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Abstract 

To investigate Holocene vegetation and fire-disturbance histories in the treeline ecotone, 

macroscopic charcoal, plant-macrofossil, and pollen records from two lacustrine sediment 

records were used. Lake Lia is on the southern slope and Lake Brazi is on the northern slope 

of the west-east-oriented Retezat Mountain range in the Romanian Carpathians. The records 

were used to reconstruct Holocene fire-return intervals (FRIs) and biomass burning changes. 

Biomass burning was highest at both study sites during the drier and warmer early Holocene, 

suggesting that climate largely controlled fire occurrence. Fuel load also influenced the fire 

regime as shown by the rapid biomass-burning changes in relation to timberline shifts. 

Overall, the number of inferred fire episodes was smaller on the northern than on the southern 

slope. FRIs were also comparatively longer (1000–4000 years) on the northern slope where 

Picea abies-dominated woodlands persisted around Lake Brazi throughout the Holocene. On 

the southern slope, where Pinus mugo was more abundant around Lake Lia, FRIs were 

significantly shorter (80e1650 years). A period of frequent fire episodes occurred around 

1900–1300 cal yr BP on the southern slope, when chironomid-inferred summer temperatures 

increased and the pollen record documents increased anthropogenic activity near the treeline. 

However, the forest clearance by burning to increase grazing land was subdued in 

comparison to other European regions. 
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1. Introduction 

Understanding the factors that influence the natural variability of disturbance regimes is 

important for ecosystem conservation and restoration purposes. In European mountain 

regions, fire is increasingly acknowledged as a natural agent of disturbance. However, the 

higher disturbance frequency predicted for the next century in high-elevation ecosystems 

(Wastl et al., 2012) may pose new challenges to fire management in Europe (Valese et al., 

2014). Two main factors make fire an increasingly relevant ecological factor in European 

mountain ecosystems. Timberlines (i.e. the line delimiting closed forests) that were shifted 

downslope by the creation of summer pastures and meadows for intensified grazing activities 

(Baur et al., 2007; Tinner, 2007) are predicted to shift upwards again due to abandonment of 

agricultural practices in economically marginal areas and the effects of climate warming on 

the treeline ecotone (Gehrig-Fasel et al., 2007; Schwörer et al., 2014). The resulting higher 

forest connectivity and biomass availability (fuel) in the future treeline ecotone will facilitate 

the spread of fires. Secondly, the potentially higher frequency of exceptional droughts due to 

climate change in some areas (e.g. Southern and Central Europe) (Schär et al., 2004) may 

increase the frequency of favourable weather conditions for fire ignition and spread. 

Vegetation responses to environmental changes are extremely complex, and this complexity 

may be more striking due to interactions between vegetation composition and environmental 

conditions such as climate and fire-disturbance regimes (Gavin et al., 2006; Higuera et al., 

2009). Although climatic factors are generally considered to be the predominant driver of fire 

regimes (Daniau et al., 2012), vegetation composition and woodland cover can modulate the 

effects of climate by controlling the type and structure of fuel available for combustion 

(Higuera et al., 2009; Gil-Romera et al., 2014). Palaeoecological records allow short-term 

instrumental and documentary records to be extended back over several millennia and make 

it possible to investigate the natural variability of fire regimes, the human dimension of fire 



regimes (Bowman et al., 2011), and vegetationefire interactions, through the analysis of 

pollen, plant macrofossils, and charcoal particles stored in sedimentary archives (Stähli et al., 

2006; Morales-Molino et al., 2015). 

The Retezat Mountains (Southern Carpathians, Fig. 1) are an interesting area to investigate 

long-term vegetation fireeclimate interactions. Forest fires are not widespread in the 

Romanian Carpathians and are considered as a negligible cause of ecosystem disturbances 

today (Knorn et al., 2013). In keeping with this, previous charcoal records from a high-

elevation site in the Southern Carpathians (Lake Brazi: Feurdean et al., 2012; Finsinger et al., 

2014), showed that fires were frequent during the drier early Holocene, and that fire activity 

was less during recent millennia when humans were potentially clearing the treeline ecotone. 

