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The Partial Homogenization for a Rod

Gregory PANASENKO
University Jean Monnet, Laboratory of Mathematics of the University of Saint Etienne,
23, rue P.Michelon, 42023, St-Etienne, FRANCE,
grigory.panasenko@univ-st-etienne.fr

A great number of applied problems contain small parameters. Normally
their presence either in the equation or in the domain makes the numerical
implementation more complicated, more time and memory consuming. This
issue emphasizes the importance of the asymptotic methods studying the be-
havior of the solution as the small parameter tends to zero. Nevertheless
the asymptotic methods are often related to some cumbersome calculations,
or they are not too comprehensible for non-specialists. That is why some
special numerical methods taking into account the asymptotic behavior of
the solution were developed. One of such ideas has been implemented in the
numerical schemes uniform with respect to the small parameter [4],[8],[17]
or in some projection numerical methods with a special choice of the pro-
jection space basis taking into account the regular part of an asymptotic
solution [1],[9],[21], (the idea of projection procedure has been widely used
in engineering); in the case of multi-scale problems the ideas of the super-
elements, of the hierarchic modelling ( numerical homogenization) or the
two-scale finite element methods is developed (see [20], justified in [6], as
well as [2],[3],[7],[22]); another approach is to prescribe some special mod-
ified boundary conditions (the so called artificial boundary conditions) in
order to increase the accuracy of the approximate solution [10].

In [13],[14] the multi-scale method of partial asymptotic domain decom-
position is introduced. This method reduces the problem to a simplified
form on some subdomain of regular asymptotic behavior of the so-
lution (for example, by means of the dimension reduction) keeping the
initial formulation on a small part of the domain where the asymp-
totic behavior is singular (for example, where the boundary layers are
located). Then these two models are coupled by some special interface
conditions respecting with great accuracy the asymptotic expansion of the
solution. These interface conditions are obtained from some projection pro-
cedure in the variational formulation where the projection subspace keeps



the asymptotic behavior of the solution out of a boundary layer zone.
It differs this method from some earlier projection methods ”imposing” the
regular asymptotic behavior in the whole domain. This difference is espe-
cially important, for example, in case of thin domains of complex structure
(such as the finite rod structures [11]).

We will apply here this method to the classical homogenization prob-
lem simulating physical fields in a composite rod. Homogenization tech-
niques is an effective tool of simulation of macroscopic behavior of micro-
heterogeneous media. Nevertheless, there is a difficulty of the analysis of
boundary layers. We propose and justify here the partial homogenization,
that keeps the initial equation in some thin neighbourhood of the ends of
the rod, homogenizes the equation in the remaining part of the domain
and prescribes the appropriate interface conditions for homogenized and
non-homogenized parts. This approach allows to avoid the construction of
boundary layers.

Consider the model problem in a heterogeneous rod with the Dirichlet
boundary condition at the ends of the rod and the Neumann boundary
condition on the lateral boundary. We assume that the direction of the rod
is the axis x1; the coefficients do not depend on 7 whereas f to the contrary
depends only on z;.

Consider the conductivity equation set in a thin rod occupying the par-

allelepiped G, = (0,d) x (-5, %)8_1 :
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(2.1)
where z = (z1,2'), o' = (z2,...,z,), Ay;(¢') are functions, satisfying the
following conditions:

. 11, s s
(3)3’4/0 > O, vfl € [_Ea E]S 13V77 € RS,U = (nla .. ,775), Z Akj(fl)njnk > Ko 27712
k,j=1 =1

(i) V{’e[—%,%]s_l,k,j6{1,...,3}, A (€) = Azu(€),

f is a C'* - regular function.



Let d be a finite number, multiple of €.

Assume that Ay; are piecewise smooth functions in the sense [5]. Then
there exists a unique solution to this problem (see [5]). So we assume that f
varies only in direction of the rod whereas the coefficients, to the contrary,
vary only in directions orthogonal to the rod.

This function u, satisfies the following variational formulation.

