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On the estimation of the expectation of a heavy-tail distribution

Andrei Novikov

Institute of Mathematics, Novosibirsk, Russia.

Abstract

We use bias-reduced estimators of extreme quantiles from heavy-tail distributions, to build

a new estimator of the expectation in the case of infinite second moment. The asymptotic

normality of the proposed estimator is established under mild conditions.

Keywords: Extreme value theory; Heavy-tail distributions; Hill estimator; Regular varia-

tion; Tail index.

1 Introduction

Let X1, X2, ... be independent and identically distributed non-negative random variables with

expectation µ <∞, variance σ2 and cumulative distribution function (cdf) F. Suppose that the

tail of F is regularly varying at infinity with tail index (−α) < 0, that is

lim
t→∞

1− F (tx)

1− F (t)
= x−α, for any x > 0, (1)

Such heavy-tail distributions include distributions such as Pareto, Burr, Student, α−stable

(0 < α < 2) , and log–gamma, which are known to be appropriate models for fitting large insur-

ance claims, large fluctuations of prices, log–returns, etc. We are concerned with the construction

of a bias-reduced asymptotically normal estimator for the expectation

µ :=

∫ ∞

0
xdF (x) ,

which could be rewritten, in terms of the quantile function (corresponding to the cdf F )

Q(s) := inf {x : F (x) ≥ s} , 0 < s < 1,

as

µ =

∫ 1

0
Q (1− s) ds. (2)

For a given sample X1, ..., Xn, let

Qn (s) := inf {x ∈ R : Fn (x) ≥ s} , 0 < s ≤ 1,
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denote the sample quantile function (classical non-parametric estimator of Q) associated to the

empirical cdf defined on the real line by Fn (x) := n−1∑n
i=1 I (Xi ≤ x) , with I (·) being the

indicator function. The natural (unbiased) estimator of µ is the sample mean

∫ 1

0
Qn (1− s) ds =

1

n

n∑

i=1

Xi =: Xn. (3)

From the Central Limit Theorem (CLT), the sequence of r.v.’s
{√

n
(
Xn − µ

)
/σ, n ≥ 1

}
con-

verges in distribution to the standard Gaussian r.v., provided that the second-order moment

E
[
X2

1

]
is finite. This is a very restrictive condition in the context of heavy-tail distributions as

the following considerations show. Assume that the r.v. X1 follows the Pareto law with index

α > 0, that is, 1 − F (x) = x−α for x ≥ 1. When α > 1, the expectation µ exists, but E
[
X2

1

]

is only finite for α ≥ 2. Hence, the range α ∈ (1, 2) is not covered by the CLT and thus we

need to seek another approach to handle this situation. Making use of Weissman’s estimator

of high quantiles an alternative estimator for µ was proposed and its asymptotic normality was

established for any α ∈ (1, 2). Let us define the following estimator for Q :

Q̂n(1− s) :=





QW
n (1− s) for 0 < s < k/n

Qn(1− s) for k/n ≤ s < 1,

where

QW
n (1− s) := (k/n)1/α̂

H
n Xn−k,ns

−1/α̂H
n , s ↓ 0 (4)

is Weissman’s estimator of high quantiles, with

α̂H
n :=

(
k−1

k∑

i=1

logXn−i+1,n − logXn−k,n

)−1

, (5)

being the well-known Hill estimator of the tail index α, and X1,n ≤ ... ≤ Xn,n denoting the order

statistics pertaining to the sample X1, ..., Xn. The number k represents the number of upper

order statistics used in the computation of α̂H
n , it is an integer sequence k = kn satisfying

1 < k < n, k → ∞ and k/n→ 0 as n→ ∞. (6)

By replacing Q (1− s) by Q̂n(1− t) in formula (2), an alternative estimator for µ is as follows:

µ̂Pn = µ̂Pn (k) :=

∫ 1

0
Q̂n(1− s)ds =

∫ k/n

0
QW

n (1− s) ds+

∫ 1

k/n
Qn(1− s)ds,

which, by a straightforward calculation, is equal to

µ̂Pn :=
k

n

α̂H
n

α̂H
n − 1

Xn−k,n +
1

n

n∑

i=k+1

Xn−i+1,n, (7)
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provided that α̂H
n > 1. Moreover, the same author showed that, under suitable regularity as-

sumptions, for any α ∈ (1, 2),

√
n
(
µ̂Pn − µ

)
√
k/nXn−k,n

d→ N
(
0, σ2 (α)

)
, as n→ ∞, (8)

where

σ2 (α) := α/ (1− α)4 (2− α) .

Throughout this paper, the standard notations
p→,

d→ and
d
= respectively stand for convergence

in probability, convergence in distribution and equality in distribution, while N
(
a, b2

)
denotes

the normal distribution with expectation a and variance b2.