This temporal pattern of charcoal records markedly contrasts with the strong biomass-burning 

increase recorded in the Alps at the Neolithic/Bronze Age transition (about 4000 cal yr BP in 

the Alpine region), when humans cleared the forest to create summer pastures and meadows 

and effectively shifted the fire regime outside its natural range of variability (Valese et al., 

2014). It also contrasts with charcoal records from the lowland Transylvanian plain where 

fire frequency markedly increased at about 3000 cal yr BP (Feurdean et al., 2013a). Long-

term charcoal records show that fire occurrence can be highly variable both spatially and 

temporally and that fires are less likely to occur and to spread on more humid northern 

exposures due to the control of local climatic factors on fuel load and flammability (Whitlock 

and Larsen, 2001; Carcaillet et al., 2009; Barrett et al., 2013). The Lake Brazi record is 

located on the northern slope of the range. Hence, it may only be reflecting local fire 

occurrences on the less fire-prone northern slope of the mountain range. 

Therefore, we chose a contrasting site on the southern slope to provide temporal and spatial 

estimates of past fire-regime variability in the Southern Carpathian treeline ecotone. We 

present two well-dated multi-proxy (continuous records of macroscopic charcoal, pollen, 



stomata, and plant-macrofossils) reconstructions of vegetation and fire history from the 

Retezat Mountains, covering the past 11,000 years to determine the relationship between 

local fire regimes and vegetation changes at the treeline ecotone (see also Magyari, Orbán et 

al., in this issue; and Vincze et al., submitted for publication). We use the macroscopic 

charcoal record (i) to identify fire episodes and to infer fire-return intervals (FRI, i.e. the time 

elapsed between two successive fire episodes) using peak-detection analysis (Lynch et al., 

2003; Higuera et al., 2009; Finsinger et al., 2014), and (ii) to reconstruct longer-term 

variations in biomass burning by means of total macrocharcoal accumulation rates (CHAR) 

that may reflect an integrated signal of charcoal production (depending on burnt area, amount 

of biomass burnt, and fuel load availability), fire frequency, and deposition and taphonomic 

processes such as reworking and sediment focusing (Whitlock and Larsen, 2001; Kelly et al., 

2013). Because variations in total CHAR depend on the sediment-accumulation rates, we 

devised a new numerical method to test the influence of modelled sedimentation rates in 

determining long-term variations of total CHAR. These vegetation and fire proxies, together 

with a suite of regional climate proxies (Buczkó et al., 2013), including a chironomid-based 

July-air temperature reconstruction from Lake Brazi (Tóth et al., 2015), enable us to examine 

vegetation–fire disturbance–climate interactions. 

 

2. Material and methods 

2.1. Study area 

Due to its inland position, the climate of the Carpathian Mountains arc is classified as 

temperate-continental. The Retezat Mountains (Romania), being located at the western edge 

of the strongly dissected southern part of the Carpathian arc, stand out as one of the wettest 

massifs of the arc, with annual precipitation ranging between 900 and 1800 mm. Mean annual 



temperature is around +6 °C in the foothill zone and -2 °C at 2500 m asl (Bogdan, 2008) and 

the main wind direction is from W-WNW (Mîndrescu et al., 2010). The vegetation in the 

Retezat Mountains is dominated by Fagus sylvatica forests in the montane belt (around 800–

1200masl) that are followed up to about 1400masl by mixed forests mainly composed of F. 

sylvatica, Abies alba, and Picea abies. These are replaced upslope by a mosaic of conifer 

forests dominated by P. abies intermixed with Pinus cembra (particularly above 1750 m asl) 

and Pinus mugo shrublands on exposed cliffs and mires up to the timberline, which is located 

around 1850–1900masl. The treeline, located around 1950–2000 m asl, is formed by isolated 

P. abies and P. cembra trees. Above the treeline, subalpine shrublands, with P. mugo, 

Vaccinium myrtillus, and Juniperus communis give way to alpine meadows. P. mugo and 

Juniperus are often dominant between 2000 and 2200 m asl (Borza, 1934; Nyárády, 1958; 

Csűrős, 1971). 

 

2.2. Study sites 

Lake Brazi (Tӑul dintre Brazi: 45°23’47” N; 22°54’06” E) is a small shallow lake (about 0.4 

ha; maximum water depth: 1.1 m) located at 1740 m asl in the Gales¸ ului valley, at the north-

eastern edge of the Retezat National Park (Fig. 1). It has no inflowing streamand is located 

about 110m below the present timberline in a mixed conifer forest dominated by P. abies and 

P. cembra. The lakeshore is covered by a floating Sphagnum moss carpet on which dwarf 

pine (P. mugo) shrubs are abundant (Magyari et al., 2012). 

