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We study, for the first time, the Casimir effect in non-Abelian gauge theory using first-principle
numerical simulations. Working in two spatial dimensions at zero temperature we find that closely
spaced perfect chromoelectric conductors attract each other with a small anomalous scaling dimen-
sion. At large separation between the conductors, the attraction is exponentially suppressed by a
new massive quantity, the Casimir mass, which is surprisingly different from the lowest glueball
mass. The apparent emergence of the new massive scale may be a result of the backreaction of
the vacuum to the presence of the plates as sufficiently close chromoelectric conductors induce, in a
space between them, a smooth crossover transition to a color deconfinement phase.

Quantum fluctuations of virtual particles are affected
by the presence of physical objects. This property is a
cornerstone of the Casimir effect [1] which states that
the energy of vacuum (“zero-point”) quantum fluctu-
ations should be modified by the presence of physical
bodies [2, 3]. The energy shift of the virtual particles
has real physical consequences because the Casimir effect
leads to appearance a small quantum force, known as the
“Casimir-Polder force” [4], between neutral objects. The
Casimir-Polder forces has been detected in various exper-
iments [5] which support the physical significance of the
vacuum energy of virtual particles.

Generally, a theoretical calculation of the Casimir-
Polder forces is a difficult analytical problem even in
noninteracting field theories since the energy spectrum
of vacuum fluctuations, apart from simplest geometries,
cannot be accurately determined. Therefore the Casimir
effect is often studied using certain analytical approxi-
mations such as the proximity-force calculations [6] and
various numerical tools [7] which includes worldline ap-
proaches [8] and methods of lattice field theories [9–11].

In interacting (gauge) theories the calculations be-
come even more involved. In a phenomenologically rel-
evant case of quantum electrodynamics a correction to
the Casimir-Polder force coming from fermionic vacuum
loops is given by the second order perturbation theory,
which turns out to be negligibly small due to the weak-
ness of the electromagnetic coupling [3, 13]. Perturbative
calculations in finite-volume geometries of non-Abelian
gauge theories were also addressed [14].

In strongly coupled theories the interactions may not
only lead so a noticeable modification of the Casimir-
Polder forces, but they may also affect the structure of
the vacuum itself. For example, the Casimir effect in be-
tween two parallel plates leads to strengthening of a chiral
finite-temperature phase transition in a four-fermion ef-
fective field theory [15]. The presence of the boundaries
effectively restore the chiral symmetry in an otherwise
chirally broken phase both in plane [16] and in cylin-
drical [17] geometries, revealing that the chiral proper-

ties of the system depend on the geometry of the sys-
tem. The interactions may even change the overall sign
of the Casimir–Polder force in certain fermionic systems
with condensates [18] and in the CPN−1 model on an
interval [19, 20]. First-principle numerical simulations
show that the presence of the boundaries affects also non-
perturbative (de)confining properties of certain bosonic
gauge systems [10, 11].

In our paper we initiate an investigation of the Casimir
effect in Yang-Mills theory which has inherently non-
perturbative vacuum structure. In the absence of mat-
ter fields the zero-temperature Yang-Mills theory ex-
hibits two interesting phenomena, mass gap generation
and color confinement, which influence the excitation
spectrum of its phenomenologically relevant counterpart
in particle physics, Quantum Chromodynamics. We
use first-principle numerical methods to determine the
Casimir-Polder forces in finite geometries of the non-
Abelian vacuum and, inversely, the influence of the finite-
geometry on the non-Abelian structure of the theory.

In order to simplify our analysis we consider a zero-
temperature Yang-Mills theory in (2+1) spacetime di-
mensions which exhibits both mass gap generation and
color confinement similarly to the theory in 3+1 dimen-
sions. In 2+1 dimensions the boundary conditions for the
(gauge) fields are usually formulated at one-dimensional
manifolds rather then at surfaces that are more relevant
to theories with three spatial dimensions. To be precise,
we concentrate on a simplest geometry given by two par-
allel static wires along the x2 direction separated by a
finite distance R along the x1 axis.