Actually, this estimator is defined in the more general situation where the r.v. X is real (not

necessarily non-negative) with lower and upper heavy tails. He simultaneously took into account

the regular variations of both tails of G and the balance condition

lim
t→∞

(1− F (t)) / (1− F (t)− F (−t)) = p ∈ [0, 1] .

In this paper, we only consider non-negative r.v.’s. Our motivation comes from the actuarial risk

theory where insurance losses are represented by such r.v.’s. In this case, µ̂Pn may be interpreted

as an estimator of a risk measure called the net premium. Note that in our case, since r.v. X is

non-negative, we have F (−x) = 0 for x ≥ 0, which yields p = 1 in the above balance condition.

Hill’s estimator α̂H
n plays a pivotal role in statistical inference on distribution tails. This estima-

tor has been thoroughly studied, improved and even generalized to any real parameter α. Weak

consistency of α̂H
n was established assuming only that the underlying cdf F satisfies condition

(1). The asymptotic normality of α̂H
n has been established under the following stricter condition

that characterizes Hall’s model.

1− F (x) = cx−α + dx−β + o
(
x−β

)
, as x→ ∞, (9)

for some c > 0, d 6= 0 and β > α > 0. Note that (9), which is a special case of a more general

second-order regular variation condition, is equivalent to

Q (1− s) = c1/αs−1/α
(
1 + α−1c−β/αdsβ/α−1 + o (1)

)
, as s ↓ 0. (10)

The constants α and β are called, respectively, first-order (tail index, shape parameter) and

second-order parameters of cdf F.

Extreme value based estimators essentially rely on the number k of upper order statistics involved

in estimate computation. Hill’s estimator has, in general, a substantial variance for small values

of k and a considerable bias for large values of k. Hence, one has to look for a k value, denoted

by k∗, that balances between these two vices. The choice of this optimal value k∗ represents
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a thorny issue in the process of estimating the tail index and related quantities. To solve this

problem, several adaptive procedures are available. A theoretical optimal choice of k is obtained

by minimizing the asymptotic mean squared error (RMSE) of α̂H
n . Indeed, under condition (9),

we have

k∗ :=
(
2−1αβ2 (β − α)−3 d−2c2β/α

) α
2β−α

n
2β−2α

2β−α . (11)

Though Peng’s estimator µ̂Pn enjoys the asymptotic normality property, it still has a problem due

to the fact that, it is based on Weissman’s estimatorQW
n known to be largely biased. Fortunately,

many estimators with reduced biases are proposed in the literature as an alternative to QW
n .

In this paper, we use the bias-reduced estimator of the high quantile Q (1− s) , recently proposed

by who exploited the censored maximum likelihood (CML) based estimators
(
α̂, β̂

)
of the couple

of regular variation parameters (α, β). The CML estimators
(
α̂, β̂

)
are defined as the solution

of the two equations (under the constraint β > α̂H
n )

1

k

k∑

i=1

1

Gi (α, β)
= 1 and

1

k

k∑

i=1

1

Gi (α, β)
log

Xn−i+1,n

Xn−k,n
= β−1, (12)

where

Gi (α, β) =
α

β

(
1 +

αβ

α− β
H (α)

)(
Xn−i+1,n

Xn−k,n

)β−α

− αβ

α− β
H (α) , (13)

with

H (α) =
1

α
− 1

k

k∑

i=1

log
Xn−i+1,n

Xn−k,n
.

The bias-reduced estimators QLPY
n (1− s) , of the high quantiles Q (1− s) , are obtained by

substituting
(
α̂, β̂

)
to (α, β) in (10). That is

QLPY
n (1− s) := ĉ1/α̂s−1/α̂

(
1 + α̂−1ĉ−β̂/α̂d̂sβ̂/α̂−1

)
, s ↓ 0, (14)

where 



ĉ =
α̂β̂

α̂− β̂

k

n
X α̂

n−k,n

(
1

β̂
− 1

k

k∑

i=1

log
Xn−i+1,n

Xn−k,n

)
,

d̂ =
α̂β̂

β̂ − α̂

k

n
X β̂

n−k,n

(
1

α̂
− 1

k

k∑

i=1

log
Xn−i+1,n

Xn−k,n

)
.

(15)

The consistency and asymptotic normality of QLPY
n (1− s) are established by the same authors.

