Þ1=2
�
þ t0
2M

ð21Þ

and

φpðrÞ ¼ −
2

ffiffiffi
3

p

ð6M=r − 1Þ1=2 þ φ0 ð22Þ

where t0 and φ0 are two arbitrary integration constants. From
(22), we can write the spatial trajectory of the plunging
particle in the form

rpðφÞ ¼
6M

½1þ 12=ðφ − φ0Þ2�
: ð23Þ

This trajectory is displayed in Fig. 1.
For the plunging charged particle, the sources Sðe=oÞlm ðt; rÞ

can be obtained from the expansions (5) by inserting the
geodesic equations (19a)–(19c) into (3) and by using (20)
as well as the change of variable τ → rpðτÞ. From (3) we
have

JμðxÞ¼ q
dxμp
dτ

ðrÞ
�
drp
dτ

ðrÞ
�
−1

×
δ½t− tpðrÞ�δ½θ−π=2�δ½φ−φpðrÞ�

r2 sinθ
ð24Þ

which permits us to write

SðeÞlmðt; rÞ
¼ q½Ylmðπ=2;0Þ��fðrÞ

×

��
18

ffiffiffi
2

p
M

r2ð6M=r− 1Þ5=2 þ im
12

ffiffiffi
6

p
M

r2ð6M=r− 1Þ3
�
δ½t− tpðrÞ�

þ 9ðr2 þ 12M2Þ
r2ð6M=r− 1Þ3 δ

0½t− tpðrÞ�
�
e−imφpðrÞ ð25Þ

and

SðoÞlmðt; rÞ ¼ q½Xlm
φ ðπ=2; 0Þ��fðrÞ 6

ffiffiffi
3

p
M

r2ð6M=r − 1Þ3=2
× δ½t − tpðrÞ�e−imφpðrÞ ð26Þ

and we have for their Fourier components defined
by (17)

SðeÞωlmðrÞ ¼
qffiffiffiffiffiffi
2π

p ½Ylmðπ=2; 0Þ��fðrÞ
�

18
ffiffiffi
2

p
M

r2ð6M=r − 1Þ5=2

þ im
12

ffiffiffi
6

p
M

r2ð6M=r − 1Þ3 − iω
9ðr2 þ 12M2Þ
r2ð6M=r − 1Þ3

�
× ei½ωtpðrÞ−mφpðrÞ� ð27Þ

and

SðoÞωlmðrÞ ¼
qffiffiffiffiffiffi
2π

p ½Xlm
φ ðπ=2; 0Þ��fðrÞ

�
6

ffiffiffi
3

p
M

r2ð6M=r − 1Þ3=2
�

× ei½ωtpðrÞ−mφpðrÞ�: ð28Þ
It is interesting to remark that, as a consequence of (7a)

and (7b), we have

Sðe=oÞωl−m ¼ ð−1Þm½Sðe=oÞ−ωlm��: ð29Þ

Furthermore, it is important to note that the coefficient
Ylmðπ=2; 0Þ appearing in Eqs. (25) and (27) and the
coefficient Xlm

φ ðπ=2; 0Þ appearing in Eqs. (26) and (28) are
given by

Ylmðπ=2; 0Þ ¼ 2mffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

s

×
Γ½l=2þm=2þ 1=2�
Γ½l=2 −m=2þ 1� cos ½ðlþmÞπ=2�

ð30Þ

0

15 °

30 °

45 °

60 °

75 °90 °
105 °

120 °

135 °

150 °

165 °

180 °

195 °

210 °

225 °

240 °

255 °
270 ° 285 °

300 °

315 °

330 °

345 °

2M

6M

FIG. 1. The plunge trajectory obtained from Eq. (23). Here, we
assume that the particle starts at r ¼ rISCOð1 − ϵÞ with ϵ ¼ 10−3

and we take φ0 ¼ 0. The red dashed line at r ¼ 6M and the red
dot-dashed line at r ¼ 2M represent the ISCO and the horizon,
respectively.
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and

Xlm
φ ðπ=2; 0Þ ¼ 2mþ1ffiffiffi

π
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

s

×
Γ½l=2þm=2þ 1�
Γ½l=2 −m=2þ 1=2� sin ½ðlþmÞπ=2�:

ð31Þ

As a consequence, Ylmðπ=2; 0Þ and hence the sources (25)
and (27) vanish for lþm odd while Xlm

φ ðπ=2; 0Þ and
hence the sources (26) and (28) vanish for lþm even. Due
to these results, we have to only consider the couples (l,m)
with lþm even in the expression (13) of the electric field
EðeÞ and the couples (l, m) with lþm odd in the
expression (14) of the electric field EðoÞ.