Let Hé,(o,d)(Gt“) be a space that is completion of the space of C*°— reg-
ular functions vanishing if z1 = 0 or z; = d with respect to the norm

H'((0,d) x (—5,5)*!); then u,. is sought as function of H; o, d)(Gg) satis-

fying

T(uy ) = / { > Akj(g”—)ﬂa—hfso}dx = 0, Vg€ Hlga(Go).
(2.2)

0.1 The structure of asymptotic expansion of the solution

The asymptotic expansion of the solution to problem (2.1) has a form ([12])

K K (z1 — d,2')
ug 00 = gy (@1, 2) + ufipy (o, —2)+
K+1
+ Z € Nl )(.’171), (23)
K+1
o) () Z elvj(z1), (2.4)
9 »  (K) (K) . .
where the ”"boundary layers” uy,/, and upg;), are exponentially decaying

functions such that for all z; € [0, d], |ug§)0(x1,§)|, |“S!31§:)d($la§)| < Cre=C2lél

C1,Cy > 0, C1,C5 do not depend on g; N;(¢') are solutions of the sequence
of cell problems in Q = (—4, )51 :
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here <>= [, d¢', Lee = D1 o0 g0, (Arj(€)5g); < Ny >= 0 forl >
0, No=1,D; = 3.

These cell problems are set in variational formulation in H'(Q). This
sequence of problems is solved recurrently for [ = 1,2,..., K + 1.

Functions v; are defined in another sequence of problems ( see [12] ) but
we do not need this information for the further developments.

0.2 The partial asymptotic decomposition of a heterogeneous
domain

Let us apply the method of asymptotic partial decomposition of domain
[13],[14] for problem (2.1) (in formulation (2.2)).

Consider the subspace H, s 4o of the space H& © d)(Gs) that consists
of all functions u of Hj (0,a)(G<) having for all z; € [§,d — d] the following
presentation in the form of Bakhvalov’s ansatz [5]:

K+1 p
u(z) = Z slNl(%)Dllv, (2.7)
=0
where v € HE*2((4,d — 9)).
So every u € Hy 5 4ec is related by (2.7) to some v € HX+2((6,d — 6)), so
that we can consider a pair (u,v).



Remark 2.1. Asymptotic solution (2.3),(2.4) can be modified in such a
way that it belongs to H, s 4e.. Indeed, let us multiply the boundary layer
function uSBI?O(:I:, Z) by X(zl_cﬁ([iﬂ)‘l"(g)‘), where x(t) is equal to 1 for
t < 0, and it is equal to zero for ¢ > 1, passing smoothly from 1 to 0 on

the segment [0,1]; x does not depend on ¢; in the same way let us multiply

(o, () by x (oA,

Now, so modified ug (K) will be kept O(eX+1) close to the exact solution
in the norm H'(G,) The same will be the order of discrepancy in (2.2). And
this function belongs to H, ;5 ge. for § > (Co + 1)e(K + 2)|in(e)|. Denote in
K) (K)

what follows u(%) so modified as u¢

€1in fuéK).
Let 6 = Ke | In ¢ |, where K is some positive number independent of ¢.

Consider the partially decomposed variational problem

J(ua (P) = 07 V(P € Hs,é,dec- (28)

. We will omit as well the subscript

If uq is its solution then for any K € (0,00), there exist K such that if
d = K ¢ | In € | then the estimate holds ([14])

e — ugl ) = O(EXT). (2.9)

In the parallepiped (6,d — &) x (—5,5)*" uq is presented by formula
(2.7) as well as

K+1 2
_ Iar (T \
Y = ZSNl(g)Dlwa
=0
w e HET2((5,d - 6)). (2.10)

Calculate integrals

' Ou dp
Ii(u,p) = / Api(—)=—.—}dz
1(u, ) (J,d_d)x(_;,;)s_l{z 80 3 g

k,j=1
and
L) = | fle:)pds
((Sadfé)x(fga%)‘gil
for u, ¢ € Hfg;izec, satisfying (2.7) and (2.10). We get
K+2 B
Li(u,p) = 71 / > &2 by Div D wdas
(0,4-0) | 'y
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Lg) = ¢ /(M S,

where

. 0
him = Z < Agj(€ 8{ Nl + 01 N1—1) (57— Nm + 01 Nm—1) >
]

Pyt 0

defined by the solutions of cell problems (2.5), (2 6). The terms containing
derivatives 35 are dropped if m = K +2, and 5z ge; are dropped if | = K + 2;
these coefficients were introduced for the problem stated in the whole space
in [37]. This representation holds true due to the separation of variables z’
and z; in (2.7) and (2.10) and because < N; >=0 for all [ > 0.

Below ¢ is a fixed positive number small enough.