Now we can define another estimator for the quantile function Q as follows:

Q̃n(1− s) =





QLPY
n (1− s) for 0 < s < k/n

Qn(1− s) for k/n ≤ s < 1.
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By replacing Q by Q̃n, in formula (2), we get

µ̂n = µ̂n (k) :=

∫ 1

0
Q̃n(1− s)ds =

∫ k/n

0
QLPY

n (1− s) ds+

∫ 1

k/n
Qn(1− s)ds. (16)

An elementary integral calculation leads to a new bias-reduced estimator for µ defined by the

following formula:

µ̂n := (k/n) (nĉ/k)1/α̂
(

α̂

α̂− 1
+
d̂ĉ−β̂/α̂ (k/n)β̂/α̂−1

β̂ − 1

)
+

1

n

n∑

i=k+1

Xn−i+1,n, (17)

provided that β̂ > α̂ > 1 so that µ̂n be finite.

The rest of the paper is organized as follows. In Section 2, we briefly discuss the third order-

condition of regular variation before establishing the asymptotic normality of µ̂n. Some conclud-

ing remarks notes made in Section 4. Finally, some of the main results used in Section 3 are

gathered in the Appendix.

2 Main results

In the theory of extremes, a function, denoted by U and (sometimes) called tail quantile function,

is used quite often. It is defined by

U (t) := (1/ (1− F ))−1 (t) = Q (1− 1/t) , 1 < t <∞.

In terms of this function, Hall’s conditions (9) and (10) are equivalent to

U (t) = c1/αt1/α
(
1 + α−1c−β/αdt1−β/α + o (1)

)
, t→ ∞. (18)

This implies that

lim
t→∞

log [U (tx) /U (t)]− α−1 log x

A1 (t)
=
x1−β/α − 1

1− β/α
, for any x > 0, (19)

where

A1 (t) := dα−1 (1− β/α) c−β/αt1−β/α.

The function A1 (t) , which tends to zero as t → ∞ (because β > α), determines the rate of

convergence of log [U (tx) /U (t)] to its limit α−1 log x. Relation (19) is known as the second-order

condition of regular variation.

Unfortunately, the second-order regular variation is not sufficient to find asymptotic distributions

for the estimators defined by the systems (12) and (15). We strengthen it into a condition, called

third-order condition of regular variation and given by (20), that specifies the rate of (19).

lim
t→∞

log [U (tx) /U (t)]− α−1 log x

A1 (t)
− x1−β/α − 1

1− β/α

A2 (t)
= D (α, β, ρ) , (20)
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where A2 (t) → 0 as t→ ∞, with constant sign near infinity and

D (α, β, ρ) :=
1

ρ

(
x1−β/α+ρ − 1

1− β/α+ ρ
− x1−β/α − 1

1− β/α

)
,

with ρ being a positive constant called third-order parameter. The asymptotic normality of

α̂, β̂ and ĉ was established under the following extract conditions on the sample fraction k, as

n→ ∞,

(i)
√
k |A1 (n/k)| → ∞, (ii)

√
kA2

1 (n/k) → 0, (iii)
√
kA1 (n/k)A2 (n/k) → 0. (21)

As for d̂, it is asymptotically normal under the assumption
(√

k |A1 (n/k)|
)
/ log (n/k) → ∞

added to (ii) and (iii) .

Example 1 Consider the Fréchet cdf with shape parameter α > 0

F (x) = exp
(
−x−α

)
, x > 0. (22)

The corresponding tail quantile function is defined by U (t) = (− log(1 − 1/t))−1α, for t >

1. Applying Taylor’s expansion (to the third order) to U and identifying with (18), yield β = 2α,

c = 1 and d = −1/2. The condition (20) holds for A1 (t) = t−1/2α, A2 (t) = (α− 3) t−2/12α2

and ρ = 3α.

Note that, from a theoretical point of view, assumptions (6) and (21) are realistic, as the

following example shows. Indeed, let us choose k = [nǫ] , 0 < ǫ < 1, then it easy to verify that

these assumptions hold for any 2/3 < ǫ < 4/5. The notation [·] stands for the integer part of

real numbers.

Our main result, namely the asymptotic normality of the bias-reduced estimator µ̂n, is formu-

lated in the last of the following four theorems. In Theorem 1, we give an approximation of α̂

in terms of Brownian bridges, which leads to its asymptotic normality stated in Theorem 2. We

do the same thing to µ̂n in Theorem 3. But, this does not meet our needs to achieve the major

object of this paper. Then, we need to approximate both α̂ and µ̂n by linear functional of the

same sequence of standard Brownian bridges Bn (s) .