Lake Lia (Lacul Lia: 45°21’7.2” N; 22°52’36.3” E) is a slightly larger and deeper lake (1.26 

ha; maximum water depth: 4.2 m) located at 1910 m asl in the Bucura valley, on the southern 

slope of the Retezat Mountains (Fig. 1). The lake receives water from two inflow streams, 

one of them being the outflow of Lake Bucura (2040 m asl). Lake Lia is just below the 



current treeline (1930 m asl) and is surrounded by dense P. mugo thickets on the steep rocky 

western slope and by grazed meadows on its flatter northern shore. The nearest isolated P. 

abies trees grow about 100–150 m away and one small sapling 50 cm high grows on the 

northern shore. However, in nearby valleys on the southern slope of the Retezat Mountains 

solitary trees may be found up to about 2000 m asl. 

 

2.3. Coring and chronology 

Sediment cores from Lake Brazi (6.6 m long) and Lake Lia (8.8 m long) were retrieved using 

a modified Livingstone piston corer (Walker, 1964) operated from a raft in 2007 and 2008, 

respectively. The topmost 30 cm of unconsolidated sediment from the Lake Lia could not be 

retained and were therefore not sampled. 

The age–depth relationships for the Holocene sediments of Lake Brazi and Lake Lia were 

modelled using 21 and 16 
14

C dates on terrestrial plant macrofossils and on the organic 

sediment fraction (mostly <250 mm), respectively (for Lake Brazi see Finsinger et al., 2014; 

for Lake Lia see Hubay et al., in this issue). To fit an age–depth model we used the smooth 

spline fitting function in CLAM v2.1 (Blaauw, 2010). The two age-depth models were not 

extrapolated beyond the lowest 14C dates for the core sections that were analysed in this 

study. They gave sediment-deposition times less than 40 years cm
-1

 except in the oldest part 

of the Lake Brazi sequence (11,260–11,000 cal. BP). This warranted the interpolation of the 

macro-CHAR record to a temporal resolution of 40 years prior to further numerical analyses 

(see next sections). 

 

2.4. Loss-on-ignition 



Sediment samples of ca. 1 cm3 were dried at 105 °C for 24 h and dry sediment samples (ca. 

1–1.5 g) were ignited at 550 °C for 4 h. Percentage loss-on-ignition (LOI) was calculated 

following Heiri et al. (2001). 

 

2.5. Plant-macrofossil, stomata, and pollen analyses 

Sediment subsamples (on average 9 cm
3
) of Lake Brazi were briefly soaked in 10% NaOH 

and wet-sieved through 250 μm and 180 μm meshes. Lake Lia sediment subsamples (on 

average 20 cm3) were soaked in dilute Na4P2O7 if necessary to disaggregate the sediment 

(high silt content) and sieved through 125-μm mesh. Identifications and counts were made 

under a stereomicroscope at x 10–40 magnification with the aid of identification keys and by 

comparison with reference material. Plant-macrofossil accumulation rates (number cm
-2

 yr
-1

) 

were obtained by dividing concentration values (number cm
-3

) by the sediment-deposition 

times (yr cm
-1

) (Bennett and Willis, 2001). The concentrations of plant macrofossil parts 

identified at taxon level were summed together to estimate population-size changes for P. 

mugo, Picea, Juniperus, P. cembra, and Pinaceae as follows: P. mugo =Σ(needles + male 

cone with anthers + anthers + seeds + seed wings); P. cembra =Σ (needles + anthers + seeds); 

Picea abies =Σ(needles + twigs + anthers + seeds + seed wings + female cone scales + male 

cone scales); Juniperus =Σ(needles + twigs); Pinaceae =Σ(seeds + seedwings + female 

conescales + budscales + indet. needles + indet. anthers + indet. twigs). 

One cm
3
 sediment subsamples were prepared for pollen analysis in the laboratory using 

standard methods (Bennett and Willis, 2001), but excluding the acetolysis step. Pollen, 

spores, and stomata were identified and counted at 400x and 1000x magnification. Pollen was 

identified with the help of atlases (Reille, 1995, 1992) and identification keys (Moore et al., 

1998; Beug, 2004). Pollen percentages were calculated based upon the total sum of terrestrial 



pollen grains (>500 for each sample). Stomata were identified and counted on pollen slides 

(Trautmann, 1953; Sweeney, 2004; Magyari et al., 2012). 

