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We point out an analogy between diffractive electron-nucleus scattering events and realizations of one-
dimensional branching random walks selected according to the height of the genealogical tree of the
particles near their boundaries. This correspondence is made transparent in an event-by-event picture of
diffraction, emphasizing the statistical properties of gluon evolution, from which new quantitative
predictions straightforwardly follow: we are able to determine the distribution of the total invariant mass
produced diffractively, which is an interesting observable that can potentially be measured at a future
electron-ion collider.
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Introduction.—Diffraction is an elementary consequence
of the particle-wave duality postulated by quantummechan-
ics. Therefore, diffractive patterns are expected to be
observed in the scattering of elementary particles off
extended objects such as hadrons or nuclei. However, the
microscopic interpretation of diffraction turns out to be
subtle. Indeed, it is well known that nuclei are loose
compounds of hadrons, which themselves appear as fragile
bound states of quarks as soon as they are involved in
collisions at center-of-mass energies much larger than
typically the mass energy of a nucleon. Naively, an energetic
electron colliding with a hadron or nucleus, a process known
as “deep-inelastic scattering” (DIS),would knock out a quark
in each scattering event; then, as a consequence of confine-
ment, the final state would almost systematically consist of
many new hadrons distributed all over the detector.
But this is not at all what has been seen experimentally.

Indeed, one of the outstanding results of the Hadron-
Electron Ring Accelerator operated at the Deutsches
Elektronen-Synchrotron Laboratory until 2007 is the obser-
vation of a significant fraction of the events (about 10%) in
which the scattered proton is left intact and is surrounded
by an angular region of variable size, empty of particles that
we shall call “gap.” What has been observed in electron-
proton collisions should also happen in electron-nucleus
scattering. Testing whether this expectation is true can be
achieved at a future electron-ion collider.
Diffraction in DIS on protons has been studied exten-

sively, both experimentally (for a review, see [1]) and

theoretically (see [2] and references therein). But its
quantitative theoretical description in the framework of
the established theory of the strong interaction, quantum
chromodynamics (QCD), remains a challenge. While it is
known that the total diffractive cross section can be
explained economically and elegantly by saturation models
[3], little analytical insight has been gained for more
exclusive diffractive observables.
In this Letter, we focus on the diffractive events in deep-

inelastic scattering off a large nucleus in which the nucleus
is left intact, but a hadronic state of large invariant massMX
is nevertheless produced. We explain how to characterize
them microscopically, and we show that these hadrons are
generated from a similar mechanism as the common
ancestor of a set of particles at the frontier of a one-
dimensional branching random walk. We deduce from this
very mechanism a simple analytical prediction, Eq. (4)
below, which we test against the numerical integration of a
previously known equation governing the energy depend-
ence of high-mass diffraction.
Picture of electron-nucleus scattering at high energy.—

The scattering of the electron off the nucleus necessarily
proceeds through the exchange of a virtual photon γ�. We
shall denote its virtuality by Q and the center-of-mass
energy of the γ�–nucleus subprocess byW. These variables
are enough to label the total cross section. In the case of
diffractive scattering (see Fig. 1), the cross section also
depends on the total invariant mass MX of the produced
hadrons. It is convenient to use, instead of MX, the
dimensionless variable β ¼ Q2=ðQ2 þM2

XÞ, in terms of
which the DIS experiments traditionally present diffractive
data [1], or the logarithm of its inverse ỹ0 ≡ ln 1=β. The
gap can then be characterized by the Lorentz-invariant
rapidity variable y0 ≡ Y − ỹ0, where Y ≡ ln 1=xBj, with
xBj ¼ Q2=ðQ2 þW2Þ, is the total relative rapidity of the
photon with respect to the nucleus.
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When the energyW of the reaction is large, it is possible
to choose a reference frame in which the photon is fast
enough to almost always convert to a quark-antiquark pair
(which we shall call “onium”) before interacting. For our
purpose, the only relevant parameter to characterize the
latter is the distance r between the trajectories of the quarks,
which can be considered unchanged throughout a scattering
at high relative rapidity. The distribution of r for a given
photon virtuality follows from simple electrodynamics.
Hence electron-nucleus scattering is tantamount to
onium-nucleus scattering. A scattering event occurs as
soon as at least one gluon is exchanged between the onium
and the nucleus.
A nucleus is a priori a very complicated composite

object. However, a large nucleus is made of many hadrons,
which can be considered uncorrelated. Considering, fur-
thermore, the number Nc of colors to be a large parameter,
the rapidity evolution of the forward elastic amplitude
Tðr; yÞ for the scattering of the onium off the nucleus can
be established within QCD in these limits. It is given by the
Balitsky-Kovchegov (BK) equation [4]