Theorem 1 Assume that the third order condition (20) holds with β/α =: λ > 1 and let k = kn

be an integer sequence satisfying (6) and (21). Then there exists a sequence of Brownian bridges

{Bn (s) , 0 ≤ s ≤ 1} such that

√
k (α̂− α) = α (η1W1n + η2W2n + η3W3n) + op (1) , as n→ ∞

6



where W1n, W2n and W3n are sequences of centered Gaussian r.v.’s defined by

W1n :=
√
n/kBn (1− k/n)−

√
n/k

∫ 1

0
s−1Bn (1− ks/n) ds,

W2n :=
(
λ−1 − 1

)√
n/kBn (1− k/n) + (λ− 1)

√
n/k

∫ 1

0
sλ−2Bn (1− ks/n) ds,

W3n := (1− λ)
√
n/k

∫ 1

0
sλ−2 (log s)Bn (1− ks/n) ds

+ λ−2
√
n/kBn (1− k/n)−

√
n/k

∫ 1

0
sλ−2Bn (1− ks/n) ds,

and

η1 :=
λ4

(λ− 1)4
, η2 :=

λ2 (2λ− 1) (3λ− 1)

(λ− 1)5
η3 :=

λ3 (2λ− 1)

(λ− 1)4

2

.

Theorem 2 Under the assumptions of Theorem 1, we have

√
k (α̂− α)

d→ N
(
0, α2β4/ (α− β)4

)
, as n→ ∞. (23)

Theorem 3 Under the assumptions of Theorem 1, we have, as n→ ∞
√
n√

k/n (nc/k)1/α
{µ̂n − µ} = − α

(α− 1)2
{η1W1n + η2W2n + η3W3n}+W4n + op (1) ,

where W1n, W2n and W3n are those of Theorem 1 and

W4n := −
∫ 1
k/nBn (1− s) dQ (1− s)
√
k/n (nc/k)1/α

.

Theorem 4 Under the assumptions of Theorem 1, we have

√
n√

k/n (nc/k)1/α
{µ̂n − µ} d→ N

(
0, σ2 (α, β)

)
, as n→ ∞, (24)

where

σ2 (α, β) :=
α2β4

(α− 1)4 (α− β)4
+

2

2− α
+

2αβ2

(α− 1)2 (α− β)2
. (25)

The following corollary to Theorem 4 provides a straightforward practical way to build confidence

intervals for µ.

Corollary 1 Under the assumptions of Theorem 1, we have

√
n

√
k/nσ

(
α̂, β̂

)
(nĉ/k)1/α̂

{µ̂n − µ} d→ N (0, 1) , as n→ ∞,

where α̂, β̂ and ĉ are the estimates of α, β and c given in (12) and (15) respectively.
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3 Proofs

3.1 Proof of Theorem 1.

First recall that λ = β/α > 1. Then, we have, as n→ ∞

α̂− α = α
{
η1 (S1 − 1) + η2

(
S2 − λ−1

)
+ η3

(
S3 − λ−2

)}
+ op

(
k−1/2

)
, (26)

where

S1 :=
1

k

k∑

i=1

log
Yn−i+1,n

Yn−k,n
, S2 :=

1

k

k∑

i=1

(
Yn−i+1,n

Yn−k,n

)1−λ

, (27)

and

S3 :=
1

k

k∑

i=1

(
Yn−i+1,n

Yn−k,n

)1−λ

log
Yn−i+1,n

Yn−k,n
, (28)

with Y1,n ≤ ... ≤ Yn,n being the order statistics pertaining to a sample Y1, ..., Yn of independent

and identically distributed non-negative random variables, defined on the same probability space

as the X ′
is, with cdf

G (y) = 1− y−1, for y > 1. (29)

A probability space (Ω,A,P) may be constructed, carrying an infinite sequence U1, U2, ... of

independent (0, 1)−uniform r.v.’s and a sequence of Brownian bridges {Bn (s) , 0 ≤ s ≤ 1} ,
n = 1, 2, ..., having, amongst others, the property stated in Lemma 1. Let U1,n ≤ ... ≤ Un,n

denote the order statistics pertaining to U1, ..., Un and define the empirical quantile function

Vn (s) as

Vn (s) = Ui,n for (i− 1) /n < s ≤ i/n, i = 1, ..., n, and Vn (0) = U1,n.

Lemma 1 On this probability space, for every 0 ≤ τ < 1/2, we have, as n→ ∞

sup
1/n≤s≤1−1/n

|√n (s− Vn (s))−Bn (s)|
(s (1− s))1/2−τ

= Op

(
n−τ

)
. (30)

Without loss of generality, we assume that

Yi = G−1 (Ui) = (1− Ui)
−1 , i = 1, ..., n,

and

Yi,n = G−1 (Ui,n) = (1− Ui,n)
−1 , i = 1, ..., n,

where G−1 denotes the quantile function pertaining to cdf G given by formula (29). Then, this

allows us to write

Yn−i+1,n = (1− Vn (1− s))−1 , for
i− 1

n
< s ≤ i

n
, i = 1, ..., n.

