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Abstract

Despite of a growing use of the poly-L-lysine dendrigrafts in biomedical applica-

tions, a deeper understanding of the molecular level properties of these macromolecules
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is missing. Herein, we report a simple methodology for the construction of three-

dimensional structures of poly-L-lysine dendrigrafts, and the subsequent investigation

of their structural features using microsecond molecular dynamics simulations. This

methodology relies on the encoding of the polymers– experimental characterizations

(i.e. composition, degrees of polymerization, branching ratios, charges) into alphanu-

meric strings that are readable by the Amber simulation package. Such an original

approach opens avenues toward the in silico exploration of dendrigrafts and hyper-

branched polymers.

Introduction

Dendrigrafts of poly-L-lysine (DGLs) recently complemented the family of polycationic den-

dritic macromolecules that include the prominent polyamidoamine (PAMAM) and polyethylen-

imine (PEI) polymers (Figure 1).1 Because their iterative synthesis in aqueous conditions

is thermodynamically controlled by precipitation and kinetically controlled by steric hin-

drance, DGLs share features with both PAMAM dendrimers (i.e. generation-based growth

and narrow molecular weight distribution), and hyperbranched PEI (i.e. broad number of

regioisomers and rapid increase in molecular weight per generation). In contrast to PAMAM

and PEI, DGLs are biodegradable,2 exhibit low cellular toxicities,3 and turned out to be

non-immunogenic.4 As a consequence, DGLs have recently gained a huge interest in the

biomedical field during the last quinquennium, with numerous applications in drug and gene

delivery,2,3,5–18 biomaterials and tissue engineering,19–25 bio-imaging26–31 and biosensing.32–34

Despite this growing use of DGLs, a deeper understanding of the molecular level properties

of these macromolecules is missing. In this context, we decided to explore the possibility to

construct DGLs in silico and subsequently perform molecular dynamics (MD) simulations.

2



Figure 1: Schematic representation of the first- to fourth-generation DGLs G1-G4 (each dot
represents a L-lysine residue, pending free amino groups are not represented).
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Results and Discussion

Experimental Data

As DGLs are only made of L-lysine amino acids, one could assimilate them to proteins.

However, some of the residues are linked to each other through isopeptidic bonds (i.e. amide

linkages that involve the nitrogen atom of the lateral chain of lysine residues). From the

data that were previousy collected in our group,1 we extracted the degree of polymerization

obtained from size exclusion chromatography (DP) and the mean branching ratio obtained

from 1H NMR spectroscopy (BR, defined as the ratio of the number of ε-branched Lysine

residues over the total number of residues DP), which allowed us to calculate the number of

peptidic and isopeptidic bonds, as well as the number of free α- and free ε-amine functions

for each dendrigraft generation G1-G4 (Table 1). Also, determining the protonation state

at physiological pH of each generation of DGL was obviously required in order to perform

accurate modeling experiments. When a molecule bears several acidic functions, the pro-

tonation state of each of them influences the intrinsic acidity of the other ones, resulting

in a shift of the functions’ pKa. This phenomenon is called the polyelectrolyte effect.35

Moreover, these pKa are also influenced by several other parameters, such as the solvent

exposition of the acidic functions, or their capacity to form hydrogen bonds. While the pKa

of the α-amine in an isolated lysine residue is 9.16, the literature reports an average value of

7.7 for proteins’ N-termini, with a low value of 6.8.36,37 We performed pH-metric titrations

on DGLs (with trifluoroacetate TFA as counterions) in deionized water. The samples were

fully acidified with 0.5 mL of 1M nitric acid, and then submitted to incremental additions of

0.5M sodium hydroxide using a 702 SM Titrino automatic titrator. The resulting titration

curves are shown in figure 2.
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Figure 2: pH-metric titrations of DGLs G1-G4 in deionized water. Error bars are calculated
from the standard deviation of each pH measurement.

