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Abstract: We show that an inhomogeneous Bernoulli percolation process running
upon a dual of a fullerene C1200 can be used for representing bivalents attached to the
nuclear envelope in mouse Mus M. Domesticus 2n=40 meiotic spermatocytes during
pachytene. It is shown that the induced clustering generated by overlapping percolation
domains correctly reproduces the probability distribution observed in the experiments
(data) after fine tuning the parameters.
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1. Introduction

The question about randomness in biological processes constitutes a source of many
interesting cross-disciplinary discussions among biologists and mathematicians. More
often than not, uniform probability distributions seem to constitute the very paradigm
of randomness, while the appearance of other probability distributions are often con-
sidered to be the result of dynamical rules applied to uniform random variables.
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On other side, it has been frequently discussed whether biological models at the
scales considered in this work, in the range of 1 to 10 µm, should be better approached
from the continuous rather than the discrete side of modeling.

The challenge of producing a mathematical model of randomness for explaining the
(apparent) bivalent’s association clusters observed in the Meiosis’s Pachytene for the
house mouse 2n = 40 - Mus m. domesticus spermatocytes was initiated in [3] and con-
tinued in [8], in an eminently discrete approach, by considering first surface hexagonal
tilings as approximation of the nuclear envelope and next by a discrete regular graph
with a finite number of vertices. The reason of this sort of approach is simple: Objects
being modeled are distinct entities and the sought probability distributions referred to
the (discrete) partitions of a number. Hence, more than absolute positions of points
in a sphere, the mathematical/biological constraints for the stochastic distribution of
a finite number of indistinguishable objects, related to each other by a neighborhood-
dependent condition, lead us naturally to a description using graphs, with satisfactory
results [8].

In this work we propose an enhanced discrete model along the lines of the ear-
lier works, but in which the nuclear envelope is now modelled by the dual C′1200 of a
fullerene, [13], which is a particular planar graph embedded in the sphere. On this graph
the objects of interest are percolation domains obtained by a suitable ‘Inhomogeneous
Percolation Process’, which we call P-percolation (see [6]), that are put into corre-
spondence with the units of biological interest (bivalents, or, more precisely, CTC’s,
see below). Induced clustering generated by overlapping domains can be now explored
and analyzed using the model.

Hence, the article is structured as follows: Section 2 contains the biology context, in
which a minimal set of notions and working definitions (necessary for understanding
the underlying biological problem) are presented. It includes some new derived statis-
tics from the original data set, that were omitted in the previous works, which we use
as test frames for our model. The interested reader and the biological audience will find
the complete theory with details in the references.

In section 3 we argue against using the theory of random graphs G(n, p), as intro-
duced by Erdös [4], for explaining the clustering probabilities obtained in the dataset.
We show that there can be no value for the probability p that adequately fit or repro-
duces the data.

Section 4 deals with the actual construction of the graph used to model the nuclear
envelope. It will turn out to be the dual of fullerene C1200 (subsection 4.1). This graph
appears naturally by imposing size and connectivity constraints upon the number of
vertices and planarity of the graph, that correlates well with both, the size and form of
the biological objects being modeled. The construction of random domains of vertices
via P-percolation, (called ‘ranches’) that represent the CTC’s (subsections 4.2 and 4.3),
coupled with a simple Laplace dynamics for the parallel evolution of the positions of
vertices with attributes (subsection 4.4), produce a structure with which the probability
distribution of the association clusters is correctly reproduced. Finally, subsection 4.5
presents the results from the simulation process.

Section 5 hands the word back to the biologist by presenting a biological discussion
and interpretation of the mathematical and simulation results obtained.
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2. The Biology Behind

Meiosis is an extraordinary process that produces haploids and genetically diverse ga-
metes in organisms of sexual reproduction and differs significantly to the more widely
known process of Mitosis. It is characterized by a plethora of stages, of which one of
the conspicuous, remarkable ones is called the pachytene in early prophase I, which
we are interested in. At pachytene, the homologous chromosomes synapse along (by or
through) a proteinacious structure called synaptonemal complex (SC), which enables
recombination between them, a process that is known to produce genetic variation.
Chromosomes in synapse are called bivalents and describe arcs ’floating’ inside the
nucleous, bound to the nuclear envelope by both their extremes, called telomeres.

Unions or associations among bivalents, mediated by overlapping domains of their
own constitutive heterochromatin, are frequently observed during this stage.

Enter the house mouse: 2n = 40 Mus m. domesticus. This species, which is widely
represented in Europe, exhibits all their chromosomes (save for the X and Y), to be
of similar morphology and size, hence making them particularly well suited for es-
tablishing a reference biological subject with which it should be possible to contrast
mathematical models. In our case, we will only consider the 19 bivalents of 2n = 40
Mus m. domesticus (hence leaving the X and Y out) and will consider them to be indis-
tinguishable units.

The centromere - telomere - complex (CTC) is a structure of the short arm of each
one of the 19 autosomal bivalents and - under appropriate staining techniques, as im-
munocytochemical staining - several structures of them can be brought to light. So, for
example the Synaptonemal Complexes (SC’s) and also the constitutive pericentromeric
heterochromatin domains (CPCH’s).

Spreads are obtained as the result of removing the nuclear envelope and projecting
the spermatocyte nucleus’s to a flat 2D surface. A typical spread is presented in Figure
1. a), in which the pericentromeric heterochromatin domains (CPCH’s) are stained red,
while the Synaptonemal Complexes (SC’s) are stained green.