8



Making use of the previous representation of the order statistics Yn−i+1,n, we may rewrite the

three statistics in (27) and (28) into

S1 =
n

k

∫ k/n

0
log

(
1− Vn (1− s)

1− Un−k,n

)−1

ds,

S2 =
n

k

∫ k/n

0

(
1− Vn (1− s)

1− Un−k,n

)−1+λ

ds,

and

S3 =
n

k

∫ k/n

0

(
1− Vn (1− s)

1− Un−k,n

)−1+λ

log

(
1− Vn (1− s)

1− Un−k,n

)−1

ds.

Next, we show that, as n→ ∞
√
k (S1 − 1) =W1n + op (1) ,√

k
(
S2 − λ−1

)
=W2n + op (1) ,

and √
k
(
S3 − λ−2

)
=W3n + op (1) ,

where W1n,W2n and W3n are the Gaussian r.v.’s defined in Theorem 1. We will only consider

the asymptotic distribution of S3. The proofs for S1 and S2 use similar arguments. By letting

f (x) = xλ−1 log x, the statistic S3 becomes

S3 = − (n/k)

∫ k/n

0
f

(
1− Vn (1− s)

1− Un−k,n

)
ds.

An application of standard calculus gives
∫ 1
0 f (s) ds = −λ−2. Therefore

S3 − λ−2 = − (n/k)

∫ k/n

0

[
f

(
1− Vn (1− s)

1− Un−k,n

)
− f

(
s

k/n

)]
ds.

We divide the integral above in two parts, then we study the asymptotic behavior of each

integral. Observe that

S3 − λ−2 = − (n/k)

∫ 1/n

0

[
f

(
1− Vn (1− s)

1− Un−k,n

)
− f

(
s

k/n

)]
ds

− (n/k)

∫ k/n

1/n

[
f

(
1− Vn (1− s)

1− Un−k,n

)
− f

(
s

k/n

)]
ds

=: −∆n − Ωn.

Next, we show that
√
k∆n converges to 0 in probability. Indeed, we have 1−Vn (1− s) = 1−Un,n,

for 0 < s ≤ 1/n, it follows that

∆n = (n/k)

∫ 1/n

0

[
f

(
1− Un,n

1− Un−k,n

)
− f

(
s

k/n

)]
ds

= k−1f

(
1− Un,n

1− Un−k,n

)
−
∫ 1/k

0
f (s) ds.

9



An elementary calculation gives

∫ 1/k

0
f (s) ds = λ−1k−λ

(
log k−1 − λ−1

)
, and we have n (1− Un,n−k) /k

P→
1, as n→ ∞, therefore

∆n = {1 + op (1)} k−λ log k−1 − λ−1k−λ
(
log k−1 − λ−1

)
.

Since λ > 1 and k → ∞, then k−λ+1/2 → 0 and k−λ+1/2 log k−1 → 0, it follows that
√
k∆n

P→ 0

as n→ ∞. Consider now the second term Ωn which may be rewritten into

Ωn = (n/k)

∫ k/n

1/n

[
f

(
1− Vn (1− s)

1− Un−k,n

)
− f

(
s

1− Un−k,n

)]
ds

+ (n/k)

∫ k/n

1/n

[
f

(
s

1− Un−k,n

)
− f

(
s

k/n

)]
ds

=: Ωn1 +Ωn2.

Making use of Taylor’s expansion of f, we get

f

(
1− Vn (1− s)

1− Un−k,n

)
− f

(
s

1− Un−k,n

)
= f ′

(
ϕn (s)

1− Un−k,n

)(
1− Vn (1− s)

1− Un−k,n
− s

1− Un−k,n

)
,

and

f

(
s

1− Un−k,n

)
− f

(
s

k/n

)
= f ′ (sψn)

(
s

1− Un−k,n
− s

k/n

)
,

where

min {1− Vn (1− s) , s} < ϕn (s) < max {1− Vn (1− s) , s} (31)

and

min

{
1

1− Un−k,n
,

1

k/n

}
< ψn < max

{
1

1− Un−k,n
,

1

k/n

}
. (32)

Observe now that Ωn1 and Ωn2 may be rewritten into

Ωn1 = (n/k)

∫ k/n

1/n
f ′
(

s

1− Un−k,n

)[
1− Vn (1− s)

1− Un−k,n
− s

1− Un−k,n

]
ds+Ω∗

n1,

and

Ωn2 = {1 + op (1)} (n/k)
∫ k/n

1/n
f ′
(

s

k/n

)[
s

1− Un−k,n
− s

k/n

]
ds+Ω∗

n2,

where

Ω∗
n1 := (n/k)

∫ k/n

1/n

[
f ′
(

ϕn (s)

1− Un−k,n

)
− f ′

(
s

1− Un−k,n

)]

×
[
1− Vn (1− s)

1− Un−k,n
− s

1− Un−k,n

]
ds,

10



and

Ω∗
n2 := {1 + op (1)} (n/k)

∫ k/n

1/n

[
f ′
(
sψn

k/n

)
− f ′

(
s

k/n

)]

×
[

s

1− Un−k,n
− s

k/n

]
ds.