One would expect the pH to be stable below 1 mL of added NaOH since it was the required

volume to neutralize the amount of nitric acid used to acidify the samples. However all the

titration curves displayed a "lack" of nitric acid. This gap could be explained by the fact

that not all the amine functions were protonated in the commercial powders.38 Thus, we

made the hypothesis that a part of the nitric acid added in a first place was consumed by

5



the protonation of these neutral amino groups. The second peaks of the derivatives allowed

us to calculate the number of α-amino groups in the samples, except for DGLs G1 since the

presence of a unique α-amino group did not result in a mesurable signal by potentiometry.

Due to the polyelectrolyte effect, the third peaks of the derivatives – corresponding to the

pKa of the ε-amines – were barely visible. The deprotonation of these functions takes place

on a wide range of pH, making it impossible to determine the number of ε-amines, which was

therefore calculated from the ratio
α

ε
(see table 1). The electroneutrality equation was then

used to calculate the protonation fraction Θ (equation 1), where Ca is the concentration of

added acid, Cb the concentration of added base, CTFA the missing concentration of TFA, Cp

the total concentration of amino groups, and CH+ and COH− the concentration of free H+

and free OH– , respectively.

Θ =
Ca − Cb − CTFA − CH+ + COH−

Cp
(1)

Θ =
Ca − Cb − CTFA − 10−pH +

10−pKw

10−pH

Cp
(2)

Equation 1 could also be expressed as a function of the pH, leading to equation 2. Applied

on the experimental titration data, equation 2 gave the protonation degree of DGLs G1-G4

at a physological pH of 7.8, which was selected since all the reported applications for DGLs

are in the biomedical field (Table 2). It turned out that this percentage of non-protonated

amine functions are in excellent agreement with the percentage of α-amine functions in the

DGLs. This suggested that only the ε-amines were protonated at pH 7.8.
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Table 1: Selected properties of DGLs G1-G4. DP: degree of polymerization; BR: branching
ratio.

DGL DP BR
(%)

Free α-amino
groups

Free ε-amino
groups

Isopeptidic bonds Peptidic bonds

G1 8 0 1 8 0 7
G2 48 12 7 42 6 41
G3 123 24 31 93 30 92
G4 365 23 85 281 84 280

Table 2: Protonation state of DGLs G1-G4 at pH 7.8. Θ: protonation fraction; ε: number
of free ε-amino groups; α: number of free α-amino groups. We assumed that, as for DGLs
G2-G4, only the ε-amino groups of DGL G1 were protonated.

DGL Θ (%)
ε

ε+ α
(%) Net charge

G1 N/A N/A +7

G2 86 86 +41

G3 79 75 +92

G4 79 78 +280
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Encoding

From these experimental parameters, a manual approach toward an initial set of three-

dimensional (3D) structures for DGLs may suffer from several flaws: i) it is highly time-

consuming to manually edit starting structures that contain all atoms and residues with a

correct naming in a coherent order, as well as no crossing nor bumping between the branches,

ii) it is very much error-prone since the fourth-generation G4 consists of 365 residues, iii) it

is likely to be biased toward an homogeneous distribution of the residues and unlikely to be

representative of the experimental characteristics of the polymers. For these reasons, a new

and automated method has been designed for the construction of 3D structures of DGLs. As

a first step, the macromolecules G1-G4 have been deconvoluted into six discrete building

blocks, which encompass all the possible arrangements (i.e. peptidic or isopeptidic bonds,

charged or neutral nitrogen atoms) of the L-lysine residues within the dendrigrafts (Figure

3). Each building block was subsequently labeled with a one-letter code that unambiguously

identifies it. DGL G1 could be written as the following alphanumeric string: ACCCCCCh

(from C-terminal to N-terminal). It should be highlighted that DGLs were analogously syn-

thetized in silico and at the bench, with the growth of the chains from C-terminal to the