Fig 1. a) A representative pachytene spermatocyte spread of 2n = 40 Mus domesticus mice treated by im-
munocytochemical techniques. In red the pericentromeric heterochromatin domains, in green the synaptone-
mal complexes. The (sex) bivalent XY is indicated. b) Observed 1st-Class and 2nd-Class frequencies with
bootstrap variation

Notice the apparent clustering induced by the overlapping domains of CPCH. These
clusters will be interpreted as domains in which the corresponding CTC’s are in asso-
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ciation and, in order to describe the frequencies of their appearance in the data, they
will be associated 1:1 to a partition of the number 19 (see [3]):

The 1st-Class (or simply ’Class’) of a spread is a characterization of the induced
partition given by the number of bivalents present in the biggest association cluster
observed in it. The 2nd-Class is the size of the second biggest subcluster observed, and
so forth.

So, for example, if a given spread exhibits one association cluster of size 4, three
of size 2, and all others in singletons, then the associated partition of 19 is written as
19 = 4 + 2 + 2 + 2 + 1 + · · · + 1 and we say that the spread belongs to 1st-Class 4,
2nd-Class 2, etc.

In order to make this article as self-contained as possible, we reprocessed the orig-
inal data from [3] and reproduced the empiric 1st-Class and 2nd-Class distribution,
which we completed by adding the intrinsic variation in each class, computed by sim-
ple bootstrap.

The data is given in Table 1, results are reported in Figure 1, b), where the shaded
areas represent two times (the square root of) the corresponding bootstrap variances.

1st - and 2nd - Class Elementary Statistics
Size 1st-Class Freq 2nd- Class Freq

(%)
√

Var1 (%)
√

Var2
1 – – 0.48 0.006
2 0.50 0.006 14.61 0.030
3 11.25 0.027 41.18 0.044
4 23.25 0.037 31.74 0.0413
5 23.50 0.036 9.55 0.0241
6 18.50 0.033 2.99 0.0153
7 10.25 0.028 0.19 0.004
8 6.50 0.022 0.27 0.004
9 4.25 0.018 0 0
10 1.25 0.01 0 0
11 0.75 0.01 0 0
12 0 0 0 0
.
.
.

.

.

.
.
.
.

19 0 0 0 0
Table 1

1st - and 2nd - Class Elementary Statistics (see Fig. 1).

For each spread in the data set, the corresponding partition was determined and the
frequencies of their appearance computed. Figure 2. a) depicts the full set of frequen-
cies, where the x-axis denotes the set of all partitions ordered canonically, i.e., the first
partition is 19 = 1+1+1+· · ·+1, the second one is 19 = 2+1+1+· · ·+1, until partition
number 489, which is 19 = 18 + 1 and the last one, 19 = 19, the 490th partition. One
cannot help but notice a suggestive fractal-like form for the distribution showing up.
Figure 2, b) shows the observed distribution for 1st-Class 4.

Remark: The reader will notice a small abuse in notation while using the letter n:
Each time we refer to the mouse under study, we shall write 2n = 40, since this is
standard notation in biology: 2n = 40 Mus M. Domesticus. In contrast, whenever we
talk about placing the 19 autosomal bivalents (not considering the X and Y) upon the



S. Berríos, J. López Fenner and A. Maignan/Simulating aggregates through inhomogeneous percolation 5

Fig 2. a) The full set of 400 observations, with their frequencies. b) The subset of 1st-Class 4

nuclear envelope and determining the corresponding association clusters, we shall put
n = 19, since it is the partitions of 19 we will be referring to.

3. Random Graphs

In this section we show that the observed partitions do not follow the distribution ob-
tained when applying the theory of random graphs G(n, p).

Indeed, the exact probability of G(n, p) being connected, which we denote by f (n),
can be computed recursively by means of [5]

f (1) = 1

f (n) = 1 −
n−1∑
i=1

f (i)
(

n − 1
i − 1

)
(1 − p)i(n−i), n > 1.

(3.1)

The probability P(r) for a random graph composed of n nodes to be split into k
components of size r = (r1, r2, ...rk) is known to be [1]:

P(r) =
n!

Πmdm!Πiri!
Πl f (rl)Πi< j(1 − p)rir j ,

in which dm is the number of containers of size m, which essentially is a combinatoric
result obtained in the determination of the so called ‘Bell’s numbers’ (see [2], [9]).

So we ask ourselves whether there is a value p, for which the observed partition
frequencies corresponds to the theoretical frequencies of the cluster distributions of
G(19, p).

To answer this we take, for example, 1st-Class 4, of which there are 93 observations
in the dataset, corresponding to 28 different partitions.

Under this model, the probability of partition r = (4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1) in
G(19, p) is given by

P(r) =
[
a − a (1 − p)3 − b p(1 − p)4

−b
(
1 − (1 − p)2 − 2 p(1 − p)2

)
(1 − p)3

]
p3 (1 − p)162 ,

in which the coefficients are, respectively, a = 290990700, b = 872972100.
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Solving for p such that
∑

r∈Cl(4)(P(r)) = 93/400, the observed frequency for 1st
Class 4, yields three possible values: p = −.121, p = −0.0125, p = 1.807. Hence we
conclude that no p will ever furnish a correct approximation for the observed distribu-
tion using G(n = 19, p).

For this reason, we now take the nuclear architecture of the spermatocytes into con-
sideration and propose a random partition model that suits better the experimental data.

4. Model Construction

We take first into account the scales of the biological units considered in our study
(as reported in [3]): It is known that approximately 1µm2 portion of the CTC’s surface
adheres to the internal face of the nuclear envelope, whose size - in turn - range be-
tween 10µm − 15µm in diameter. This means that, for example, in a nucleus of 14µm
diameter, the total surface of the nuclear envelope measures approximately 615µm2,
hence accepting a tiling containing 615 cells of 1µm2 each, while in a nucleus of 13µm
diameter, a similar tiling would contain 530 cells of 1µm2.