C. Construction of the partial amplitudes ψðe=oÞ
lm ðt;rÞ

The Regge-Wheeler equation (18) can be solved by
using the machinery of Green’s functions (see Ref. [15] for
generalities on this topic and, e.g., Ref. [16] for its use in
the context of BH physics). We consider the Green’s
function Gωlðr�; r0�Þ defined by

�
d2

dr2�
þ ω2 − VlðrÞ

�
Gωlðr�; r0�Þ ¼ −δðr� − r0�Þ ð32Þ

which can be written as

Gωlðr�; r0�Þ ¼ −
1

WlðωÞ
�
ϕin
ωlðr�Þϕup

ωlðr0�Þ; r� < r0�;

ϕup
ωlðr�Þϕin

ωlðr0�Þ; r� > r0�:

ð33Þ

Here WlðωÞ denotes the Wronskian of the functions ϕin
ωl

and ϕup
ωl. These two functions are linearly independent

solutions of the homogenous Regge-Wheeler equation

�
d2

dr2�
þ ω2 − VlðrÞ

�
ϕωl ¼ 0: ð34Þ

ϕin
ωl is defined by its purely ingoing behavior at the event

horizon r ¼ 2M (i.e., for r� → −∞)

ϕin
ωlðrÞ ∼

r�→−∞
e−iωr� ð35aÞ

while, at spatial infinity r → þ∞ (i.e., for r� → þ∞), it
has an asymptotic behavior of the form

ϕin
ωlðrÞ ∼

r�→þ∞
Að−Þ
l ðωÞe−iωr� þ AðþÞ

l ðωÞeþiωr� : ð35bÞ

Similarly, ϕup
ωl is defined by its purely outgoing behavior at

spatial infinity

ϕup
ωlðrÞ ∼

r�→þ∞
eþiωr� ð36aÞ

and, at the horizon, it has an asymptotic behavior of the
form

ϕup
ωlðrÞ ∼

r�→−∞
Bð−Þ
l ðωÞe−iωr� þ BðþÞ

l ðωÞeþiωr� : ð36bÞ

In the previous expressions, the coefficients Að−Þ
l ðωÞ,

AðþÞ
l ðωÞ, Bð−Þ

l ðωÞ and BðþÞ
l ðωÞ are complex amplitudes.

By evaluating the Wronskian WlðωÞ at r� → −∞ and
r� → þ∞, we obtain

WlðωÞ ¼ 2iωAð−Þ
l ðωÞ ¼ 2iωBðþÞ

l ðωÞ: ð37Þ

Here, it is worth noting some important properties of the

coefficients Að−Þ
l ðωÞ and AðþÞ

l ðωÞ and of the function
ϕin
ωlðrÞ that we will use extensively later. They are a direct

consequence of Eqs. (34) and (35) and they are valid
whether ω is real or complex:

ϕin
−ωlðrÞ¼ ½ϕin

ωlðrÞ�� and Að�Þ
l ð−ωÞ¼ ½Að�Þ

l ðωÞ��: ð38Þ

Now, by using the Green’s function (33), we can show
that the solution of the Regge-Wheeler equation with
source (18) is given by

ψ ðe=oÞ
ωlm ðrÞ ¼ −

Z þ∞

−∞
dr0�Gωlðr�; r0�ÞSðe=oÞωlm ðr0�Þ ð39aÞ

¼ −
Z

6M

2M

dr0

fðr0ÞGωlðr; r0ÞSðe=oÞωlm ðr0Þ: ð39bÞ

For r → þ∞, the solution (39b) reduces to the asymp-
totic expression

ψ ðe=oÞ
ωlm ðrÞ¼ eþiωr�

2iωAð−Þ
l ðωÞ

Z
6M

2M

dr0

fðr0Þϕ
in
ωlðr0ÞSðe=oÞωlm ðr0Þ: ð40Þ

This result is a consequence of Eqs. (33), (36a) and (37).
We can now obtain the solution of the Regge-Wheeler

equation (10) by inserting (40) into (16) and we have for the
(l, m) waveform in the time domain