A simplest version of the Casimir effect in a gauge
system can be formulated in a U(1) Maxwellian gauge
theory with the Lagrangian

LU(1) = −1

4
fµνf

µν , fµν = ∂µaν − ∂νaµ , (1)

where aµ is an Abelian gauge field. Restricting ourselves
to ideal situations, one may impose either boundary con-
ditions corresponding to a material made of a perfect
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electric conductor (with normal magnetic and tangential
electric components vanishing at conductor’s boundary)
or its dual analogue, an ideal magnetic conductor (in
which magnetic and electric components exchange their
roles). In our article we consider boundaries made of
electric-type boundary conditions, which, in two spatial
dimensions, are given by the following local condition:

εµαβnµ(x)fαβ(x) = 0 , (2)

where nµ(x) is a vector normal to the boundary at the
point x. In the geometry of two parallel wires in two
spatial dimensions the vacuum fluctuation of the U(1)
gauge field lead to the attractive potential between the
wires, VCas(R) = −ζ(3)/(16πR2) [10, 26], where ζ(x) is
the zeta function.

The Lagrangian of Yang-Mills theory has the form:

LYM = −1

4
F aµνF

µν,a, (3)

where F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν is the field-

strength tensor of the non-Abelian (gluon) field Aaµ with

a = 1, . . . N2
c − 1, and fabc are the structure constants

of the SU(Nc) gauge group. A non-Abelian analogue of
the perfect conductor condition (2) is straightforward:

εµαβnµ(x)F aαβ(x) = 0 , a = 1, . . . , N2
c − 1 . (4)

In our geometry these perfectly conducting chromoelec-
tric wires are positioned at the straight lines x1 = 0 and
x1 = R, so that the normal vector is nµ = δµ1.

In a tree order one may formally set g = 0 so that
both the Yang-Mills theory (3) and the boundary condi-
tions (4) are reduced to N2

c − 1 noninteracting copies of
the Maxwell electrodynamics (1) with the U(1) bound-
ary conditions (2). Thus in a tree order all N2

c −1 gluons
contribute additively to the Casimir energy density:

V tree
Cas = −(N2

c − 1)
ζ(3)

16πR2
. (5)

However, the non-Abelian theory is an essentially non-
perturbative system and therefore the Casimir potential
of interacting gluons may substantially differ from the
naive tree level expression (5). In order to elucidate this
question we use the first-principle lattice simulations.

The lattice version of the Nc = 2 Yang-Mills theory (3)
is given in terms of the SU(2) link variables Ul residing
on the links l ≡ lx,µ of the Euclidean cubic lattice L3

s with
periodic boundary conditions in all three directions. The
path integral is given by the integration with the Haar
measure over all link variables Ul:

Z =

∫
DU e−S[U ], (6)

where we use the standard plaquette action

S[U ] ≡
∑
P

SP =
∑
P

βP

{
1− 1

2
TrUP

}
, (7)

with the plaquette fields UPx,µν = Ux,µUx+µ̂,νU
†
x+ν̂,µU

†
ν ,

the notation µ̂ denotes a unit lattice vector in the positive
µ direction. In the absence of the Casimir wires the lat-
tice coupling constants βP are independent of plaquettes,
β ≡ βP , where the bulk coupling constant

β =
4

ag2
, (8)

is related to the lattice spacing a. The quantity g2, which
has the dimension of mass, becomes the physical cou-
pling of the continuum Yang-Mills theory in the limit
a → 0. The lattice Ul and continuum Aaµ fields are re-

lated as follows: Ulx,µ = Peig
∫ x+aµ̂
x

dxνÂν(x) ' eiagÂµ(x)

with Âµ = T aAaµ, and T a are the generators of the non-

Abelian gauge group, [T a, T b] = 2ifabcT c.
The lattice version of the chromoelectric bound-

aries (4) is enforced by the space-dependent coupling [10]:

βP =

{
β, P /∈ S ,
λwβ, P ∈ S , (9)

where S = S1 ∪ S2 is a union of the worldsurfaces of the
wires. In our geometry Eq. (9) implies that βP = λwβ at
the plaquettes Px,23 with x1 = 0 and x1 = R, and βP = β
otherwise. Then we increase the lattice coupling at the
wires, λw → +∞, so that the tangential (to each wire)
component of the chromoelectric field vanishes (UP23

→ 1l
in lattice terms), leading to the perfect “chromometallic”
conditions (4).