We propose a discrete structure (a connected undirected graph G = (V, E), with V a
set of vertices (or nodes) and E a set of edges, E ⊆ V × V) for modeling the nuclear
envelope. The difference with our previous model (reported in [8]) is that now the bi-
valent’s structures attached to the envelope are spatially extended structures which will
be represented as attributes to the vertices, and we replace the assumption of a rigid
CTC by a random structure representing two of the highlighted components in the
spreads: the Constitutive Pericentromeric Heterochromatine (CPCH) and the Synap-
tonemal Complex (SC).

To capture the biological constraints posed above, we search for a graph G satisfying
(at least) the conditions:

C1. Regular and maximally connected.
C2. Embedded on a sphere.
C3. |V | ∼ 600.

Condition C1 represents a biological constraint, since the SC’s are spacially ex-
tended objects placed upon a surface, which imposes naturally a six-degree of regu-
larity upon the nuclear architecture, considered as a graph. To respect the observed
sizes of the nuclei, we require C3 and, while a six-regular embedding of a surface to a
sphere is certainly not possible, the constraint of being maximally connected yields a
candidate: The dual fullerene.

4.1. Dual Fullerene

Embedding a graph in the plane is equivalent to embedding it on the sphere, hence we
use planar graph theory [12]. We need the following results, which we state without
proof:

Theorem 4.1. If G is a planar graph of N ≥ 3 vertices and e edges, then e ≤ 3N − 6.
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Corollary 4.1. Every planar graph of N ≥ 3 vertices contains a vertex of degree at
most 5.

A graph satisfying conditions C1 and C2 above with exactly N − 12 vertices of
degree 6 and 12 vertices of degree 5 can be constructed in a straightforward manner:

Indeed, from the previous theorem and corollary, e ≤ 3N − 6. If we consider N − 12
vertices of degree 6 and 12 vertices of degree 5, then e = 1

2 (6(N − 12) + 5× 12), which
is exactly 3N − 6.

A Fullerene is a cubic planar graph having all faces 5- or 6-cycles, i.e., a 3-regular
planar graph such that all the face’s sizes are pentagons or hexagons [13]. Hence the
graph we consider is a fullerene dual and is constructed as follows: Start with a node,
attach to it a ring made of 6 connected vertices, then a second ring of 12 vertices, etc
. . ., until attaching the ith ring with 6i vertices, see Figure 3.

Fig 3. A local planar view of the (almost) 6-regular sphere and the resulting graph C′1200.

After having built this structure with i rings, which we call a semi-sphere, the graph
has exactly Ni = 1+3i(i+1) vertices, all of them of degree 6, save those that are located
at the exterior ring, which are of degree 3 or 4.

Construct now a second half-sphere with i − 1 rings and connect with the first one
as to leave only 12 vertices of degree 5, all other being of degree 6.

The total number of vertices is therefore Ni+Ni−1 = 1+3i(i+1)+1+3i(i−1) = 2+6i2

and all vertices of degree 5 are located on the ith ring of the first semi-sphere.
For i = 10 we finally obtain a graph of 602 vertices, which matches our expectations

for the size of the nucleus (see Figure 3). Of them, 590 vertices are of degree 6 and the
rest (twelve) are of degree 5. It is C′1200, the Dual of the Fullerene C1200 of 1200 vertices.
The presence of these twelve degree 5 vertices will prove to be non significant for the
computations/simulations, in the sense that without loss of accuracy, the planar graph
can be assumed to be plain 6-regular.

4.2. Random Chromatin Neighborhoods

Now we turn to the CTC, which will be characterized by two of their main constituents:
The SC and the CPCH. It is a 3-d structure that attaches to the nuclear envelope. Hence
the contact zone will be described by the position of the SC, i.e., a vertex in C′1200, and
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the positions of the surrounding CPCH, described by vertices in the neighborhood of
the SC.

Let G = (V, E) be a graph, v an arbitrary but otherwise fixed vertex. Let NG(v) be
the set of neighbors of v in G, i.e., the set of vertices that are connected to v by an edge
in E. For v,w ∈ V , let dG(v,w) the distance between them to be defined as the length of
the shortest path connecting them.

For each vertex v we assign a state: state(v), which belongs to the set {¬Ex, S ,¬S },
in which ¬Ex stands for "non explored", S for "selected" and ¬S for "not selected".

Let P = (P1, P2, . . . , Pκ) ∈ [0, 1]κ be a finite length vector of probabilities 0 ≤ Pi ≤

1, 1 ≤ i ≤ κ.
In analogy to [6], we construct an Inhomogeneous Bernoulli Percolation Process

upon C′1200, also called P- percolation process, as a site selection process according to
the following algorithm:

P-percolation

• Input: G ← C′1200, v ∈ V , P = (P1, P2, . . . Pκ).
• Put vertices in V \ {v} to be in state ¬Ex, assign state(v) ← S and set

VP
0 (v) = {v}.

• for j from 1 to κ do:

∀k ∈ VP
j−1(v), ∀l ∈ NG(k) :

∗ if state(l) == ¬Ex then:
· Put X ∼ B(1, P j), the Bernoulli random variable with

probability P j;
· If X == 1 then add l to VP

j (v) and assign state(l)← S .
∗ else state(l)← ¬ S .

• Ouput: ∪κj=0VP
j (v).

Definition 4.1. Let P = (P1, P2, . . . , Pκ) ∈ [0, 1]κ. Let v ∈ V be a given (fixed) vertex of
G. The random chromatin neighborhood of v, denoted by ranchP(v) ⊆ V, is the set
of vertices in state S resulting from a P-percolation processes around v.