From Lemma 3 (see the Appendix), both
√
kΩ∗

n1 and
√
kΩ∗

n2 converge to 0 in probability. Since

n (1− Un−k,n) /k
P→ 1, then

Ωn1 = {1 + op (1)}
∫ k/n

1/n
f ′
(

s

k/n

)
[1− s− Vn (1− s)] ds+ op

(
k−1/2

)
,

and

Ωn2 = −{1 + op (1)}
k/n− (1− Un−k,n)

(k/n)2

∫ k/n

1/n

(
s

k/n

)
f ′
(

s

k/n

)
ds+ op

(
k−1/2

)
.

The derivative of function f equals f ′ (x) = (λ− 1)xλ−2 log x+ xλ−2, then

Ωn1 = (λ− 1) (n/k)

∫ 1

1/k
tλ−2 (log t) [1− Vn (1− kt/n)− kt/n] dt

+ (n/k)

∫ 1

1/k
tλ−2 [1− Vn (1− kt/n)− kt/n] dt+ op

(
k−1/2

)
,

and

Ωn2 = (λ− 1) (n/k) [k/n− (1− Un−k,n)]

∫ 1

1/k
tλ−1 log tdt

+ (n/k) [k/n− (1− Un−k,n)]

∫ 1

1/k
tλ−1dt+ op

(
k−1/2

)

= λ−2 (n/k) [k/n− (1− Un−k,n)] + op

(
k−1/2

)
.

Fix 0 < τ < 1/2, then using approximation (30), in Lemma 1, yields

√
kΩn1 = (λ− 1)

√
n/k

∫ 1

1/k
tλ−2 (log t)Bn (1− kt/n) dt

+
√
n/k

∫ 1

1/k
tλ−2Bn (1− kt/n) dt+

√
kΩ̃n1 (τ) + op (1) ,

and √
kΩn2 = −λ−2

√
n/kBn (1− k/n) +

√
kΩ̃n2 (τ) + op (1) ,

where

√
kΩ̃n1 (τ) = (λ− 1)Op

(
n−τ

)
(k/n)1/2−τ (n/k)1/2

∫ 1

0
tλ−2+(1/2−τ) |log t| dt

+Op

(
n−τ

)
(k/n)1/2−τ

√
n/k

∫ 1

0
tλ−2+(1/2−τ)dt,

11



and √
kΩ̃n2 (τ) = λ−2Op

(
n−τ

)√
n/k (k/n)1/2−τ .

For λ > 1,

∫ 1

0
tλ−2+(1/2−τ) |log t| dt = (λ− 1/2− τ)−2 and

∫ 1

0
tλ−2+(1/2−τ)dt = (λ− 1/2− τ)−1

are finite integrals. Then both quantities
√
kΩ̃n1 and

√
kΩ̃n2 are equal to Op (k

−τ ) for all large

n, which tends in probability to 0 as n→ ∞. Recall that up to now we have showed that

√
kΩn1 = (λ− 1)

√
n/k

∫ 1

1/k
tλ−2 (log t)Bn (1− kt/n) dt

+
√
n/k

∫ 1

1/k
tλ−2Bn (1− kt/n) dt+ op (1) ,

and √
kΩn2 = λ−2

√
n/kBn (1− k/n) + op (1) .

It remains to prove that

In := (λ− 1)
√
n/k

∫ 1/k

0
tλ−2 (log t)Bn (1− kt/n) dt

+
√
n/k

∫ 1/k

0
tλ−2Bn (1− kt/n) dt,

converges, in probability, to 0. Indeed, since E |Bn (1− ks/n)| ≤
√
ks/n, then

E |In| ≤ (λ− 1)

∫ 1/k

0
tλ−2+1/2 (|log t|+ 1) dt.

Since ∫ 1/k

0
tλ−2+1/2 (|log t|+ 1) dt =

2

(2λ− 1)2
k−λ+ 1

2 (2λ− log k + 2λ log k + 1) ,

which tends to 0 as n → ∞, then In converges to 0 in probability. This completes the proof of

Theorem 1. �

3.2 Proof of Theorem 2.

To establish the asymptotic normality of α̂, given in (23) , we proceed by similar arguments as

for µ̂n in the proof of Theorem 4. �

3.3 Proof of Theorem 3

Let us divide the integral (2), in two parts, as follows:

µ = µ1,n (k) + µ2,n (k) ,

12



where

µ1,n (k) :=

∫ k/n

0
Q (1− s) ds and µ2,n (k) :=

∫ 1

k/n
Q (1− s) ds.