∂Tðr; yÞ
∂y ¼ ᾱ½χTðr; yÞ − T ⊗ Tðr; yÞ�; ð1Þ

where ᾱ is proportional to the product of the strong
coupling constant αs by the number of colors, ᾱ ¼
αsNc=π; χ in the first term is the linear operator that acts
on a function f of r as

χfðrÞ ¼
Z

d2r0

2π

r2

r02ðr − r0Þ2 ½fðr
0Þ þ fðr − r0Þ − fðrÞ�;

and finally, the second term in the rhs of (1) is the
convolution

f ⊗ fðrÞ ¼
Z

d2r0

2π

r2

r02ðr − r0Þ2 fðr
0Þfðr − r0Þ:

The elastic onium-nucleus scattering cross section per unit
surface [5] is σel ¼ T2 (since T is essentially real at high
energy) evaluated at rapidity y ¼ Y, and the total cross
section is twice T as a consequence of the optical theorem:
σtot ¼ 2T. (The total electron-nucleus cross section may
then easily be calculated from σtot.) Thanks to these
notations, the structure of the BK equation (1) is quite
clear. The first term, linear in T, encodes the rise of the
amplitude due to the multiplication of the gluons in the state
of the onium as the rapidity is increased, i.e., as shorter-
lived quantum fluctuations become relevant for the scatter-
ing. It is well known that in the large-Nc limit and in a light
cone gauge, the Fock state of an onium can conveniently be
represented by a set of dipoles of various sizes, and rapidity
evolution can be thought of as a cascade of independent
1 → 2 splittings of color dipoles [7]. A light cone pertur-
bation theory calculation in the framework of QCD leads to
the expression of the splitting probability density of a
dipole of size r into dipoles of sizes r0, r − r0 as its rapidity
is increased by dy; it reads

dpðr → r0; r − r0Þ ¼ ᾱdy
d2r0

2π

r2

r02ðr − r0Þ2 :

The operator χ, which is constructed from the integral of
ð1=ᾱÞdp=dy, is also the kernel of the evolution equation
solved by the mean number density nðr; yÞ of dipoles at
rapidity y in an onium of initial size r: ∂yn ¼ ᾱχn, which is
nothing but the Balitsky-Fadin-Kuraev-Lipatov equation
[8]. The second term in the BK equation (1), significant
only when T ¼ Oð1Þ, keeps the amplitude unitary (T ≤ 1)
throughout the evolution.
It is useful to note that the BK equation is in essence

similar to the nonlinear diffusion equation, known as the
Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equa-
tion [9]: these two equations actually belong to the same
universality class [11]. Starting from this correspondence,
one can take advantage of the available mathematical
knowledge on the FKPP equation (for a review, see
Ref. [12]). One knows that, for a vast class of initial
conditions, its solution converges to a traveling wave at
large y, namely, a front connecting T ¼ 1 for r large to
T ¼ 0 for r small, the rapidity evolution of which consists
of a mere translation in r. The transition region is located
around a rapidity-dependent size rsðyÞ related to the
saturation momentum Qs by rs ¼ 1=Qs. The analytical
expression of QsðyÞ for ᾱy ≫ 1 reads

Q2
sðyÞ ¼ Q2

MV
eᾱyχ

0ðγ0Þ

ðᾱyÞ3=2γ0 ; ð2Þ

up to a multiplicative constant of order one depending on
the very definition of Qs. The complex function χðγÞ is the