As a result, ranchP(v) ← ∪κj=0VP
j (v) ⊆ V is obtained layer by layer by adding

successive rings VP
j (v) of vertices centered at v in which the selection follows in-

dependent Bernoulli trials, hence building a random neighborhood that represents a
natural probabilistic structure with which bivalents (CTC’s) will be modeled. Clearly,
ranchP(v) ≡ V(v) iff all the values of P are 1, otherwise it is a subset of nodes of V(v).

We assume that the CTC will be attached to the nuclear envelope at the points given
by the vertices in ranchP(v), v ∈ V . v denotes the position of the SC, and the set
ranchP(v) \ {v} the CPCH, see Figure 4. represents the position of a S C and
corresponds to the intersection between the chromatine and the nucleus surface dis-
cretization.

From the fact that – by construction – the sets VP
j (v), j = 1, 2; . . . are mutually
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Fig 4. (a) Chromatin neigborhood created with P = (1, 0.5). (b) Chromatin neigborhood created with P =

(0.8, 0.6).

disjoint, the number of elements of the ranch is given by

|ranchP(v)| =
κ∑

j=0

|VP
j (v)|.

We restrict ourselves to the graph G = (V, E) with |V | = N = 602 nodes, as intro-
duced in section 4.1, see also Figure 3, and the vector P a given κ-dimensional vector
of probabilities.

Let P = (P1, P2, . . . Pκ). We shall derive an expression for the first two moments
of the probability distribution of the size of the ranchP(v) of a given vertex v ∈ V:
E(|ranchP(v)|) and σ2(|ranchP(v)|). For this, we assign to the central position of the
local planar graph in which v is contained the (local) coordinate (0,0). In this coordinate
system, vertices located at distance 1 will be given the positions (1, 0), (1, 1), . . . (1, 5)
counting clockwise, as in figure 5, and so forth for vertices located at greater distances:
for i ≥ 1, j ∈ {0, 1, . . . 6i−1}, the vertex (i, j) will be the j-th vertex counting clockwise
from the central vertex located at distance i from the center.

Denote by Z(i, j) the Bernoulli random variable Z(i, j) ∼ B(1, pi, j), 0 ≤ pi, j ≤ 1
that takes the value 1 with probability pi, j if the vertex (i, j) belongs to the ranchP, 0
otherwise. This means that (i, j) is reached from the central vertex by the P-percolation
described above, i.e., by a percolation path of length i.

Notice that at each level i = 1, 2, . . . , κ, once the preceding level has been determined
by the P percolation algorithm, the set of reachable vertices depends strongly upon the
previous level. In terms of the random variables Z(i, j), this means that Z(i, j) depends
always upon some Z(i−1, l) that lies below, for some l. The dependency/independency
of the Z variables is illustrated in Table 2. Due to the particular construction and
symmetry of the local architecture of the graph, being 6-regular, variables Z(i, 0) and
Z(i, i · k), for k ∈ {1, 2, . . . 5}, are independent, identically distributed Bernoulli random
variables with parameter πi :=

∏i
j=1 P j.

As for the probability pi, j of Z(i, j) ∼ B(1, pi, j) for j , i · k, k ∈ {1, 2, . . . 5}, it can be
readily seen that it satisfies the following finite difference equation

pi, j = Pi

[
pi−1, j−1 + pi−1, j − pi−1, j−1 · pi−1, j

]
, 1 ≤ i ≤ κ. (4.1)

This equation follows from the fact that, by the graph architecture, nodes at distance
i of the central node v can be reached either by a unique path of length i, which is the
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case for nodes at (i, 0), (i, i), . . . , (i, 5i) or by the two sole adjacent paths reaching (i, j):
one that pass through the node situated at (i − 1, j), the other one through (i − 1, j − 1),
so that Eqn. (4.1) is nothing else than the probability of the union.

Theorem 4.2. Let v = (0, 0) be a given node of the graph G, P = (P1, P2) Then the
expected size and variance of the size of ranchP1,P2 (v) is given by

µ(|ranchP(v)|) = 1 + 6P1 + 6P1P2(3 − P1) (4.2)

σ2(|ranchP(v)|) = 6P1(1 − P1) + 6P1P2

(
9 − 11P1 + 4P2

1

)
+ 6P1P2

2(6 − 19P1 + 14P2
1 − 3P3

1).
(4.3)

Proof. The mean size and variance of |ranchP(v)| will be given by the number of ver-
tices in the neighborhood of v = (0, 0) which are selected by the procedure.

With our notation, (see figure 5)

|ranchP(v)| = 1 +

2∑
i=1

6i−1∑
j=0

Z(i, j),

from which

E(|ranchP(v)|) = 1 +

2∑
i=1

6i−1∑
j=0

pi, j

= 1 + 6P1 + 6P1P2(3 − P1)

because all of them are Bernoulli random variables, which is the easy part and uses
equation (4.1).

The variance, though, is more involved, as the random variables are not mutually
independent, save those of the first ring Z(1, 0), . . .Z(1, 5).

Variables Z(1, i) ∼ B(1, P1), i = 0, 1, . . . 5, are independent identically distributed
Bernoulli random variables with probability P1. It is immediate to recognize that Z(2, 0),
Z(2, 2), . . . Z(2, 10) are all i.i.d ∼ B(1, P1P2). From equation (4.1), variables Z(2, 1),
Z(2, 3), . . . Z(2, 11) are all B(1, P1P2(2− P1)). But they are not all independent among
them, nor among the variables directly below following any path of length 2 to the
central vertex (0, 0):

Depends on Independent of
Z(2, 0) Z(2, 11),Z(2, 1) Z(2, 2) − −Z(2, 10)
Z(2, 1) Z(2, 11),Z(2, 0),Z(2, 2),Z(2, 3) Z(2, 4) − −Z(2, 10)
.
.
.