Recall that, in Section 1 formula (16), we have defined estimator µ̂n of µ by

µ̂n = µ̂1,n (k) + µ̂2,n (k) ,

where

µ̂1,n (k) := (k/n) (nĉ/k)1/α̂
{

α̂

α̂− 1
+
d̂ĉ−β̂/α̂ (k/n)β̂/α̂−1

β̂ − 1

}

and

µ̂2,n (k) :=
1

n

n∑

i=k+1

Xn−i+1,n.

To simplify notations, let us set

Zni :=

√
n√

k/n (nc/k)1/α
{µ̂i,n (k)− µi,n (k)} , i = 1, 2. (33)

First, we consider Zn1. It is easy to verify that, as n→ ∞

µ1,n (k) = {1 + op (1)}
k

n
(nc/k)1/α

α

α− 1
,

and, under the condition (6), we have

µ̂1,n (k) = {1 + op (1)}
k

n

α̂

α̂− 1
(nĉ/k)1/α̂ .

It follows that

µ̂1,n (k)− µ1,n (k) = {1 + op (1)}
k

n

{
α̂

α̂− 1
(nĉ/k)1/α̂ − α

α− 1
(nc/k)1/α

}
.

Let us write Zn1 = T1n + T2n, where

T1n := {1 + op (1)}
√
k

{
α̂

α̂− 1
− α

α− 1

}
,

and

T2n := {1 + op (1)}
√
k

{
(nĉ/k)1/α̂

(nc/k)1/α
− 1

}
.

We begin by showing that T2n
P→ 0, as n→ ∞. First observe that T2n may be rewritten into

T2n = {1 + op (1)}
√
k
{
(nc/k)1/α̂−1/α (ĉ/c)1/α̂−1/α − 1

}
.

Assumptions (i) and (ii) of Theorem 1 imply that k1/2/ log (n/k) → ∞. Also, the asymptotic

normality of α̂ gives α̂ − α = Op

(
k−1/2

)
. Therefore (1/α̂− 1/α) log (nc/k)

P→ 0, this implies

that (nc/k)1/α̂−1/α P→ 1, as n→ ∞. On the other hand, we have

ĉ/c− 1 = α−1 (α̂− α) log
n

k
+ op

(
k−1/2 log

n

k

)
.

13



Since ĉ is a consistent estimator of c, then Taylor’s expansion gives

(ĉ/c)1/α̂−1/α − 1 = α−1 (1 + op (1)) (α̂− α) (ĉ/c− 1) , as n→ ∞.

It suffices now to show that
√
k
(
(ĉ/c)1/α̂−1/α − 1

)
converges to 0 in probability. Indeed, again

by using the fact that α̂− α = Op

(
k−1/2

)
, yields

√
k
(
(ĉ/c)1/α̂−1/α − 1

)
= Op (1)


k−1/2 log

n

k
+ op



log

n

k√
k




 ,

which tends in probability to 0, because we already have
√
k/ log (n/k) → ∞. Now, we consider

the term T1n. Since α̂ is a consistent estimator of α, then it is easy to show that

T1n = −1 + op (1)

(α− 1)2

√
k (α̂− α) , as n→ ∞.

From 1, we infer that

T1n = −(1 + op (1))α

(α− 1)2
(η1W1n + η2W2n + η3W3n) , as n→ ∞.

It follows that

Zn1 = − α

(α− 1)2
{η1W1n + η2W2n + η3W3n}+ op (1) . (34)

Let us now consider the asymptotic distribution of Zn2, in (33). It is shown that

Zn2 = −
∫ 1
k/nBn (1− s) dQ (1− s)
√
k/nQ (1− k/n)

+ op (1) .

On the other hand, from (10), we have Q (1− k/n) ∼ (nc/k)1/α , as n→ ∞, it follows that

Zn2 =W4n + op (1) . (35)

Combining (34) and (35) achieves the proof of Theorem 3. �

3.4 Proof of Theorem 4.

Now, we investigate the asymptotic normality of µ̂n given in(24). Since Win, i = 1, ..., 4 are

sequences of centred Gaussian r.v.’s, then

√
n√

k/n (nc/k)1/α
{µ̂n − µ} d→ N

(
0,ΓΣΓt

)
, as n→ ∞,

where

Γ :=

(
− α

(α− 1)2
η1,−

α

(α− 1)2
η2,−

α

(α− 1)2
η3, 1

)
,
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Γt is the transpose of Γ and Σ is the variance-covariance matrix of the vector (W1n, ...,W4n)

defined by

∑
=




1 1
λ2 − 1

λ
2
λ3 − 1

λ2 −1
1
λ2 − 1

λ
1

2λ−1 − 1
λ2

1
(2λ−1)2

− 1
λ3

λ−1
λ

2
λ3 − 1

λ2

1
(2λ−1)2

− 1
λ3

2
(2λ−1)3

− 1
λ4 − 1

λ2

−1 λ−1
λ − 1

λ2

2
2−α



.