ψ ðe=oÞ
lm ðt; rÞ ¼ 1ffiffiffiffiffiffi

2π
p

Z þ∞

−∞
dω

�
e−iω½t−r�ðrÞ�

2iωAð−Þ
l ðωÞ

�

×
Z

6M

2M

dr0

fðr0Þϕ
in
ωlðr0ÞSðe=oÞωlm ðr0Þ: ð41Þ

Here it is important to note that these partial waveforms
satisfy
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ψ ðe=oÞ
l−m ¼ ð−1Þm½ψ ðe=oÞ

lm ��: ð42Þ

This is a direct consequence of the definition (16) and of the
relation

ψ ðe=oÞ
ωl−m ¼ ð−1Þm½ψ ðe=oÞ

ωlm �� ð43Þ

which is easily obtained from (40) and (29) by noting that
the solution ϕin

ωl of the problem (34)–(35) and the asso-

ciated coefficient Að−Þ
l ðωÞ satisfy (38). The relations (42),

(7a) and (7b) permit us to check that the electric fields (13)
and (14) are purely real.

III. QUASINORMAL RINGINGS DUE TO THE
PLUNGING CHARGED PARTICLE

In this section, we shall explain how to construct the
quasinormal ringings associated with the electric fields (13)
and (14). Of course, they can be obtained by summing over
the ringings associated with all the partial amplitudes

ψ ðe=oÞ
lm ðt; rÞ. In order to extract from these partial amplitudes

the corresponding quasinormal ringings ψQNMðe=oÞ
lm ðt; rÞ,

the contour of integration over ω in Eq. (41) may be
“deformed” (see, e.g., Ref. [17]). This deformation permits
us to capture the zeros of the Wronskian (37) lying in the
lower part of the complex ω plane and which are the
complex frequencies ωln of the (l, n) QNMs. We note that,
for a given l, n ¼ 1 corresponds to the fundamental QNM
(i.e., the least damped one) while n ¼ 2; 3;… to the
overtones. We also recall that the spectrum of the quasi-
normal frequencies is symmetric with respect to the
imaginary axis, i.e., that if ωln is a quasinormal frequency
lying in the fourth quadrant, −ω�

ln is the symmetric
quasinormal frequency lying in the third one. We easily
obtain

ψQNMðe=oÞ
lm ðt; rÞ ¼

Xþ∞

n¼1

ψQNMðe=oÞ
lmn ðt; rÞ ð44Þ

with

ψQNMðe=oÞ
lmn ðt; rÞ ¼ −

ffiffiffiffiffiffi
2π

p
ðCðe=oÞlmn e−iωln½t−r�ðrÞ�

þDðe=oÞ
lmn eþiω�

ln½t−r�ðrÞ�Þ: ð45Þ

In this expression, Cðe=oÞlmn and Dðe=oÞ
lmn denote the extrinsic

excitation coefficients (see, e.g., Refs. [17–19] for more
details on this concept). They are here defined by

Cðe=oÞlmn ¼ Bln

�Z
6M

2M

dr0

fðr0Þ
ϕin
ωlðr0Þ

AðþÞ
l ðωÞ

Sðe=oÞωlm ðr0Þ
�
ω¼ωln

ð46aÞ

and

Dðe=oÞ
lmn ¼B�

ln

�Z
6M

2M

dr0

fðr0Þ
ϕin
ωlðr0Þ

AðþÞ
l ðωÞ

Sðe=oÞωlm ðr0Þ
�
ω¼−ω�

ln

ð46bÞ

while

Bln ¼
�
1

2ω

AðþÞ
l ðωÞ

d
dωA

ð−Þ
l ðωÞ

�
ω¼ωln

ð47Þ

is the so-called excitation factor associated with the (l, n)
QNM of complex frequency ωln. The first term in the right-
hand side (r.h.s.) of Eq. (45) is the contribution of the
quasinormal frequency ωln lying in the fourth quadrant of
the ω plane while the second one is the contribution of
−ω�

ln, i.e., its symmetric with respect to the imaginary axis.
In front of the bracket in the r.h.s. of Eq. (46b), the
coefficient B�

ln is nothing else than the excitation factor
associated with the (l, n) QNM of complex frequency
−ω�

ln. It is obtained from (47) by using the properties (38).
A few remarks are in order:
(1) The excitation coefficients (46a) and (46b) depend

on the parity sector because they are constructed
from the sources. This is not the case for the
excitation factor (47): Indeed, it is defined only
from the Regge-Wheeler equation (18) without
source term and where the potential VlðrÞ is
identical in the two parity sectors.