The energy of vacuum fluctuations of gluon field is re-
lated to a local expectation value of its energy density,

T 00 =
1

2

(
B2
z + E2

x + E2
y

)
, (10)

which is a component of the energy-momentum tensor
associated with the Yang-Mills Lagrangian (3):

Tµν = −Fµα,aF ν,aα +
1

4
ηµνF aαβF

αβ,a. (11)

In a Minkowski spacetime with the metric (+,−,−) one
has F a01 = Eax , F a02 = Eay and F a12 = −Baz with a = 1, 2, 3,

and E2
x ≡ (Eax)2 etc.

After a Wick rotation to a Euclidean space the energy
density (10) transforms to

T 00
E =

1

2

(
B2
z −E2

x −E2
y

)
. (12)

The Euclidean lattice corresponding to a zero temper-
ature theory is symmetric under ±π/2 rotations about
the x ≡ x1 axis, which imposes the equivalence of the
fluctuations of the tangential gauge fields,

〈
B2
z

〉
=
〈
E2
x

〉
.

Thus the expectation values of first two terms in Eq. (12)
cancel each other in the normalized energy density:

ER(x) =
〈
T 00
E (x)

〉
R
−
〈
T 00
E (x)

〉
0

≡ 1

2

(〈
E2
y

〉
0
−
〈
E2
y(x)

〉
R

)
, (13)
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where the subscripts “0” and “R” indicate that the ex-
pectation value is taken, respectively, in the absence of
the wires and in the presence of the wires separated by
the distance R. Due to the normalization the ultraviolet
divergencies cancel in Eq. (13) so that ER(x) provides us
with a local finite quantity, the Casimir energy density,
which is equal to a change in the energy density of the
vacuum fluctuations due to the presence of the wires.

In our geometry the energy density (13) depends only
on the coordinate x1 normal to the wires. Therefore it
is natural to introduce the (Casimir) energy density per
unit length of the wires:

VCas(R) =

∫
dx1 ER(x1) . (14)

In the lattice regularization the Casimir energy density,
given by Eqs. (13) and (14), takes the following form:

V lat
Cas(R) = −〈〈SP23

〉〉lat
R , (15)

where the plaquette P23 is oriented along wires’ direction
(µ = 2) and the Euclidean time (ν = 3), and

〈〈O(x)〉〉lat
R =

Ls−1∑
x1=0

[〈O(x1)〉R − 〈O〉0] , (16)

is a lattice expression for the excess of the expectation
value of the operator O evaluated per a unit wire length.
Thus the lattice expression for the Casimir energy den-
sity (15) is given by a normalized expectation value of
the components of the plaquette lattice action (7), that
are parallel to the Euclidean worldsheets of the wires.

The physical density of the Casimir energy at a phys-
ical distance R = aRlat between the wires is determined
by the simple scaling formula V phys

Cas (R) = a−2V lat
Cas(R/a)

where a is the lattice spacing in physical units. In SU(2)
gauge theory the lattice gauge coupling β is related to
the lattice spacing a according to Eq. (8) in which the
massive parameter g2 becomes the continuum coupling
squared in the continuum limit a → 0. Ideally, the con-
tinuum physics is reached as β →∞ while in practice one
deals with finite values of the lattice coupling β which
affect the extrapolation to continuum with O(an) correc-
tions. We estimate that finite size effects may lead to
numerically significant (of the order of 10-15%) correc-
tions to the non-Abelian Casimir energy.

We improve the continuum scaling at finite β in three
steps. Firstly, in order to reduce the finite-size cor-
rections it is advantageous to use the mean-field im-
proved coupling which is expressed via the average pla-
quette [22, 24]:

βI(β) = β · 1

2
〈TrUP 〉(β) . (17)

Secondly, we express the physical lattice spacing a via
the phenomenologically determined series over 1/βI [22]

a
√
σ =

1.341(7)

βI
− 0.421(51)

β2
I

+O
(
1/β3

I

)
, (18)

where σ is the tension of the confining (fundamental)
Yang-Mills string at zero temperature. In the selected
range of the coupling constant β the higher-order terms
in Eq. (18) are numerically irrelevant.