FIG. 1. Schematic representation of a diffractive event. The
initial-state particles are incoming from the left, the final state is on
the right. The interaction of the electron with the nucleus is
mediated by a virtual photon. While the nucleus is transferred
unaltered in its nature to the final state, the photon converts to a set
of hadrons of total invariant mass MX . The rapidity gap is an
angular region around the nucleus inwhich no particle is observed.
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set of the eigenvalues of the χ operator associated with its
eigenfunctions r2γ , and γ0 solves χðγ0Þ ¼ γ0 χ

0ðγ0Þ.
Explicitly, χðγÞ ¼ 2ψð1Þ − ψðγÞ − ψð1 − γÞ, where ψ is
the digamma function, and γ0 ≃ 0.63. Equation (2) holds
whenever the initial condition falls fast enough as r
decreases. More precisely, if Tðr; 0Þ ∼

r→0
r2λ, then λ must

be larger than γ0 [13].
An analytical expression for the asymptotic shape of the

front is also known. It reads

Tðr; yÞ ¼ cT ln
1

r2Q2
sðyÞ

½r2Q2
sðyÞ�γ0 ; ð3Þ

where cT is a numerical constant. This equation is valid
when T ≪ 1, and in the so-called scaling region [14].
These two conditions translate into the inequalities
1 ≪ j ln r2Q2

sðyÞj ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ00ðγ0Þᾱy

p
. Throughout, we will

always assume that r is such that both these inequalities
are fulfilled.
The initial condition for T describes the interaction

amplitude of the onium with the nucleus at low energy.
A nucleus in its rest frame is a dense system of quarks. In
the so-called McLerran-Venugopalan (MV) model [15], it
is characterized by a momentum scale QMV function of the
atomic number. (Its value is of order 1 GeV for heavy
nuclei such as lead or gold). The scattering amplitude of an
onium with a nucleus may be approximated by
Tðr; y ¼ 0Þ ¼ 1 − e−r

2Q2
MV=4. Onia of size much larger than

typically rMV ≡ 1=QMV are absorbed, while the nucleus
appears transparent to onia of size much smaller than rMV.
We note that Tðr; y ¼ 0Þ ∼ r2 for small r: hence, the
solutions (2) and (3) indeed apply.
The BK equation (1) is also an equation for the ỹ

evolution of the probability Pðr; ỹjRÞ that there be at least a
dipole larger than some R in an onium of initial size r [16].
The initial condition in this case reads Pðr; ỹ ¼ 0jRÞ ¼
θðln r2=R2Þ, which is of course “steep enough” for the
asymptotic solution (3) to be valid. Then, thanks to the
universality properties of the asymptotic solution to the BK
equation, Pðr; ỹjRÞ has the same expression as Tðr; yÞ in
Eq. (3) up to the substitutions y ↔ ỹ and QMV ↔ 1=R and
maybe up to the overall normalization constant. Thus, one
can write σtot ∝ Pðr; Yj1=QMVÞ.
Diffraction from rare fluctuations.—If r is small com-

pared to 1=QsðYÞ—i.e., the onium is far from the saturation
region of the nucleus—then, from Eq. (3), T is small. Since
the forward elastic amplitude T is related to the total,
elastic, and inelastic cross sections through

σtot ¼ 2T; σel ¼ T2; σin ¼ σtot − σel;

one sees that σel is of second order in T, while σin is of first
order, and thus dominates σtot.
A diffractive event can occur with non-negligible prob-

ability only if a large dipole occurs in the Fock state of the
onium at some point in the evolution. Indeed, only for such

realizations of the evolution the scattering amplitude can be
of order 1, and elastic scattering processes are thus
probable. (Examples of Feynman diagrams contributing
to the onium-nucleus diffractive vs total amplitudes are
shown in Fig. 2.) Assume that such a dipole of size r0 is
produced at rapidity ỹ0 ¼ Y − y0. The condition that the
whole partonic system scatters elastically with a significant
probability is that r0 be larger than the inverse saturation
scale of the nucleus evaluated at the rapidity Y − ỹ0 ¼ y0:
r0 > 1=Qsðy0Þ. Such an event will exhibit a rapidity gap of
size y0.
From this picture, we can immediately infer that the