In order to detect vegetation changes associated with the creation of pastures, meadows and 

trampled ground around the study sites, percentages of secondary anthropogenic pollen 

indicators associated with those habitats (e.g. Plantago lanceolata and Plantago 

major/media) were summed, following Vincze et al. (submitted for publication). 

Plant-macrofossil and stomata records are useful proxies to reconstruct local vegetation 

changes at the treeline ecotone in Central and South-eastern Europe (Birks and Birks, 2000; 

Magyari et al., 2012; Ammann et al., 2014) where conifers and Ericaceae form the main tree 

and shrub cover. Pollen transported from lower forested elevations into alpine vegetation 

with low local pollen productivity blurs the pollen records. Nevertheless, pollen percentages 

are shown in the figures, because plant-macrofossils and pollen are complementary proxies 

for vegetation change (Finsinger and Tinner, 2007; Jackson et al., 2014). 

 

2.6. Charcoal analyses 

We used microscopic charcoal influx as a proxy for regional fire activity and regarded the 

occurrence of macroscopic charcoal particles as evidence of local fire activity (Whitlock and 

Larsen, 2001; Conedera et al., 2009). Microcharcoal particles (>10 mm in diameter) were 

counted on pollen slides with added Lycopodium tablets of known concentration (Stockmarr, 

1971) under a transmitted-light microscope following Tinner and Hu (2003) and Finsinger 

and Tinner (2005). Counts were transformed to influx values (number cm
-2

 yr
-1

). 

For macrocharcoal analysis, contiguous 1 cm
3
 subsamples were taken from the upper 550 cm 

and 440 cm of the Lake Lia and Lake Brazi sediment cores, respectively. Subsamples were 

deflocculated and bleached using NaOH (10%) and NaOCl (2%), and gently sieved through a 



160 μm mesh under a soft water jet (Genries et al., 2012). The residue was carefully washed 

into a porcelain evaporating-dish to aid identification and counting of charcoal particles 

against the white background. The material was analysed at x60 magnification under a Leica 

M80 binocular microscope equipped with a video camera that was connected to an image 

analyser fitted with Winseedle image-analysis software (Regent Instruments Canada Inc., 

2009) that allowed the measurement of total charcoal concentration by number, charcoal 

areas of individual particles, and the cumulative sum of charcoal-particle areas (i.e. the 

concentration of charcoal by area). 

 

2.7. Fire-episode reconstructions 

For fire-episode reconstructions, macroscopic charcoal concentrations by number and by area 

were transformed to charcoal-number and charcoal-area accumulation rates (here denoted 

CHARC: number cm
-2

 yr
-1

 and CHARA: mm
2
 cm

-2
 yr

-1
, respectively) by dividing the 

concentrations with the estimated sample-deposition time (yr cm
-1

) as inferred from the age-

depth models. The CHARC and CHARA records were used to infer local fire episodes in two 

different CharAnalysis runs (following Finsinger et al., 2014). The records were first 

interpolated to a constant temporal resolution of 40 years (CHARi) and then broken down 

into a low-frequency background component (CHARback) and a peak component (CHARpeak) 

using a robust locally weighted polynomial regression (LOWESS) with a moving-window 

width of 900 years. This resulted in a robust signal-to-noise index (SNI) (Kelly et al., 2011) 

and goodness-of-fit between the empirical data and the CHARback data for both the count- and 

area-based records. The CHARpeak component was evaluated with a Gaussian mixture model 

that aimed at separating peak samples representing actual fire events from surrounding noise 

in the CHARpeak series. For each 900-yr window, CHARpeak values exceeding the 99
th

 

percentile threshold of the modelled noise distribution were identified as potential fire 



episodes (Higuera et al., 2009). Thereafter, identified charcoal-count-based fire peaks were 

screened with the minimum-count peak-screening test (Gavin et al., 2006; Higuera et al., 

2010) and charcoal-area-based peaks were screened with the method proposed by Finsinger 

et al. (2014). For peak-detection, peak-screening analyses, and local-fire episode 

reconstructions we used CharAnalysis v1.1 (Higuera et al., 2009) and ARCO v1.0 (Finsinger 

et al., 2014). 