N-terminal using Nε-protected-L-lysine residues. Moving to a higher generation required the

deprotection of the lysines– side chains, and elongation/branching/termination events from

the free nitrogen atoms.1 For the higher generation G2-G4, numbers have been introduced

within the strings, which addressed the locations of the residues where branched chains were

growing from (starting from the C-terminal amino acid). For instance, a possible representa-

tion of a G2 polymer using these molecular descriptors would be an alphanumeric string of

48 letters, and 6 discrete numbers (Figure 4, Top). As a result, these alphanumeric strings

encoded not only the position of every L-Lysine residues in the macromolecules, but also their

connections and protonation states (Figure 4, Bottom). The algorithm that built this se-

quence works as follows (Figure 5). Starting from a single monomer, the chain was elongated

through the iterative formation of peptidic bonds until the DP (= 8) of DGL G1 was reached.
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Then, 6 (= DP × BR) residues were randomly branched to G1 in order to respect the exper-

imental number of isopeptidic bonds. A loop was subsequently used to randomly grow the

polymer through peptidic bonds until the DP ( = 48) of DGL G2 was reached. Finally, the

algorithm walked through the tree and translated it into the following alphanumeric string

BCDCDDDDCCh8CCCCCh7CCCCCCCCCh6CCCCCh5CCCCh3CCCCh1CCCCh, which

encodes one possible structure of DGL G2. Using this algorithm, a homemade python

script39 allowed us to generate eight random – but respecting the initial experimental pa-

rameters (i.e. DP, BR, and net charge) – sequences for each generation of DGL G2 to G4

(see ESI†). Within a set, each new generation of DGL was grown from the corresponding

lower one.

The coded polymers could then be converted to candidate 3D structures by using a

customized Nucleic Acid Builder (NAB) program40 from the Amber simulation package.39,41

To put it simply, each one-letter coded residue was sequentially read by the program (from

C-terminal to N-terminal), translated to a three-letter equivalent in order to satisfy the PDB

three-letter conventional naming of the residues required by AMBER preparatory tools (see

Figure 3), converted to its corresponding 3D molecular building block, and finally added

at the right position to the growing dendrigraft. Preparatory ab initio quantum mechanics

calculations (Hartree-Fock method, at the 6-31G level) were performed in order to assign

atomic partial charges for the six building blocks A-h by using the Antechamber module of

the Amber simulation Package. After each addition, the positions of all current atoms were

optimized using a short conjugated gradient minimization (cut-off of 15 Å, with a maximum

of 100 iterations) in order to ensure that no bond or atom overlapping was caused.

Molecular Dynamics

We performed an investigation on the structural features of DGLs by using MD simulations

on the full set of 3D structures of the dendrigrafts that were generated previously (1 struc-

ture for DGL G1, 8 structures for each upper generation, 25 polymers in total). All-atom
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Figure 3: All possible L-Lysine buildings blocks A-h (and their corresponding three-letter
codes in brackets) involved in the construction of DGLs G1-G4.

Figure 4: The alphanumeric description of a second-generation dendrigraft G2 (Top), and
the corresponding arrangement of the residues (Bottom). Residues in blue indicate the
mother DGL G1. Peptidic and isopeptidic bonds are depicted as black line and grey lines,
respectively.
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Figure 5: Flowchart toward the encoding of one possible strucure of DGL G2, which respects
its experimental characteristics.
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classical MD simulations were run on NVIDIA graphics processing units and included the

generalized Born solvation model, which previously proved to yield the best agreement be-

tween calculated and experimental structures for proteins.42 Also, the method of hydrogen

mass repartitioning was applied for further accelerating the simulations.43 Using this setup,

trajectories of 10 microseconds for first- and second-generation DGLs, and of 1 microsecond

for third- and fourth-generation DGLs could be obtained within reasonable calculation time

scales. The mean calculation times (with simulation times in parentheses) on NVIDIA K20

GPUs were 207.6 h (10 µs) for G1, 362.6 h (10 µs) for G2, 78.4 h (1 µs) for G3, and 432.2

h (1 µs) for G4. At this point, it should be noted that – albeit each dendrigraft within a

same generation displays a unique topology – the analyses of the trajectories did not revealed

divergent dynamic behaviours. As a consequence, the post-calculation analyses for only one

dendrigraft per generation are shown in the manuscript (for the full set, see ESI†).