.

.

.
.
.
.

Table 2
Z dependencies at level 2
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This is relevant for the computation of the variance, since then the joint probability
distribution must be determined. Since

σ2(ranchP1,P2 (v)) = E
(
|ranchP1,P2 (v)|2

)
− E2(|ranchP1,P2 (v)|),

we expand the terms involved and get, for example1 +

2∑
i=1

6i−1∑
j=0

Z(i, j)


2

= 1 + 2
5∑

j=0

Z(1, j) + 2
11∑
j=0

Z(2, j) + 2
5∑

k=0

11∑
l=0

Z(1, k) · Z(2, l)

+

5∑
k=0

5∑
l=0

Z(1, k) · Z(1, l) +

11∑
k=0

11∑
l=0

Z(2, k) · Z(2, l).

Also,

E2(|ranchP1,P2 (v)|) = E2

1 +

5∑
j=0

Z(1, j) +

11∑
j=0

Z(2, j)


= (1 + 6P1 + 6P1P2(3 − P1))2 ,

so that

σ2(|ranchP1,P2 |) = 1 + 2 · 6P1 + 2(6P1P2 + 6P1P2(2 − P1))

+ (6P1 + 30P2
1) + 2

5∑
k=0

11∑
l=0

E (Z(1, k) · Z(2, l))

+

11∑
k=0

11∑
l=0

E (Z(2, k) · Z(2, l)) − (1 + 6P1 + 6P1P2(3 − P1))2 .

It remains only to compute the terms
∑5

k=0
∑11

l=0 E (Z(1, k) · Z(2, l)) for the interactions
between level 1 and 2, and

∑11
k=0

∑11
l=0 E (Z(2, k) · Z(2, l)) for level 2, which is done by

using the symmetry of the local graph structure (6-regularity) and the fact that the
product of Bernoulli random variables is again Bernoulli.

Thus, for example, by conditioning upon the random variables at the level below, we
determine that Z(1, 0) · Z(2, 0) ∼ B(1, P1P2) and it has the same distribution as Z(1, 0) ·
Z(2, 1) or Z(1, 0)·Z(2, 11) and that Z(1, 0) is independent of Z(2, 2),Z(2, 3), . . .Z(2, 10).

Hence the products yield either a B(1, P2
1P2) or B(1, P2

1P2(2 − P1)) distribution, so
that

11∑
j=0

E (Z(1, 0) · Z(2, j)) = 3P1P2 + 5P2
1P2 + 4P2

1P2(2 − P1).

Since there are six terms of this kind, we conclude that

5∑
k=0

11∑
l=0

E (Z(1, k) · Z(2, l)) = 6(3P1P2 + 5P2
1P2 + 4P2

1P2(2 − P1))

= 6P1P2(3 + 13P1 − 4P2
1).
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In the similar lines of reasoning, the products Z(2, i) · Z(2, j) are determined to be
Bernoulli, with probabilities π2 := P1P2, π̃2 := π2(2 − P1), a := P1P2

2 = π2 · P2,
b := P2

1P2
2 = π2

2, c := P2
1P2

2(2−P1) = π2 · π̃2, d := P1P2
2(1 + P1 −P2

1) = a · (1 + P1 −P2
1),

and e := P2
1P2

2(2 − P1)2 = π̃2
2. We explain a few of these expressions, the rest follows

from symmetry considerations:

• Z(2, 0) ∼ B(1, P1P2)⇒ Z(2, 0)2 ∼ B(1, P1P2) = B(1, π2).
• Z(2, 1) ∼ B(1, P1P2(2 − P1))⇒ Z(2, 1)2 ∼ B(1, P1P2(2 − P1)) = B(1, π̃2),
• Z(2, 0) · Z(2, 1) ∼ Z(2, 0) · Z(2, 11) ∼ B(1, P1P2

2) = B(1, a), which is deduced by
conditioning upon Z(1, 0) and Z(1, 1), see below.

• Z(2, 0) · Z(2, 2) ∼ B(1, P2
1P2

2) = B(1, b) since they are independent,
• Z(2, 0) · Z(2, 3) ∼ B(1, P2

1P2
2(2 − P1)) = B(1, c) by independence,

• Z(2, 1) · Z(2, 2) ∼ B(1, P1P2
2) = B(1, a) by symmetry,

• Z(2, 1) · Z(2, 3) ∼ B(1, P1P2
2(1 + P1 − P2

1)) = B(1, d), which is obtained by
conditioning upon Z(1, 0), Z(1, 1) and Z(1, 2),

• Z(2, 1) · Z(2, 4) ∼ Z(2, 0) · Z(2, 3) ∼ B(1, P2
1P2

2(2− P1)) = B(1, c), by rotating the
figure,

• Z(2, 1) · Z(2, 5) ∼ B(1, P2
1P2

2(2 − P1)2) = B(1, d) since they are independent, etc,
• The other products follows by symmetry, i.e., by rotating the figure.

Fig 5. Reachable points from v with P = (P1, P2)

In order to see why – for example – Z(2, 0) ·Z(2, 1) ∼ B(1, P1P2
2), it suffices to recall

that once a vertex, say w, at a given level i has been selected by the percolation process,
all vertices at level i + 1 that can be reached from it are available for the next Bernoulli
selection B(1, Pi+1).