 

2.8. Change point analyses 

To investigate the long-term variations of local biomass burning, we determined the locations 

of change points (Killick et al., 2012) based on variations of the mean and variance in the 

CHAR records using the binary segmentation method (Scott and Knott, 1974) in the 

‘changepoint’ v1.1.5 package (R Core Development Team, 2012; Killick et al., 2014), 

following Rius et al. (2014). The binary segmentation is an iterative search method that tests 

if a change point at position t exists that, at each iteration, separates an ordered sequence of 

data (y1:n = (y1,…,yn)) into two segments (y1:t = (y1,…,yt), yt+1:n = (yt+1, … ,yn)). At each 

iteration a change point is retained if a cost function applied to the entire sequence (Ω1:n) is 

larger than the sum of the cost functions applied separately to the two segments plus a penalty 

β to guard against overfitting (Ω1:t + Ωt+1:n + b), until no change points that meet this 

condition are detected (Killick et al., 2012). Here we selected a user-defined penalty (β = 4 

log(n)), following Killick et al. (2012). The change-point analysis has some analogy with the 

sequence-splitting technique (Birks and Gordon, 1985; Birks and Line, 1994). 

Because variations in total CHAR may also arise due to variations in estimated sedimentation 

rates, we devised a new method to test the influence of modelled sedimentation rates in 

determining long-term variations of total CHAR. The method starts by generating a user-



selected number (here 1000) of random charcoal-concentration records with values ranging 

between the minimum and maximum value of the charcoal record being analysed. For each 

randomly generated record, concentrations are then transformed to CHAR using (i) a constant 

sedimentation rate (CHARrand) and (ii) the sedimentation rate from the age-depth model 

(CHARsedrate), and both records are then analysed to determine the locations of change points. 

In theory, no change points should be detected in the CHARrand series. However, because 

change points can arise by chance in the randomly generated CHARrand time series, the 

method retains only those change points that are detected in more than 2.5% of the 1000 runs, 

effectively screening out the chance change points. Visual inspection of the location of 

change points in the CHAR records and in the CHARsedrate series may thus reveal the 

occurrence of change points that are likely to arise from variations in sedimentation rates 

rather than from changing charcoal abundances alone. The R script is available from the 

authors on request.  

 

3. Results and interpretation 

3.1. Fire-history reconstruction 

Macroscopic charcoal concentrations ranged between 0 and 10 pieces cm
-3

 in most of the 

samples from both sequences (Fig. 2). At Lake Brazi, CHARA and CHARC values were 

highest in two periods centred on 10,800 and 9200 cal yr BP, then gradually decreased to 

reach lowest values around 6000 cal yr BP, and thereafter slightly increased to reach a local 

maximum at 500 cal yr BP (Fig. 3). At Lake Lia, in contrast, CHARA and CHARC values 

were highest in three distinct periods: 9000–7500 cal yr BP, 5500–4500 cal yr BP, and 750–

250 cal yr BP (Fig. 3). Generally, macroscopic charcoal concentrations, micro-CHAR, 

macro-CHARC and macro-CHARA records show similar trends, although in some cases with 



different amplitudes (Fig. S1). This is most noticeable in Lake Lia, where macro-CHARA 

drops more rapidly at 7800 cal yr BP than macro-CHARC, and between 750 and 250 cal yr 

BP, where macro-CHARC and micro-CHAR values rise more steeply than macro-CHARA 

values. 

Based on the peak-detection analysis of the CHARA and CHARC datasets at Lake Brazi (Fig. 

2), 7 and 8 distinct fire episodes occurred during the past 11,500 years, respectively. FRIs 

(Fig. 4a) were lowest (<240 years) at about 8400–8150 cal yr BP and otherwise ranged 

between 1000 and 4000 years (for more details on Lake Brazi's fire-episode reconstruction 

see Finsinger et al., 2014). At the south-exposed Lake Lia, 7 and 17 fire episodes were 

identified based on the CHARC and CHARA datasets, respectively (Fig. 3). The signal-to-

noise ratio (SNI) of the CHARC record (Fig. S2) ranged between 2.8 and 9 (median = 3.7) 

and was smaller than 3.0 between 9000 and 6000 cal yr BP, indicating that it is not suitable 

for peak-detection analysis (Kelly et al., 2011). The SNI of the CHARA record (Fig. S2) 

ranged between 2 and 9 (median = 5.7) and was lower than the critical threshold (3.0) only in 

the most recent part of the record (<500 yr cal BP). FRIs based on CHARA ranged between 

80 and 1650 years, with shortest FRIs (mostly <500 years) clustering in three periods: 8450–

7050, 5300–4500, and 1900–1300 cal yr BP (Fig. 4b). 