(2) In our problem, the spherical symmetry of the
Schwarzschild BH is broken due to the asymmetric
plunging trajectory. It is this dissymmetry which,
in connection with the presence of the azimuthal
number m, forbids us to gather the two terms in
Eq. (45).

(3) It is however important to note that the excitation
coefficients (46) are related by

Cðe=oÞl−mn ¼ ð−1Þm½Dðe=oÞ
lmn �� ð48Þ

[this is due to the properties (38)] and hence that the
quasinormal waveforms (44) satisfy

ψQNMðe=oÞ
l−m ¼ ð−1Þm½ψQNMðe=oÞ

lm ��: ð49Þ

The quasinormal electric fields obtained from (13)
and (14) by replacing ψ ðe=oÞ

lmn ðt; rÞ with ψQNMðe=oÞ
lmn

ðt; rÞ are then purely real as a consequence of the
relations (49), (7a) and (7b).

(4) The ringings ψQNMðe=oÞ
lmn ðt; rÞ do not provide physi-

cally relevant results at “early times” due to their
exponentially divergent behavior as t decreases. It is
necessary to determine, from physical considera-
tions (see below), the time beyond which these
quasinormal waveforms can be used, i.e., the starting
time tstart of the BH ringings.
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IV. MULTIPOLAR WAVEFORMS AND
QUASINORMAL RINGDOWNS

A. Numerical methods

In order to construct the electric fields (13) and (14), it
is first necessary to obtain numerically the partial ampli-

tudes ψ ðe=oÞ
lm ðt; rÞ given by (41). For that purpose, using

Mathematica [20]:
(1) We have determined the functions ϕin

ωl as well as

the coefficients Að−Þ
l ðωÞ. This has been achieved

by integrating numerically the homogeneous
Regge-Wheeler equation (34) with the Runge-
Kutta method. We have initialized the process with
Taylor series expansions converging near the
horizon and we have compared the solutions to
asymptotic expansions with ingoing and outgoing
behavior at spatial infinity that we have decoded
by Padé summation.

(2) We have regularized the partial amplitudes ψ ðe=oÞ
ωlm ðrÞ

given by (40), i.e., the Fourier transform of the

partial amplitudes ψ ðe=oÞ
lm ðt; rÞ. Indeed, these ampli-

tudes as integrals over the radial Schwarzschild
coordinate are strongly divergent near the ISCO.
This is due to the behavior of the sources (27) and
(28) in the limit r → 6M. The regularization process
is described in the Appendix. It consists in replacing
the partial amplitudes (40) by their counterparts
(A21) and to evaluate the result by using Levin’s
algorithm [10].

(3) We have Fourier transformed ψ ðe=oÞ
ωlm ðrÞ to get the

final result.
Then, from the partial amplitudes ψ ðe=oÞ

lm ðt; rÞ, it is

possible to obtain the components Eðe=oÞ
θ and Eðe=oÞ

φ of
the electric field by using the superpositions (13) and (14).
We have constructed the even components from the (l, m)
modes with l ¼ 1;…; 10 and m ¼ �l which constitute
the main contributions. Similarly, we have constructed the
odd components from the (l, m) modes with l ¼ 1;…; 10
and m ¼ �ðl − 1Þ. In fact, it is not necessary to take

TABLE I. The first quasinormal frequencies ωln and the
associated excitation factors Bln.

(l, n) 2Mωln Bln

(1,1) 0.496527 − 0.184975i −0.161402þ 0.011856i
(2,1) 0.915191 − 0.190009i 0.121187þ 0.018638i
(3,1) 1.313800 − 0.191232i −0.093439 − 0.043528i
(4,1) 1.706190 − 0.191720i 0.067181þ 0.060960i
(5,1) 2.095830 − 0.191963i −0.041097 − 0.070922
(6,1) 2.483992 − 0.192102i 0.015879þ 0.073663i
(7,1) 2.871282 − 0.192189i 0.007211 − 0.069753i
(8,1) 3.258010 − 0.192247i −0.026845þ 0.060132i
(9,1) 3.644350 − 0.192288i 0.041902 − 0.046078i
(10,1) 4.030411 − 0.192317i −0.051579þ 0.029124i
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higher values for l because, in general, they do not really
modify the numerical sums (13) and (14).
In order to construct the quasinormal ringings associated