Hence, the joint probability P (Z(2, 0) = 1 ∧ Z(2, 1) = 1) is determined upon condi-
tioning with respect to variables Z(1, 0) and Z(1, 1): Let Y0 = Z(2, 0), Y1 = Z(2, 1),
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X0 = Z(1, 0) and X1 = Z(1, 1). Then

P (Y0 = 1 ∧ Y1 = 1) =
∑

i, j∈{0,1}

P (Y0 = 1 ∧ Y1 = 1| X0 = i ∧ X1 = j) · P (X0 = i ∧ X1 = j)

= P2
2 · P (X0 = 1 ∧ X1 = 1) + P2

2 · P (X0 = 1 ∧ X1 = 0)

+ 0 · P (X0 = 0 ∧ X1 = 1) + 0 · P (X0 = 0 ∧ X1 = 0)

= P2
2

(
P2

1 + P1(1 − P1)
)

= P1P2
2.

If we denote by M = (Mi, j) the matrix with entries mi, j = E (Z(2, i − 1) · Z(2, j − 1)),
we obtain

M =



π2 a b c b c b c b c b a
π̃2 a d c e c e c e c d

π2 a b c b c b c b c
π̃2 a d c e c e c e

π2 a b c b c b c
π̃2 a d c e c e

π2 a b c b c
π̃2 a d c e

π2 a b c
π̃2 a d

π2 a
π̃2


in which we only wrote the upper diagonal part of the matrix, since it is symmetric.

Hence the second sum is found to be

E

 11∑
k=0

11∑
l=0

Z(2, k) · Z(2, l)

 = 6π2 + 6π̃2 + 24a + 30b + 48c + 12d + 18e

= 6P1P2(3 − P1) + 6P1P2
2(4 + 23P1 − 16P2

1 + 3P3
1).

(4.4)

Adding up all terms, we conclude that

σ2(|ranchP1,P2 (v)|) = 6P1(1 − P1) + 6P1P2(9 − 11P1 + 4P2
1)

+ 6P1P2
2(6 − 19P1 + 14P2

1 − 3P3
1).

�

As a small check of consistency, we can point out that if P1 = P2 = 1, the percola-
tion process reach every vertex of the neighborhood at distance 2 with probability one,
hence the variance is zero: 0 + 6(9 − 11 + 4) + 6(6 − 19 + 14 − 3) = 0; if P1 = 1, all
vertices at distance 1 are reached by the percolation process, rendering the variance –
at level 2 – of the sum of 12 independent Bernoulli random variables B(1, P2), which
yields 6P2(9 − 11 + 4) + 6P2

2(6 − 19 + 14 − 3) = 12P2(1 − P2), or, if P2 = 0, P1 , 0, 1,
only the first layer of vertices is reached, which produces the variance of the sum of 6
independent Bernoulli’s B(1, P1), i.e., 6P1(1 − P1).
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Corollary 4.2. The homogeneous (P1, P1) percolation process produces ranches with
average size 1 + 6P1 + 12P2

1 + 6P2
1(1 − P1) and variance 6P1 + 48P2

1 − 30P3
1 − 90P4

1 +

84P5
1 − 18P6

1.

The maximum variance is obtained with P1 = 0.59511, at which the expected ranch
size is 9.68 and variance 8.43. In contrast, the nonhomogeneous Bernoulli percolation
process with P = (P1, P2) = (1, 0.47) produce ranches with average size 12.64 and
variance 2.98, respectively.

Theorem 4.3. Let v = (0, 0) be a given node of the graph G, P = (P1, P2, · · · , Pκ). Let
πi :=

∏i
j=1 P j, i = 1, 2, · · · κ, and

pi, j =

{
πi if j = k · i, k ∈ {0, 1, . . . 5}
Pi

[
pi−1, j−1 + pi−1, j − pi−1, j−1 · pi−1, j

]
j , k · i, k ∈ {0, 1, . . . 5}, (4.5)

Define ∂κ :=
∑6κ−1

j=0 Z(κ, j), so that

|ranchP1,··· ,Pκ (v)| = |ranchP1,··· ,Pκ−1 (v)| + ∂κ. (4.6)

Then the expected size and variance of |ranchP1,P2,··· ,Pκ (v)| is given by

µ(|ranchP1,··· ,Pκ (v)|) = 1 +

κ∑
i=1

6i−1∑
j=0

pi, j

= µ(|ranchP1,··· ,Pκ−1 (v)|) + µ(∂κ),

(4.7)

σ2(|ranchP1,··· ,Pκ (v)|) = σ2(|ranchP1,··· ,Pκ−1 (v)|) + σ2(∂κ)

+ 2COV
(
|ranchP1,··· ,Pκ−1 (v)|, ∂κ

)
.

(4.8)

In light of the computations made so far, the first result (expected value) is by now
straightforward. The second result is just the variance of the sum of two random vari-
ables, the detailed computation requires computing the joint distribution of all vari-
ables that are dependent with each other, so for example Z(i, j) with Z(l, j) whenever
1 ≤ l ≤ i, j = k · i or Z(i, j) and Z(i, l) for 0 ≤ j ≤ l ≤ i − 1, etc. We omit this
computation.

4.3. Farms

Once ranches have been appropriately defined into our graph structure, we turn over
to the associations between them, which will be given by overlapping clouds of CPCH
and can hence undertake the problem of determining the association distribution:

Definition 4.2. Let P = (P1, P2, . . . , Pκ), G = (V, E) as before.

1. Two ranches r1 and r2 are said to overlap if and only if r1 ∩ r2 , ∅.
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2. Two ranches r1 and r2 are said to be connected or in association if and only if
there exists ri1 , ri2 , . . . rik such that r1 overlaps ri1 , ri j overlaps ri j+1 , 1 ≤ j ≤ k − 1
and rik overlaps r2.

3. A Farm is a partition induced upon any set of ranches by the equivalence relation
of ”being connected” defined between ranches.