Thirdly, we notice that in the lattice perturbation the-
ory the expectation value the lattice plaquette operator
〈TrUµν〉 acquires radiative corrections, both of additive
and multiplicative nature. The additive corrections –
which correspond to the UV-divergent perturbative vac-
uum contributions – are automatically removed from the
Casimir energy by the subtraction scheme (16). The mul-
tiplicative correction originates from the fact that the
physically relevant quantity is the product β4〈TrUµν〉 ∼
a−4〈TrUµν〉 ∼

〈
F 2
µν

〉
phys

and not the expectation value

of the plaquette itself (for example, it is the former quan-
tity that determines the physical value of the nonpertur-
bative gluon condensate in the Yang-Mills theory [23]).
In order to improve the finite-size scaling of our results
we thus rescale the expectation value of the plaquette
operator with the improved value of the coupling con-
stant (17): 〈TrUµν〉 → 〈TrUµν〉I = (βI/β)4〈TrUµν〉. As
we will see shortly below, this phenomenological proce-
dure – which substitutes the multiplicative factor β4 by
its improved version β4

I – leads to a nearly perfect scal-
ing of the Casimir energy at intermediate values of the
lattice coupling β.

Summarizing, the scale-improved relation for the
Casimir energy density in the continuum limit, expressed
via numerically calculable quantities on the lattice is
given by the following formula,

VCas(R) = − 1

σ

1

a2(σ, β)

(
βI
β

)4

〈〈SP23〉〉
lat
R/a, (19)

where the lattice spacing a = a(σ, β) and the mean-field
improved lattice coupling βI are given in Eqs. (18) and
(17), respectively. The wires are separated by the phys-
ical distance R = Rlat a. In the weak coupling limit the
expression (19) tends to its natural form since in this
limit βI(β) → β and 〈TrUµν〉I → 〈TrUµν〉, and we re-
cover from Eq. (19) the naive expression (15).

In our numerical simulations we use methods suc-
cessfully adopted for studies of the Casimir forces in
Abelian gauge theories in Refs. [10–12]. We generate
gauge-field configurations using a Hybrid Monte Carlo
algorithm which combines standard Monte-Carlo meth-
ods [27] with the molecular dynamics approach. The
latter incorporates a second-order minimum norm inte-
grator [28] with several time scales [29], that allows us
to equilibrate the integration errors accumulated at and
outside worldsheets of the wires at which the Casimir
boundary conditions are imposed. Long autocorrelation
lengths in Markov chains are eliminated by overrelax-
ation steps (5 steps between trajectories) which separate
gauge field configurations far from each other [27]. We
works on the 323 lattice. For average procedure we use
250000 trajectories.
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The non-Abelian permittivity of the wires is fixed by
the strength of the coupling constant λwβ at the Eu-
clidean worldsurfaces of the wires. At a large wire cou-
pling λwβ the wires behave as almost ideal conductors
which force all tangent components of the chromoelec-
tric field to vanish at each point of the wire, F a‖ → 0.

In Fig. 1 we show the non-Abelian Casimir energy (19)
as the function of the distance between the wires R for
various values of the bulk lattice coupling β and the fixed
excess λw = 50 of the coupling constant at the Euclidean
worldsurfaces of the wires.
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FIG. 1. The Casimir potential VCas as the function of the
distance R between the wires in units of the string tension σ.
The potential is given for the large excess of wire’s coupling
(λw = 50) and at various bulk lattice couplings β.

In order to show a good physical scaling of the Casimir
potential, we plot in Fig. 1 the potential at various lattice
coupling constants β corresponding to different values of
the physical lattice spacing a. We obtain an excellent
scaling of our results because the Casimir potential ob-
tained at different values of β match a single curve as the
function of interwire distance R, both plotted in terms of
the physical string tension σ. We get also similar physical
scaling for other values of λw.

We fit the Casimir potential by the following function:

V fit
Cas(R) = 3

ζ(3)

16π

1

Rνσ(ν−2)/2
e−MCasR, (20)

where ν and MC are the free parameters determined from
the best fit. The power of σ in denominator in Eq. (20)
is chosen to keep the correct dimension [mass2] of the
Casimir potential as it corresponds to the Casimir en-
ergy of the non-Abelian fluctuations between the wires
calculated per unit length of the wire.

The fitting function (20) has a transparent physical
meaning. The exponent ν in the fitting function (20)
corresponds to an eventual anomalous dimension of the
Casimir potential at short distances. The quantity MCas,
which we call the Casimir mass, corresponds to an effec-
tive screening of the Casimir potential at large distances
due to nonperturbative mass gap generation in the non-
Abelian gauge theory. In the absence of interactions the

mass gap is absent, MCas = 0, while the anomalous di-
mension is equal to its canonical value, ν = 2, so that
the phenomenological potential (20) is naturally reduced
to its tree-level expression (5).