Note that the elements of
∑

were obtained after tedious computations of the limits of the

expectations E [WinWjn] for i, j = 1, 4 (i ≤ j). Finally, a standard calculation of the product

ΓΣΓt yields

ΓΣΓt =
α2β4

(α− 1)4 (α− β)4
+

2

2− α
+

2αβ2

(α− 1)2 (α− β)2
,

which is denoted by σ2 (α, β) . This completes the proof of Theorem 4. �

4 Conclusion

The main objective of this paper was to propose a bias-reduced estimator for the expectation

of a heavy-tail distribution. This was achieved on the basis of the bias-reduction of the first

and second order parameter estimators of regularly varying distributions and the corresponding

high quantiles estimators. In addition, the newly introduced estimator is asymptotically normal,

making confidence intervals easily constructible.
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A Appendix: Auxiliary results

Lemma 2 Let k = kn be a sequence of integers satisfying (6) and f (x) = xλ−1 log x, λ > 1.

Then, uniformly on s ∈ [1/n, k/n] , we have

f ′
(

ϕn (s)

1− Un−k,n

)
− f ′

(
s

1− Un−k,n

)
= op (1)

(
s

k/n

)λ−2

log
s

k/n
, as n→ ∞.

Proof. We have n (1− Un−k,n) /k
p→ 0, as n→ ∞, then

f ′
(

ϕn (s)

1− Un−k,n

)
− f ′

(
s

1− Un−k,n

)
= (1 + op (1))

[
f ′
(
ϕn (s)

k/n

)
− f ′

(
s

k/n

)]
.
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A straightforward calculation of the derivative of f yields

f ′
(
ϕn (s)

k/n

)
− f ′

(
s

k/n

)
=

(
s

k/n

)λ−2
[
(λ− 1)

((
ϕn (s)

s

)λ−2

− 1

)
log

ϕn (s)

k/n

+ (λ− 1) log
ϕn (s)

s
+

(
ϕn (s)

s

)λ−2

− 1

]
. (36)

Observe now, that inequalities (31) imply

min

{
1− s− Vn (1− s)

s
, 0

}
<
ϕn (s)

s
− 1 < max

{
1− s− Vn (1− s)

s
, 0

}
.

We have

sup
1/n≤s<1

|1− s− Vn (1− s)|
s

p→ 0 as n→ ∞,

it follows that

sup
1/n≤s≤k/n

∣∣∣∣
ϕn (s)

s
− 1

∣∣∣∣
p→ 0 as n→ ∞. (37)

On the other hand, we infer that

sup
1/n≤s≤k/n

∣∣∣∣
s

ϕn (s)
− 1

∣∣∣∣
p→ 0 as n→ ∞. (38)

By applying the mean value theorem to the functions x → log x and x → xλ−1 respectively,

then by using (37) and (38), we show readily that, as n→ ∞

sup
1/n≤s≤k/n

∣∣∣∣log
ϕn (s)

s

∣∣∣∣
p→ 0 and sup

1/n≤s≤k/n
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s
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− 1
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p→ 0. (39)

Note that the first result of (39) implies that

sup
1/n≤s≤k/n

∣∣∣∣log
ϕn (s)

k/n
− log

s

k/n

∣∣∣∣
p→ 0, as n→ ∞. (40)

By using equations (39) and (40) together, we show that, uniformly in s ∈ [1/n, k/n] , the

right-hand side of equation (36) , is equal to op (1)

(
s

k/n

)λ−2

log
s

k/n
. �

Lemma 3 We have
√
kΩ∗

n1
p→ 0 and

√
kΩ∗

n2
p→ 0, as n→ ∞.

Proof. We only show the first result. The second one is obtained by similar arguments. Recall

that

Ω∗
n1 := − (n/k)
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Using Lemma 2, we get, as n→ ∞

Ω∗
n1 = op (1) (n/k)
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By a change of variables, we get

Ω∗
n1 = op (1) (n/k)
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1/k
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Making use of approximation(30) yields
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In other words
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The expectation of the first term of right-hand side of the previous equation is less than or equal

to
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Using the fact that E |Bn (1− ks/n)| ≤ (ks/n)1/2 , we show that the previous quantity is

less than or equal to op (1)
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