Remark: From the biological point of view, an association cluster according to
this definition consists of a set of vertices whose overlapping domains represent actual
sites in which CPCH from different bivalents come into contact, hence providing a
scaffold in which genetic material can be paired, compared, copied, etc., (we do not
fix ourselves or pursue this topic further). The observed partitions are the sizes of the
equivalence classes determined upon the constructed farm. From first principles, any
random distribution of ranches will provide a different partition distribution, it remains
to check whether we can reproduce the observed distribution with sufficient accuracy.

�
For example, in Figure 6 we depict the results obtained for the simulation of 19

SC’s distributed randomly upon the set of 602 vertices, along with their corresponding
ranches and for the probability vectors a) P = (2/3, 1/2, 2/3) and b) P = (1, 0.5).
Boundaries of chromatin have been drawn in order to emphasize the similarity with the
observations.

Fig 6. Artist’s rendering of simulated spermatocytes (a) P = (1, 1/2), partition 19 = 6+4+3+2+1+1+1+1.
(b) P = (2/3, 1/3, 7/24), partition 19 = 7 + 3 + 2 + 2 + 1 + 1 + 1 + 1 + 1. (Lengths are not to scale).

4.4. SC Dynamics

Notice that in the field of dynamics upon a fixed regular net, cellular automata and
agent based models have been widely used, see for example [7], and also to a lesser
extent some dynamics have been defined upon planar tilings made of hexagonal and/or
pentagonal cells, as in [14]. From this point of view, we can consider that the SC’s
can be thought of as being agents interacting upon the surface of the nucleus (a finite
connected field constituted by 590 hexagonal cells and 12 pentagonal cells).

It is known that in an earlier stage of the prophase, previous to pachytene, the size
of the nuclear envelope is a fraction of the one used in our setting, and that at this
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stage bivalents appear to be grouped into a single "bouquet" (Figure 7), see [10], it is
during the pachytene stage that the bivalents (and more specifically the SC’s) seem to
be randomly (i.e;, uniformly) distributed.

While the available data does not provide information about the wandering pro-
cesses of the SC’s gliding upon the internal surface of the nucleus, we nevertheless
propose and explore a simple dynamics for the displacement of the SC’s upon the in-
ternal surface of the fullerene dual. It will turn out that it actually converges to the
uniform distribution:

Fig 7. Initial state (left) and result of the dynamics (right) after approximately 104 time steps

Let G = (V, E) be the graph representing the nuclear envelope of a spermatocyte. A
node v ∈ V corresponds to a position upon the nuclear envelope that can accommodate
either the SC or the CPCH of a given bivalent.

To decide whether at time t this position is occupied by an SC or not, we add an
attribute to each vertex:

Definition 4.3. The attribute at time t of a vertex v ∈ V, denoted by αt
v ∈ {0, 1} is

defined by: αt
v = 1 if and only if a SC is located at (the position of) vertex v ∈ V at time

t.

At time t = 0, we assume that all the SC are grouped and occupy the 19 first nodes,
see Figure 7. (The assumption is not restrictive, as any other compact set of vertices
forming a disc can also be chosen.) Thus the vector α0 = (α0

1, . . . , α
0
602), which de-

scribes the "bouquet" configuration, is defined as α0
i = 1, i ∈ {1, 2, . . . , 19}, and α0

i = 1
for all i ∈ {20, 21, . . . , 602}. The only constraint is that two SC cannot share the same
position at the same time. Thus the random trajectory of an SC is only affected by the
position of the other SC’s.

At time t > 0, with vector αt already been computed, the positions of the SC’s will
be given by the following algorithm:
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SC-Dynamics

• Input G ← C′1200, n.IT ← number of iterations.
• Initialize: α0

i ← 1, for i ∈ {1, 2, . . . , 19}, otherwise α0
i ← 0, i ∈

{20, . . . , 602}.
• Iterate for t ∈ {0, . . . , n.IT − 1}:

• Step 1 : for all 1 ≤ i ≤ 602 do:

− If αt
i == 1 then choose v ∈ NG(i) such that αt

v == 0 if any;
put (i, v) in a non ordered list L.

• Step 2 : αt+1 ← αt; while L , ∅ do:

− extract randomly from L an element (i, v)
− If (αt+1

v == 0) then αt+1
i ← 0 and αt+1

v ← 1

• Output: MC ← {i ∈ V : αn.IT
i == 1}

At each time unit the complete set of SC’s is allowed to simultaneously choose a
free neighbor and move to it, or to remain at the present position if either there are no
free neighbors or the chosen one was already selected marked for movement. In this
dynamics, the sum

∑602
i=1 α

t
i = 19 is a conserved quantity. It is a conflict free parallel

discrete time upgrading dynamics.
Figure 8 illustrates one possible step from time t to time t +1 for a parallel evolution

of three nodes in a subgraph of G.

Fig 8. Description of 1 step of (parallel) evolution in a subgraph of G. Red lines indicate direction of dis-
placement.

Simulations produce convergence to a uniform distribution for the positions of the
SC’s upon the nuclear envelope, already after ∼ 104 iterations. Hence, we can imple-
ment now an algorithm for assessing the percolation process after a uniform sample of
nodes has been reached.

4.5. Simulation results

We simulate the random bivalent’s associations via the following Farm-Partition algo-
rithm:
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Farm-Partition

• Input: G ← C′1200, P = (P1, P2, . . . Pκ).

– MC <- SC-Dynamics (G, n.IT ← 104).

– For v ∈ MC: ranchP(v)←P-Percolation(G, v, P).

– Farm ← {F1, . . . , Fr} vertex sets of the connected components of
∪v∈MCranchP(v) in G.

• Output: Part ← sort( |F j|, j = 1, . . . , r, decreasing = TRUE).