The best fit of the the Casimir potential with the
almost-perfect wires (λw = 50) is shown in Fig. 1 by the
dashed line. The dependences of the best-fit values of
the power ν and the Casimir mass MCas on the strength
of the wire λw are shown in Figs. 2 and 3, respectively.
We found that the numerical data for the power and the
Casimir mass can be fitted by a simple exponential fit:

O(λw) = O∞ + αOe
−λw/λO

w , (21)

where O = ν,MCas, and O∞, αO and λOw are the fit-
ting parameters. It turns out that the quantities ν and
MCas rapidly approach, with λνw ' λMCas

w = 12(1), the
corresponding asymptotic values O∞ ≡ limλw→∞O(λw)
in the perfect-wire limit.

ν∞

10 20 30 40 50

1.90

1.95

2.00

2.05

λw

ν

FIG. 2. The power ν of the Casimir potential as the function
of the wire excess strength λw. The dashed line represents
the best asymptotic fit (21), the thick short-dashed line corre-
sponds to the asymptotic value (22), and the thin dot-dashed
line denotes the power ν = 2 of the noninteracting theory.

According to the fit in Fig. 2 the power ν slightly over-
shoots the standard free-field value ν = 2:

ν∞ = 2.05(2), (22)

implying that the self-interaction of the gluon fields
may lead to a small anomalous scaling dimension of the
Casimir potential.

The asymptotic value of the Casimir mass MCas, corre-
sponding to the energy of the vacuum fluctuations of non-
Abelian gauge field between perfect wires (λw →∞),

M∞Cas = 1.38(3)
√
σ , (23)

is shown by the horizontal dashed line in Fig. 3. Sur-
prisingly, the Casimir mass MCas turns out to be much
smaller than the mass

M0++ ≈ 4.7
√
σ , (24)

of the lowest 0++ glueball in SU(2) gauge theory. The
latter was calculated in lattice simulations of Refs. [21,
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∞ / σ
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FIG. 3. The Casimir mass MCas as the function of the
strength of the wire λw. The thick dashed lines denotes the
best fit by function (21), and the short-dashed horizontal line
denotes the asymptotic value (23).

22]. According to Fig. 3 the enhancement of the strength
of the wires leads to a diminishing of the Casimir mass.
On the contrary, as the wire weakens, the Casimir mass
moves towards the higher masses so that we may expect
that in the weak-wire limit λw → 1 the Casimir mass
MCas may naturally approach the mass of the lightest
glueball, M0++ , although the simple form of the fitting
function (21) does not allow us to make this conclusion
more precise at the present stage.

One may also suggest that in the volume between
finitely-separated parallel wires the gluons behave as if
they are subjected to a heat bath at finite temperature.
In a Euclidean formulation of a finite-temperature theory
in a thermodynamic equilibrium the temporal direction
is compactified to a circle with the length 1/T , making
the fields periodic along this direction.

Contrary to the case of finite temperature, the pe-
riodicity of the gluon fields is evidently absent in the
Casimir setup. However, similarity to the T 6= 0 case,
the perfectly conducting wires do indeed restrict allowed
frequencies of free gluons with certain polarizations. In
particular, the propagator of free gluons in the Feynman
gauge corresponds to the Neumann boundary condition
for the normal (with respect to the boundary) gluon com-
ponent Aa⊥ ≡ Aa1 [30]. In the limit of a small-separation
between the plates the Neumann boundaries dimension-
ally reduce the dynamics of the normal gluon components
Aa⊥ to (1+1) dimensional spacetime with the tangential
coordinate x‖ = (x2, x0 ≡ x3). Thus the normal gluon
component Aa⊥ in the Casimir setup plays a role of the
timelike gluon Aa0 at T 6= 0. In finite-temperature (2+1)
dimensional gauge theories the Aa0 gluons are spatially
correlated with the screening mass typically proportional
to g
√
T (see, for example, [25]). Therefore in our case we

may expect that the normal gluon components Aa⊥ are
correlated along the conducting wires with the “Casimir”
screening mass M2

g,Cas = cDg
2/(2πR), where cD is a con-

stant of the order of unity.
Yang-Mills theories are known to experience a deconfi-

nement phase transition at sufficiently high temperature.
In particular, in (2+1) dimensions the critical tempera-
ture of the transition has been determined in Ref. [31].
Given the mentioned analogy, one may expect the gluonic
vacuum in between sufficiently close wires may enter a
deconfinement-like regime. A similar conclusion may also
be drawn from properties of a confining compact QED in
finite geometries [12]. In order to check this idea we cal-
culate numerically the deconfinement order parameter,
the Polyakov line L, which has a vanishing expectation
value in the confinement phase, 〈L〉 = 0, and a nonzero
value in the deconfinement phase, 〈L〉 6= 0.