diffractive cross section conditioned to a given rapidity gap
y0 is tantamount to the probability P(r; ỹ0j1=Qsðy0Þ). As
discussed above, the latter is given by the solution to the
BK equation (3) up to the appropriate substitution of the
variables and parameters

dσdiff
dy0

¼ cdiff ln
1

r2Q̃2
sðỹ0Þ

½r2Q̃2
sðỹ0Þ�γ0 ;

where cdiff is a constant, and the momentum Q̃s reads

Q̃2
sðỹ0Þ ¼ Q2

sðy0Þ
eᾱỹ0χ

0ðγ0Þ

ðᾱỹ0Þ3=2γ0
:

A straightforward calculation [using Eqs. (2) and (3)]
leads to our main result for the distribution of the size of the
rapidity gap. The simplest expression is obtained for the

(a) (b)

FIG. 2. Light cone perturbation theory diagrams contributing to
onium-nucleus scattering in a frame in which the nucleus carries
the rapidity y0 and the onium ỹ0 ¼ Y − y0. (In the large-Nc limit,
the gluons are replaced by 0-size qq̄ pairs, and the onium Fock
state consists of a set of dipoles.) (a) Nondiffractive scattering.
(b) Diffractive event with a rapidity gap y0. In case (a), the
scattering consists of the exchange of [most probably, if
r ≪ 1=QsðYÞ] one gluon, which results in a breakup of the
nucleons and thus of the nucleus. In case (b), one or multiple pairs
of gluons grouped in color singlet states are exchanged, in which
case the nucleus scatters elastically and no gluon is emitted in the
direction of the nucleus momentum.

PHYSICAL REVIEW LETTERS 121, 082001 (2018)

082001-3



differential diffractive cross section normalized by the total
cross section

1

σtot

dσdiff
dy0

∝
�

ᾱY
ᾱy0ᾱðY − y0Þ

�
3=2

ð4Þ

in such a way that the overall coefficient, which we have
not been able to determine, is a pure number independent of
the parameters r and Y. The formula (4) is valid whenever
ᾱy0 is distant from its two boundaries at zero and ᾱY by
more than typically one unit. We also recall that this result
is an asymptotic limit for ᾱY large and that it holds when
the size r of the onium is picked in the scaling region.
Genealogy in branching random walks.—Our whole

discussion of the structure of diffractive events turns out to
be parallel to the discussion of the genealogy of particles
near the boundary of a branching random walk (BRW)
in Ref. [17].
Consider a BRW in time t and in the real variable x,

starting with one single particle, defined with the help of a
stochastic process such that the mean density of particles
nðx; tÞ obeys the equation ∂tn ¼ χn; χ is an appropriate
operator acting on n viewed as a function of x and encoding
the microscopic process: e.g., χ ¼ ∂2

x þ 1. χ admits the
eigenfunctions e−γx and we denote by χðγÞ the correspond-
ing eigenvalues. After the (large) time t, pick exactly two
particles, choosing them either (i) according to the
Boltzmann weight e−λx (i.e., the particle number j sitting
at position xj at time t is picked with probability
e−λxj=

P
ke

−λxk) or (ii) to be exactly the two leftmost
particles, and look for the first common ancestor splitting
time t − t0. Then, according to Ref. [17], t0 is distributed as

pðt0Þ ¼ cp

�
t

t0ðt − t0Þ
�

3=2
; with cp ¼ 1

γ̄

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πχ00ðγ0Þ

p ;

ð5Þ
where γ̄ ¼ λ in case (i) if λ > γ0, and γ̄ ¼ γ0 in case (ii). γ0
solves χðγ0Þ ¼ γ0χ