This algorithm was implemented using R software [11] and iterated ad libitum in or-
der to produce a simulated set of nuclei with which available data could be contrasted.
Notice that in our notation, the biggest subcluster found in the partition corresponds to
Part[1], i.e., 1st-Class, the second one in Part[2], i.e., 2nd-Class, etc. Best approxima-
tion to the observed distribution for the 1st- and 2nd- Class was obtained for different
values of P = (P1, P2), where a bootstrapping technique was used for assessing the
intrinsic variation in the data/simulations in both cases, the homogeneous and the non
homogeneous one.

Figure 9 shows, for example, the results obtained for the homogeneous percola-
tion with P = (0.68, 0.68) after simulating 104 spermatocytes (i.e., by running Farm-
Partition 104 times with G ← C′1200, P = (0.68, 0.68)).

Fig 9. Best approximation for 1st-Class and 2nd-Class distributions for the homogeneous case P =

(0.68, 0.68). Similar approximations are obtained in the non homogeneous case for various values of the
P-vector, see Table 3 anf Figure 10.

P1 P2 µ σ2 µ̂ σ̂2

1.0 0.47 12.64 2.99 12.55 3.00
0.8 0.60 12.14 5.84 12.05 5.97
0.68 0.68 11.52 8.03 11.40 8.03
0.6 0.78 11.34 10.01 11.22 10.06
0.52 1.0 11.86 13.50 11.82 13.86

Table 3
A sample of (P1, P2) values for which the associated P percolation process gives the best approximation for
the 1st- and 2nd-Class probability distribution, together with theoretical and simulated ranch sizes and their

variances.
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Other values with good agreement with respect to the data are the non homogeneous
case P = (1, 0.47), or P = (0.8, 0.6), etc., see Table 3. Included are the theoretical values
for the mean value and variance of the ranch’s sizes in the 6-regular approximation
(equations (4.2) and (4.3) from Theorem 4.2), as well as those obtained by simulation
in the dual fullerene C′1200. The homogeneous percolation with minimal variance P =

(0.595, 0.595) does not furnish a satisfactory 1st-Class probability distribution, so it is
not included in the table.

Fig 10. Best approximation regions in P = (P1, P2)- space for 1st-Class and 2nd-Class distributions obtained
with P-percolation.

Figure 10 depicts the zone in (P1, P2)-space with the best fitting to the observed fre-
quencies in both, 1st-Class and 2nd-Class. The criteria used for determining the lower
and upper curves was that the entire simulated mean distribution does not fall outside
the variation zone around the observed mean values (frequencies) in the data set. The
red curve depicts the best fit in which both, the simulated and the observed mean dis-
tribution lie close together. Depicted here is also the homogeneous percolation region
P = (P1, P1), which - intersected with the region in between the lower and upper curves
- yield the best approximation range for the distribution of 1st-Class and 2nd-Class in
the homogeneous case.

5. Comments and Discussion

Chromosomal bivalent’s associations through intersecting CPCH create rich dynamic
and diverse scenarios via the participating elements. They are triggered by the cor-
responding associations of CPCH located at the short arms of the bivalents, but also
by the resulting convergence of the rest of the constituent chromatin along them. This
supra chromosomal bonds allows, for example, joint expression of genes coming from
different bivalents.

Undoubtedly, the better understanding of the general principles behind bivalent’s as-
sociations in prophase meiotic nuclei, as well as precising the type of randomness being
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at play at this stage could bring us also a step closer to a better understanding of the
different chromosome combinations present in the gametes. Since these associations
and combinations persist until the meiotic divisions, the chromosomal associations as
described here necessarily leaves some imprint in the chromosomal sets passed on to
gametes and hence their importance to evolution. While available data provides no
distinctive insights upon prophase progression from the bouquet state to the observed
associations, whose distributions are studied here, it is by simulating different scenar-
ios that we obtain a simple conflict free parallel dynamics for randomly selecting free
neighbors, with which these distributions, as measured by 1st- and 2nd-Classes, can be
correctly reproduced. For this, a suitable choice of vector P has to be made, which is a
parameter needed for the ranch determination and therefore is an architectural param-
eter worth considering.

The approach pursued in this work possess clear advantages over earlier modeling
attempts, since now we have a tool that not only reproduces available data, but can also
drive further biological research in topics that have not been explored yet, for example
expressing or assessing individual properties attached to the individual chromosomes
via different choices of their ranches, i.e., via assigning individual vector P’s to each
CTC. To our knowledge this has not been reported in the literature and will be under-
taken next. We conjecture a correlation between our ranch-sizes, expressed in terms of
the number of neighboring vertices with chromatin attributes, and the actual sizes of the
chromosomes (respectively their chromatin content). These conditions should allow us
to propose new experiments for assessing individual chromatin content (for example
as a ratio volume/surface) or to characterize it by means of appropriate choices of vec-
tors P. This approach would allow us to effectively relax our previous hypothesis of
indistinguishable CTC’s, or at least, to put it to a test.

From the biological point of view, the introduction of chromatin neighborhoods with
(random) variable sizes reflects more properly the true nature of the objects being mod-
eled and, perhaps more significantly, it is the very intersection of chromatin domains,
which appears here naturally for describing the interactions of CTC’s via its induced
clustering relation, that represents better the biological importance of the described pro-
cess, because, while in hetero-chromatin there is no actual genic expression, it certainly
contributes to bringing together genes located at other chromosomal domains, so that
the associations themselves could be conceived as a form of dynamical organization
that contributes to the functionality of the joint genic expression, which – ultimately –
may be looking at us hidden behind the available data.

References
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[3] Berríos, S., Manterola, M., Prieto, Z., López-Fenner, J., Page, J. and
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