with the electric fields (13) and (14), it is necessary to
obtain numerically the partial amplitudes ψQNMðe=oÞ

lm ðt; rÞ
given by (44) and, as a consequence, the quasinormal
frequencies ωln, the excitation factors Bln as well as the

excitation coefficients Cðe=oÞlmn and Dðe=oÞ
lmn . The quasinormal

frequencies ωln can be determined by using the method
developed by Leaver [21]. We have implemented numeri-
cally this method by using the Hill determinant approach
of Majumdar and Panchapakesan [22]. The excitation

coefficients Cðe=oÞlmn and Dðe=oÞ
lmn can be “easily” calculated.

Indeed, we first obtain the excitation factors Bln, as well as

the functions ϕin
ωlnl

ðrÞ and the coefficients AðþÞ
l ðωlnÞ by

integrating numerically the homogeneous Regge-Wheeler
equation (34) (for ω ¼ ωln) with the Runge-Kutta method
and then by comparing the solutions to asymptotic expan-
sions with ingoing and outgoing behavior at spatial infinity.
The evaluation of the integrals in Eqs. (46a) and (46b) is
then rather elementary because we do not have to regularize
them. It should be noted that, for a given l, it is possible to
consider only the fundamental QNM (n ¼ 1) which is the
least damped one. Moreover, we need only the excitation

coefficients CðeÞlmn andD
ðeÞ
lmn with l ¼ 1;…; 10 andm ¼ �l

and the excitation coefficients CðoÞlmn and DðoÞ
lmn with

l ¼ 1;…; 10 and m ¼ �ðl − 1Þ. In Tables I and II, we
provide the various ingredients permitting us to construct
the quasinormal ringing associated with the electric fields
(13) and (14). It should be finally recalled that it is
necessary to select a starting time tstart for the BH ringing.
By taking tstart ¼ tpð3MÞ, i.e., the moment the charged
particle crosses the photon sphere, we have obtained
physically relevant results.

B. Results and comments

In Figs. 2–7, we have considered the components Eðe=oÞ
θ=φ

of the electric field observed at infinity. The multipolar
waveforms have been obtained by assuming that the
particle starts at r ¼ rISCOð1 − ϵÞ with ϵ ¼ 10−4 and,
furthermore, in Eqs. (21) and (22), we have taken φ0 ¼
0 and chosen t0=ð2MÞ in order to shift the interesting part
of the signal in the window t=ð2MÞ ∈ ½0; 205�. Without loss
of generality, we have constructed only the signals for
various directions above the orbital plane of the plunging
particle. Indeed, we could obtain those observed below that
plane by using the symmetry properties of the vector
spherical harmonics in the antipodal transformation on
the unit 2-sphere S2. Moreover, for the waveforms dis-
played in Figs. 3–7, we have assumed that the observer lies
in the plane φ ¼ 0. In fact, for any other value of φ, the

FIG. 2. Components Eðe=oÞ
θ=φ of the electric field observed at infinity in the direction (θ ¼ π=3, φ ¼ 0) above the orbital plane of the

plunging particle. We study the influence of the number of modes on the distortion of the waveforms.
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FIG. 3. Electric field EðeÞ
θ observed at infinity for various directions above the orbital plane of the plunging particle. We consider φ ¼ 0

and we study the distortion of the multipolar waveform and of the associated quasinormal ringdown when θ varies between −π=2 and

þπ=2. We note that EðeÞ
θ vanishes for θ ¼ �π=2 and that, for θ ¼ 0, only the (l ¼ 1, m ¼ �1) modes contribute to the signal.
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FIG. 4. Electric field EðeÞ
φ observed at infinity for various directions above the orbital plane of the plunging particle. We consider φ ¼ 0

and we study the distortion of the multipolar waveform and of the associated quasinormal ringdown when θ varies between −π=2 and

þπ=2. We note that EðeÞ
φ vanishes for θ ¼ 0.
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FIG. 5. Electric field EðoÞ
θ observed at infinity for various directions above the orbital plane of the plunging particle. We consider φ ¼ 0

and we study the distortion of the multipolar waveform and of the associated quasinormal ringdown when θ varies between −π=2 and

þπ=2. We note that EðoÞ
θ vanishes for θ ¼ �π=2 and that, for θ ¼ 0, only the (l ¼ 2, m ¼ �1) modes contribute to the signal.