Via the Flory theory approach, we obtained the scaling relation Rg ∼ N0.41, where Rg

is the radius of gyration and N the number of residues of the dendrigrafts.44 The exponent

of the power law lies in between the calculated values at physiological pH of 0.34 and 0.57

for poly-L-lysine dendrimers and linear poly-L-lysines, respectively.45–47 This suggests that

the dendrigrafts adopt intermediate morphologies, which may remind those of unfolded and

intrinsically disordered proteins.48 This conformational flexibility was further supported by

the 2D root-mean-square deviations of selected residues49 (see ESI†) and the Ramachandran

plots of all possible residues (data not shown) along the MD trajectories, from which it

was clear that no folded structure was clearly identifiable for any of the 4 generations of

dendrigraft G1-G4.

In order to assess the shape of the dendrigrafts, the asphericity parameter (∆) and shape

parameter (S) can be evaluated from the inertial tensor50 described in equation 3, where M

is the total mass, mi and ri are the mass and position of the ith residue, and α, β = x, y, z.

Tα,β =
1

2M2

N∑ N∑
j

mimj(riα − rjα)(riβ − rjβ) (3)
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The squares of the three principal radii of gyration– RG– are calculated from the trace of

the matrix– T (α, β), which amounts to the sum of its eigenvalues– λ1,– λ2 and– λ3 (equation

4).

R2
G = trT =

3∑
i=1

λi (4)

These eigenvalues are used to calculate ∆, which measures the average deviation from

spherical symmetry (equation 5).

∆ =
3

2

∑3
i=1(λi − λ)2

(trT )2
(5)

Where

λ =

∑3
i=1 λi
3

(6)

On the other hand, S further describes the ellipticities of the polymers. In three dimen-

sions, S can be calculated from equation 7.

S = 27

∏3
i=1(λi − λ)

(trT )3
(7)

When applied to our trajectories, these treatments gave almost null ∆ and S values (see

ESI† for full set of values). While the theoretical lowest value of ∆ is zero (i.e. character-

izing a sphere) and the highest value is one (i.e. characterizing a rod), the values of S are

theoretically bounded following the inequality −1
4
≤S≤ 2, with negative and positive values

indicating oblate and prolate objects, respectively. When applied to our trajectories, the

calculated values actually establish that our dendrigrafts are mostly globular, as they previ-

ously were represented in the literature (Table 3), with the exception of the first-generation

G1 that slightly tends toward a disc-shaped rod due to its linear topology. Insights into the

spatial occupancy of the macromolecules were gained by combining the atomic coordinates
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of each frame – captured every nanosecond for G1 and G2, and every 100 picoseconds for

G3 and G4 – over the entire MD trajectory. The resulting volumetric maps showed that

the DGLs tend to occupy a large amount of the available space as a result of the flexibility

of their branches (Figure 6).

Table 3: Averages and standard deviations of the asphericity (∆) and shape (S) parameters
for first- to fourth-generation DGLs G1 to G4.