In the lattice formulation of Yang-Mills theory the
Polyakov line is given by an ordered product of the non-
Abelian matrices along the temporal (µ = 3) direction:

Lx =
1

2
Tr

L−1∏
x3=0

Ux,x3;3, (25)

where x ≡ (x1, x2) is the spatial two-dimensional coordi-
nate. Notice that the Polyakov line (25) is defined along
the long temporal direction while in the finite tempera-
ture theory the line is directed along the short compact-
ified time. This property shows a difference between the
Casimir-like geometry and a finite-temperature theory.

●
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●
● ● ● ● ●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

β=10

λw=50

● Inside

■ Outside

2 4 6 8 10 12
0.00

0.02

0.04

0.06

0.08

0.10

0.12

R/a

L

FIG. 4. The expectation value of the Polyakov line in between
and outside the wires for the bulk gauge coupling β = 10 and
the strong in-wire coupling λw = 50.

We calculated the Polyakov line separately in the vol-
ume inside and outside the wires:

L` =
1

S`

〈∣∣∣∣ ∑
x∈S`

Lx

∣∣∣∣〉, (26)

where Sa is the two-dimensional area in between (` = in)
and outside (` = out) the wires. In Fig. 4 we show the
expectation values of the Polyakov line as a function of
the distance between the wires. One can clearly see that
as the distance between the wires gets smaller the ex-
pectation value of the Polyakov line in between the wires
increases thus signaling an approach to a deconfinement
regime. However, we have not found a critical behavior of
the Polyakov lines, in agreement with the smooth behav-
ior of the Casimir potential as a function of the interwire
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distance R, Fig. 1. The Polyakov line outside the wires
is largely insensitive to the separation R. We conclude
that the gluon dynamics in between the wires becomes
deconfining, while the transition in between the confin-
ing and deconfining regions is, most probably, a smooth
non-critical crossover. The latter conclusion is supported
by a finite-volume nature of the Casimir effect.

Summarizing, we studied for a first time the Casimir
effect in a zero-temperature non-Abelian gauge field the-
ory. As a simplest example we considered SU(2) gauge
theory in low 2+1 dimensions, in which vacuum fluctua-
tions of non-Abelian gauge fields are restricted by the
presence of two parallel straight wires separated by a
finite distance R. The wires act as perfectly chromo-
conducting boundaries so that all non-Abelian compo-
nents of the chromoelectric field tangent to the direction
of the wires vanish at each point of every wire.

We have found that at large distances between the
wires the attractive Casimir interaction is an exponen-
tially diminishing function of the interwire separation.
This effect is not an unexpected phenomenon given the
existence of the mass gap generation phenomenon in the
zero-temperature Yang-Mills theory. However, the in-
frared suppression of the Casimir interaction between
the wires is damped with the new massive quantity, the
Casimir mass (23), which is unexpectedly more than
three times lighter than the mass of the lowest glue-
ball (24) in the model. As the chromometallic wires be-
come less perfect the Casimir mass increases towards the
lowest glueball mass.

At small interwire separations the Casimir energy gets
a small anomalous scaling dimension (22) so that the
short-distance Casimir interaction is slightly different
from the canonical three-level R−2 behavior (5).

Finally, we observed that the Casimir effect induces
a (smooth) confinement-deconfinement transition of the
gluonic fields in between the wires: the expectation value
of the Polyakov line in the space in between the wires
increases as the wires get closer. The relatively low value
of the Casimir mass, discussed earlier, may be a result
the gradually induced deconfinement in a shrinking finite
geometry which weakens the mass gap generation of the
zero-temperature Yang-Mills theory.

The numerical simulations were performed at the com-
puting cluster Vostok-1 of Far Eastern Federal Univer-
sity. The research was carried out within the state as-
signment of the Ministry of Science and Education of
Russia (Grant No. 3.6261.2017/8.9).
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