ELECTROMAGNETIC RADIATION GENERATED BY A … PHYS. REV. D 98, 024021 (2018)

024021-11



FIG. 6. Electric field EðoÞ
φ observed at infinity for various directions above the orbital plane of the plunging particle. We consider φ ¼ 0

and we study the distortion of the multipolar waveform and of the associated quasinormal ringdown when θ varies between −π=2 and
þπ=2. We note that, for θ ¼ 0, only the (l ¼ 2, m ¼ �1) modes contribute to the signal.
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behavior of the signals is very similar. The results corre-
sponding to arbitrary values of θ and φ are available to the
interested reader upon request.
The distortion of the multipolar waveforms and of the

associated quasinormal ringdowns appears clearly in
Figs. 2–6. It can be observed in the “adiabatic phase”
corresponding to the quasicircular motion of the particle
near the ISCO (see Fig. 1) as well as in the ringdown phase.
It is due to the large number of (l, m) modes considered in
the sums (13) and (14). In particular, the necessity to take

into account a large number of modes to describe the
waveforms is highlighted in Fig. 2. Moreover, it should be
noted that the distortion of the signals is strongly dependent
on the direction of the observer.
The multipolar waveforms and the associated quasinor-

mal ringdowns are in excellent agreement as can be seen in
Figs. 3–6 or, more clearly, in Fig. 7 where we work with
semilog graphs. Here, it is important to recall (see Sec. IVA)
that it has been necessary to regularize the former while the
latter are unregularized.

FIG. 7. Semilog graphs of some multipolar waveforms showing the dominance of the quasinormal ringing at intermediate times and
the agreement of the regularized waveforms with the unregularized quasinormal responses.
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V. CONCLUSION AND PERSPECTIVES

In this article, we have described the electromagnetic
radiation emitted by a chargedparticle plunging fromslightly
below the ISCO into a Schwarzschild BH. For this, we have
constructed the associated multipolar electromagnetic wave-
forms and analyzed their late-stage ringdown phase in terms
of QNMs. Our results have been obtained for arbitrary
directions of observation and have permitted us to emphasize
more particularly the impact of higher harmonics on the
distortion of thewaveforms. It ismoreover interesting to note
the excellent agreement between the “exact” waveforms we
had to regularize and the quasinormalwaveformswhich have
not required a similar treatment.
Our work could be interesting in the context of multi-

messenger astronomy but it can also be considered as a
warm-up with in mind the multipolar description, in the
framework ofBHperturbations, of the gravitational radiation
produced by a “massive particle” plunging from the ISCO
into a Schwarzschild BH [23]. In particular, our present
careful analysis of the theoretical and numerical difficulties
linked with the regularization of the waveforms will be very
helpful to deal with this more complicated problem which is
of fundamental interest in gravitational wave physics.
Indeed, the plunge regime from the ISCO is the last phase
of the evolution of a stellar mass object orbiting near a
supermassive BH or it can be also used to describe the late-
time evolution of a binary BH (see, e.g., Refs. [24–34]).
Therefore, in this context, a multipolar description of the
gravitational signal will be necessary with the enhancement
of the sensitivity of laser-interferometric gravitational wave
detectors (see, e.g., Ref. [35] and references therein).
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APPENDIX: REGULARIZATION OF THE
PARTIAL WAVEFORM AMPLITUDES (EVEN

AND ODD PARITY)

In this Appendix, we shall explain how to regularize the
partial amplitudes ψ ðe=oÞ

ωlm . Indeed, the exact waveforms (40)
as integrals over the radial Schwarzschild coordinate are
strongly divergent near the ISCO. This is due to the
behavior of the sources (27) and (28) in the limit r → 6M.