G1 G2 G3 G4

∆ 0.107 ± 0.034 0.029 ± 0.014 0.023 ± 0.007 0.008 ± 0.002
S -0.069 ± 0.032 -0.003 ± 0.006 -0.004 ± 0.003 -0.001 ± 0.001

Then, we plotted both the normalized atomic and cationic densities as a function of their

distances from the center of mass of the polymers (Figure 7).51 Such an analysis revealed

that: i) the atomic density shifts from the core toward the outside of the dendrigrafts with

increasing generation, and ii) the cationic charges are mainly found on the outer shell layer

of the dendrigrafts. The distribution of the positive charges, as well as the bulk density of

the dendrigrafts, can also be appreciated from snapshots taken after 1 µs of the trajecto-

ries (Figure 8). Finally, we measured the distance between all adjacent charged nitrogen

atoms (NZ) using the pair correlation function (Figure 9). It turned out that all DGLs –

independently to their generation – displayed adjacent NZ separated by a similar average

distance of 8.0 Å (first peak of the curves). This latter observation relates to the synthetic

route towards DGLs,1 which implies a Nε-protected lysine derivative and therefore excludes

an impact of the electrostatic repulsion on the ionizable nitrogen atoms’ distribution.
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Figure 6: Volumetric maps of first- to fourth-generation DGLs G1-G4 at 1 microsecond
with 99% probability boundary surfaces. All images are to the same scale. Images were
generated with VMD (ref. 52).
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Figure 7: Normalized atomic (in grey) and cationic (in blue) density profiles of first- to
fourth-generation DGLs G1-G4 (ref. 51).
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Figure 8: Snapshots of the first- to fourth-generation DGLs G1 to G4 taken after 1 mi-
crosecond at T = 300 K. Blue dots highlight the positively charged nitrogen atoms at pH
7.8. All images are to the same scale.

17



Figure 9: Radial Distribution Function (RDF) of the charged nitrogen atoms (NZ) for the
first- to fourth-generation G1 to G4.

By being able to generate accurate 3D structures of four generations of poly-L-lysines

dendrigrafts with respect to their experimental characteristics (i.e. composition, degrees of

polymerization, branching ratios, number of charges at physiological pH), and to determine

their molecular properties (i.e. topology, shape, flexibility), one should now be able to

study at the molecular level their interactions with biologically relevant partners such as

drugs, metabolites, biopolymers, genetic materials, proteins, or cells. These computational

studies may not only provide important information to apprehend their unique features such

as biocompatibility,3,4,12 membrane translocation ability,12 and highly efficient electrostatic

binding property,32 but consequently also lead to the development of DGLs for real-world
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applications in nanomedicine.

Computational Details

Residues were prepared with the antechamber module of AmberTools.41 Atomic charges were

generated from RESP charges extracted from HF/6-31G* optimized geometries of capped

residues. Initial structures were built using the Nucleic Acid Builder (NAB) program40

and the LEaP module of AmberTools. From the primary sequence of one dendrimer, new

residues were added one by one and, at each new addition, a minimization of the full system

was performed for 100 steps. All molecular dynamics simulations were carried out using

the GPU implementation53 of the pmemd program in Amber1541 with the combination of

GB-Neck2 model,54 mbondi3 radii,54 and ff14SB.55 No cutoff was applied for computing the

nonbonded interactions. A time step of 4 fs was used with hydrogen mass repartitioning.56

Bonds involving hydrogen were constrained by the SHAKE algorithm.57 Temperature was

controlled with a Langevin thermostat at 300 K with a collision frequency γ = 1.0 ps−1.

Conclusions

In conclusion, microsecond molecular dynamics simulations on second- to fourth-generation

poly-L-lysine dendrigrafts revealed a myriad of conformational states accessible to them

without folded states. This conformational plasticity (i.e. this ability to adaptably display

positive charges to make ion pairs) may explain why DGLs are such efficient binders for

anionic ligands even in the most competitive media. In addition, the generated structures

can now be exploited for in-depth analyses of the interactions between these macromolecules

and biologically relevant partners for future biomedical applications. More broadly, this

work provides to the community a general approach toward the construction of dendrigrafts

– but also hyperbranched polymers – in silico. We are therefore confident that molecular

dynamics will become a pervasive tool to explore the structural features of large dendrigrafts
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and hyperbranched polymers at the molecular level.
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