Consider space H, g 4ec X HE+2((8,d—6)) supplied by the following inner
product for

(uv U)a (‘pa w) € HE,J,dec X HK+2((55 d— 6))

related by (2.7) and (2.10):

:v Bu 8<p
au, v; p,w) = / { dz +
GBrL k';l awk
K+2
g5t > ™2 by Div D wdzy =
(6,d—9) lm 1
:v au 6<p
dx 2.11
-/ E{]gjl e (.11)
where € £y € £y
Gpr = (0,6) x (—§a§) U (d —4é,d) x (—§a 5) .

Varying w € HEX+2((§,d—0)) in (2.8) we prove that v satisfies on (6, d—0)
the ordinary differential equation

K+2
Z El+m 2 mhl mDH— (Jf'l) +f(~771) — O’ x1 € ((5,d— 5) (212)

I,m=1

Applying now estimate (2.9) we get the following theorem.



Theorem 2.1. The estimate holds true
[ue = udllmi(a,) = O ). (2.13)

The solution of problem (2.8) satisfies equation (2.1) for z € Gpr and
boundary conditions (2.1) for z; = 0 and for z; = d, it satisfies as well
equation (2.12) for vy and the 2K + 4 interface conditions for z; = ¢ and
for z1 = d — 4. Let us give these conditions for 1 = §; for 1 = d — ¢ they
are the same. Firstly, ug and v satisfy conditions (2.7) for 1 = § (and for
21 = d — 0). And then there are K + 2 interface conditions that are the
consequences of the integration by parts and of the equating the coefficients
of Diw(d),r=0,..., K +1:

S ! !
1-s z' | Oug . .,
Ari ()22, s N ()ds' =
¢ /(_E £)s—1 2_: 17( 3 )ij ‘ml*é r( 3 ) .’B
272 Jj=1
K+2 K+2
= > > () Ry DI g (6). (2.14)

=1 m=r+1

Consider an example K = 0. We have then

5 ' Ou Op
. — Api(=)5—5—
a(u,’l),(,O,’w) /G Z; k]( € )G:L‘] Oxy, do+

BL kj=1
22: trm-2; O 0w
—|—/ e hyy— ——dz, (2.19)
Gr I,m=1 maxll am{n
where
Gr =G:\GBr,
S
o(N7 +
hi1 = An = Z < Ay ( éf' ) ;
j=1 J
S
- O(N7 +
h12 = hgl = Z < Alj ( éf fI)J\/' >;
j=1 J



Integrating identity (2.8) by parts and taking into account that w is an
arbitrary function of the space H?((d,d — J)), we see that v is a solution to

the equation of the fourth order (if hay # 0 )
84 ~ 3211
—h

with the interface conditions following from the equations

2h22 f(:L‘l), T € ((5, d— 5) (2.20)

-~ Ov 9; O0%v - Ov Ow 97 O ,
0)—e“hog—=w(d)}dx' =
/{w1=5,$2,---,$s€[5/275/2]} 92,2, * ox O}

Oty z, Ow ,
A;; 24 N (522
2 i 0l8) £ (D) D)

A$1:6,12,.--,$5E[—5/2,€/2]}

and

ug(0, 2, ..., Ts) = (6)+€NI(5)8351

(6);

i.e. for 1 = § denoting S5 = {z1 = §,z9,...,25 € [—€/2,¢/2]}, we get

2 63 a1
h11g—6 h22 5 = oo 1f56 >i= 1A1]3uddx

€2 2% —l—ehlzaxl = L[5, 20 lAljgg Nl(g)d (2.21)
(0,3, -, 35) = 0(0) + eNy (2, 22, . E) (9).

We have the same interface conditions on the surface Sy_5 = {z1 =
d—296, z9,...,x5 € [—€/2,¢/2]};d in these conditions have to be replaced by
d — 6. In Gpr, we keep equation (2.1) for ug. So, (2.1) in Gpr, for ag4, (2.20)
in Gy for v, and interface conditions (2.21) on S5 and on S;_s constitute
the differential version of partially homogenized problem (2.8) for K = 0.
Estimates (2.13) give the error of order O(g). This estimate improves the
standard estimate for the difference of the exact solution and of the first
order asymptotic solution without the boundary layer corrector that is of

order O(/¢).

Conclusion

The partial homogenization (as well as the MAPDD) can be interpreted
as a multi-scale model coupling the homogenized (macroscopic) description



in the internal main part of the domain and the microscopic zoom in the

domain of the location of the boundary layers. The estimates of the main

theorems justify these methods. They are applied to the partial differential

equations in thin domains as well as to the homogenization problems.
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