1. Notations

To do so, we introduce some notations in order to
“facilitate” the singularity handling. We write the expres-
sions (40) in the form

ψ ðe=oÞ
ωlm ðrÞ ¼ eiωr�ψ ðe=oÞ

lm ðωÞ ðA1Þ

with

ψ ðe=oÞ
lm ðωÞ ¼ γðe=oÞ

Z
6M

2M
drϕin

ωlðrÞAðe=oÞðrÞeiΦðrÞ: ðA2Þ

Here,

γðeÞ ¼ 1

2iωAð−Þ
l ðωÞ

qffiffiffiffiffiffi
2π

p ½Ylmðπ=2; 0Þ��; ðA3aÞ

γðoÞ ¼ 1

2iωAð−Þ
l ðωÞ

qffiffiffiffiffiffi
2π

p ½Xlm
φ ðπ=2; 0Þ��; ðA3bÞ

and

ΦðrÞ ¼ ωtpðrÞ −mφpðrÞ ðA4Þ

while

AðeÞðrÞ ¼ 18
ffiffiffi
2

p
M

ffiffiffi
r

p
ð6M − rÞ5=2 þ im

12
ffiffiffi
6

p
Mr

ð6M − rÞ3

− iω
9rðr2 þ 12M2Þ
ð6M − rÞ3 ; ðA5aÞ

AðoÞðrÞ ¼ 6
ffiffiffi
3

p
Mffiffiffi

r
p ð6M − rÞ3=2 : ðA5bÞ

2. Regularization of ψðoÞ
ωlmðrÞ

Let us begin with the regularization of ψ ðoÞ
ωlmðrÞ. Here, it

is important to note that the amplitude AðoÞðrÞ given by
(A5b) diverges as 1=ð6M − rÞ3=2 in the limit r → 6M and
that the phase ΦðrÞ behaves as 1=ð6M − rÞ1=2 in the same
limit [or, in other words, that its derivative diverges as the
amplitude AðoÞðrÞ] while ϕin

ωlðrÞ is regular. As a conse-

quence, the integrand in (A2) which defines ψ ðoÞ
lmðωÞ is a

particular kind of rapidly oscillatory function and the
integral (A2) can be automatically “regularized” due to
the oscillations induced by the phase term. In order to
achieve the numerical neutralization of the divergence due
to the amplitude AðoÞðrÞ by the oscillations induced by the
phase ΦðrÞ, we have used Levin’s algorithm [10] which is
implemented in Mathematica [20] and that permits us to
obtain the numerical results of Sec. IV.

3. Regularization of ψðeÞ
ωlmðrÞ

We can now consider the regularization of ψ ðeÞ
ωlmðrÞ

which is much more complicated because the amplitude
AðeÞðrÞ given by (A5a) diverges as 1=ð6M − rÞ3 in the limit
r → 6M. However, we will be able to do it by reducing the
degree of divergence of this amplitude from a series of
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integrations by parts of the integral (A2) defining ψ ðeÞ
lmðωÞ

and by dropping the boundary terms at r ¼ 6M system-
atically. In doing so, we use a regularization process which
is common in the context of gravitational wave physics
[36]. But, here, to accomplish this task, we shall limit the
number of successive integrations by parts by returning to
an integral which can be likewise treated by Levin’s
algorithm.
To regularize ψ ðeÞ

ωlmðrÞ, we need to split the amplitude
AðeÞðrÞ, the phase term ΦðrÞ and its “derivative” into a
divergent and a regular part. As far as the amplitudeAðeÞðrÞ
is concerned, we write

AðeÞðrÞ ¼ AðeÞ
divðrÞ þAðeÞ

regðrÞ ðA6Þ

where the divergent part, which is obtained by the Taylor
expansion of AðeÞðrÞ at r ¼ 6M, is given by

AðeÞ
divðrÞ ¼

c1
ð6M − rÞ3 þ

c2
ð6M − rÞ5=2 þ

c3
ð6M − rÞ2 ðA7Þ

with

c1 ¼ 18ið2MÞ2½
ffiffiffi
6

p
m − 36Mω�; ðA8aÞ

c2 ¼ 9
ffiffiffi
6

p
ð2MÞ3=2; ðA8bÞ

c3 ¼ 6ið2MÞ½−
ffiffiffi
6

p
mþ 90Mω�: ðA8cÞ

Here it should be noted thatAðeÞ
regðrÞ is not really the regular

part of AðeÞðrÞ but, in fact, it is its part whose integral can
be regularized by the oscillations of the phase ΦðrÞ using
Levin’s algorithm. Similarly, we also introduce the diver-
gent and regular parts of the phase ΦðrÞ and of its
derivative. We write