0ðγ0Þ.
In the same way as in our diffraction calculation, the

common ancestor of the boundary particles also corre-
sponds to a fluctuation, in the form of a particle sent to the
left of the expected position of the leftmost particle,
occurring in the course of the evolution at time t − t0.
Hence, the two problems are intimately related: up to the
overall normalization, which is determined in the case of
the genealogies, but not in the case of diffraction,
ð1=σtotÞðdσdiff=dy0Þ corresponds to pðt0Þ, with the identi-
fications ᾱY ↔ t, ᾱy0 ↔ t0.
Numerical test.—An equation for the diffractive cross

section with a rapidity gap y0 was established some time
ago in QCD by Kovchegov and Levin (KL) [18] (see also
Refs. [2,19]). It can be put in the form of two appropriately
matched evolution equations in the total rapidity variable y,
which both turn out to be of the BK type. While this
formulation has not led to much analytical insight, in
particular, for the gap distribution we are addressing here, it
is very convenient for the numerical computation of the
diffractive cross section, since the BK equation is easily
discretized, implemented, and solved using standard algo-
rithms [20].
We have computed the rapidity-gap distribution for two

values of the total rapidity, ᾱY ¼ 10 and 20. (These
rapidities are of course too large to be realistic for
phenomenology, but our goal here is to test our asymptotic
prediction.) We have chosen r in such a way that
j ln r2Q2

sðYÞj ≃ 7.2, comfortably in the scaling region in
both cases. The results are presented in Fig. 3 and
compared to the analytical prediction (4) in appropriately
rescaled variables chosen such that the expected asymptotic
distribution be independent of ᾱY. The overall coefficient
of the latter is not predicted in our approach. We could fit it
to the numerical data, but interestingly enough, just setting
it to be that predicted for BRW, namely, cp in Eq. (5), with
γ̄ ¼ 1, leads to a remarkably good agreement between the
numerical data and the prediction.
Conclusion.—We have found that the distribution of the

size y0 of rapidity gaps in diffractive onium-nucleus
scattering can be calculated analytically for fixed large-
center-of-mass energies. Surprisingly enough, our quanti-
tative prediction follows quite straightforwardly from
simple considerations on the mechanism how the Fock
state of a quark-antiquark pair evolves when one increases
its rapidity. The essence of this evolution is that of a one-
dimensional branching random walk, and viewed in such a
picture, diffractive events are due to the existence of a large
fluctuation in the evolution. The rapidity at which it occurs
determines the size of the gap.

)/Y
0

(Y-y

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
dy

di
ff

σd
to

t
σ1

×
 Y

α

1

10

Y=10 (numerics)α
Y=20 (numerics)α

Y asymptotics (theory)αlarge-

FIG. 3. Rescaled distribution of ðY − y0Þ=Y calculated from the
numerical integration of the KL equation for two different values
of the total rapidity, compared to the asymptotic theoretical
formula (4), with an ad hoc global normalization factor. The
onium size is chosen to be well in the scaling region. (See the
main text for the details).
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This large fluctuation can also be identified with the
common ancestor of a few extreme objects generated by the
BRW. The latter problem is of interest in the study of
disordered systems. It was known before that the BK and
FKPP equations are in the same universality class [10], and
also that the energy evolution of the scattering amplitude of
ultrahigh-energy hadrons may be analogous to the time
evolution of a reaction-diffusion process, the evolution of
which is described by an equation belonging to the
universality class of the stochastic FKPP equation [21].
But to our knowledge, this is the first time that the statistical
properties of genealogical trees prove of direct relevance in
the context of particle or nuclear physics. Hence, our Letter
contributes to bridge a priori unrelated fields of physics.
The results we have obtained here can be converted into

new predictions for the mass distribution in diffractive
virtual photon-nucleus scattering βdσγ

�A
diff=dβ, measurable at

a future electron-ion collider. At fixedW andQ, the latter is
actually identical to the distribution of rapidity gaps
dσγ

�A
diff=dy0, which can be calculated by convoluting the

onium cross section dσdiff=dy0 with the known distribution
of the sizes r of quark-antiquark pairs in the Fock state of
the virtual photon (see, e.g., [3]). This is actually straight-
forward when the photon is polarized longitudinally, since
in this case, the distribution is peaked around the inverse
photon virtuality; i.e., r can essentially be identified to 1=Q.
For transversely polarized photons, since the r distribution
corresponding to a given Q is wider, a better knowledge of
dσdiff=dy0 outside of the scaling region would be needed.
Further developments, along with more numerical studies,
can be found in Ref. [22].
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