ΦðrÞ ¼ ΦdivðrÞ þΦregðrÞ ðA9Þ

where

ΦdivðrÞ ¼
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6M − r
p ðA10Þ

with

c ¼ 6
ffiffiffiffiffiffiffi
2M

p
ðm − 6

ffiffiffi
6

p
MωÞ ðA11Þ

and we consider

ΘðrÞ ¼ d
dr

ΦregðrÞ ðA12Þ

which we split as

ΘðrÞ ¼ ΘdivðrÞ þ ΘregðrÞ ðA13Þ

where

ΘdivðrÞ ¼
dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6M − r
p ðA14Þ

with

d ¼ mþ 12
ffiffiffi
6

p
Mω

2
ffiffiffiffiffiffiffi
2M

p : ðA15Þ

Of course, the coefficients c given by (A11) and d given by
(A15) are obtained by Taylor expansions at r ¼ 6M.
By inserting (A6) into (A2), we can write

ψ ðeÞ
lmðωÞ ¼ ψ ðeÞfinite

lm ðωÞ þ ψ ðeÞdiv
lm ðωÞ ðA16Þ

where

ψ ðeÞfinite
lm ðωÞ ¼ γðeÞ

Z
6M

2M
drϕin

ωlðrÞAðeÞ
regðrÞeiΦðrÞ ðA17aÞ

is finite (or, more precisely, can be regularized by Levin’s

algorithm) and where ψ ðeÞdiv
lm ðωÞ, which is given by

ψ ðeÞdiv
lm ðωÞ ¼ γðeÞ½c1Ið3Þ þ c2Ið5=2Þ þ c3Ið2Þ� ðA17bÞ

with

IðαÞ ¼
Z

6M

2M
drϕin

ωlðrÞ
eiΦðrÞ

ð6M − rÞα ; ðA18Þ

is the sum of three divergent integrals. Now, we can reduce
the degree of divergence of these integrals by integrating by
parts IðαÞ. We first note that [see Eqs. (A9) and (A10)]

IðαÞ ¼
Z

6M

2M
dr

�
ϕin
ωlðrÞeiΦregðrÞ

ð6M − rÞα−3=2
��

eiΦdivðrÞ

ð6M − rÞ3=2
�

¼ 2

ic

Z
6M

2M
dr

�
ϕin
ωlðrÞeiΦregðrÞ

ð6M − rÞα−3=2
�

d
dr

ðeiΦdivðrÞÞ ðA19Þ

and then, taking into account Eqs. (A12)–(A14), and
dropping intentionally the boundary term at r ¼ 6M
(regularization), we obtain

IðαÞ ¼ 2i
c

ϕin
ωlð2MÞ

ð4MÞα−3=2 e
iΦð2MÞ þ 2i

c

�
α −

3

2

�
Iðα − 1=2Þ

−
2d
c
Iðα − 1Þ þ 2i

c

Z
6M

2M
dr

d
drϕ

in
ωlðrÞ

ð6M − rÞα−3=2 e
iΦðrÞ

−
2

c

Z
6M

2M
dr

ϕin
ωlðrÞΘregðrÞ

ð6M − rÞα−3=2 e
iΦðrÞ: ðA20Þ
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Now, by using recursively (A20), we can extract from ψ ðeÞdiv
lm ðωÞ a finite contribution and we can finally replace the

divergent function ψ ðeÞ
lmðωÞ defined by (A16) and (A17) by its regularized counterpart

ψ ðeÞreg
lm ðωÞ ¼ γðeÞ

Z
6M

2M
dr ϕin

ωlðrÞAðeÞ
regðrÞeiΦðrÞ

þ 3
ffiffiffi
6

p

2

ffiffiffiffiffiffiffi
2M

p
γðeÞ

�Z
6M

2M
dr ϕin

ωlðrÞ
�

1

ð6M − rÞ3=2 þ
2id

ð6M − rÞ
�
eiΦðrÞ

−2i
Z

6M

2M
dr rfðrÞϕ

in
ωlðrÞΘregðrÞ
ð6M − rÞ3=2 eiΦðrÞ − 2

Z
6M

2M
dr rfðrÞ

d
drϕ

in
ωlðrÞ

ð6M − rÞ3=2 e
iΦðrÞ

�
: ðA21Þ

Here, it is interesting to remark that, in Eq. (A21), the boundary term at the horizon [i.e., a term analogous to the first term
in the r.h.s. of (A20)] has disappeared “miraculously”! In fact, this is due to the cancellation of the coefficient in front of this
boundary term which comes from the particular expressions of the coefficients c1, c2, c3, c and d given by (A8), (A11)
and (A15).
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