Change points in the randomly generated CHARsedrate series clustered in locations where 

sediment-accumulation rates rapidly changed (Fig. 3). The change-point analysis for Lake 

Brazi indicates that total CHARC changed at about 9200 and 7100 cal yr BP. However, the 

latter change point coincides with change points that occurred also in the randomly generated 

CHAR record, suggesting that it might have also occurred due to variations of the sediment-

accumulation rate. Conversely, the analysis failed to detect change points between the two 

local maxima centred around 10,800 and 9200 cal yr BP. Nine change points, in contrast, 

split the CHARA record. Two of them were determined by variations of single (or few) 



samples and are therefore not retained further. The CHARA record can be thus subdivided 

into three phases, with two phases (11,500–8100 and 4700–250 cal yr BP) being 

characterized by higher values. None of the change points detected in the CHARA record 

coincided with change points in the randomly generated series. The first period (11,500–8100 

cal yr BP) may be further subdivided into four zones, two of which (centred around 10,800 

and 9200 cal yr BP) are characterized by higher means.  

The change-point analysis for the Lake Lia CHARA records indicates a distinct period 

marked by higher values (8900–6900 cal yr BP) (Fig. 3). The analysis shows two additional 

periods with higher CHARA mean and variance (5500–4500 and 2800–250 cal yr BP). Even 

if the onset of the higher-biomass burning period around 2800 cal yr BP is unsure because the 

change-point analysis was possibly influenced by the occurrence of one sample having a 

higher CHARA value (at 2700 cal yr BP), CHARA values were slightly higher after 2000 cal 

yr BP than between 4500 and 2000 cal yr BP. The rapid CHAR rise at 450 cal yr BP is 

probably not significant because it coincides with change points that were detected also in the 

randomly generated CHAR records. 

The user-determined penalty value b is largely arbitrary and can greatly influence the results 

of the change-point analysis (Killick et al., 2012): increasing (decreasing) the penalty value 

decreases (increases) the number identified segments. This issue is analogous to defining the 

number of zone boundaries in a multivariate dataset, say a pollen record (Grimm, 1987; 

Bennett, 1996). However, the change-point analysis was not used to determine how many 

change points could be detected within a record but rather to compare the locations of change 

points in the CHAR and in the randomly generated CHARsedrate records based on the same 

penalty values. The method effectively suggests that the rapid CHAR increase at 450 cal yr 

BP in the Lake Lia record is likely influenced by variations in sediment-accumulation rates, 



which are related to intensified soil erosion as shown by lower loss-on-ignition values (Fig. 

4). 

Several peaks initially identified as fire peaks were screened out because they were deemed 

to be potentially unreliable (Higuera et al., 2010; Finsinger et al., 2014). While the flagged 

peaks may be related to insignificant variations in the charcoal-abundance estimates, they 

may also be caused by the occurrence of distant fires (Higuera et al., 2010; Oris et al., 2014) 

or low-intensity/small area-burnt fires. Modern fire sizes in the Southern Carpathians are 

small (<750 ha; European Forest Fire Information System (EFFIS)) compared to naturally 

occurring wildfires in boreal forests that usually burn areas >10,000 ha (Kasischke et al., 

2002). Hence, we can expect that several small-area fires were not retained as significant fire 

episodes with the peak-identification analysis. Regardless, periods of higher biomass burning 

as revealed by the change-point analysis of the total CHAR record and by low-frequency 

variations of CHARback records (Figs. 3 and 5) broadly coincide with periods of shorter FRIs, 

in agreement with the notion that variations in total CHAR can also be influenced by 

variations of fire-episode frequency (Kelly et al., 2013). Because the pattern is particularly 

distinct in area-based CHARA records (Fig. 5), the shorter dispersal distances of larger 

charcoal particles (Clark, 1988; Oris et al., 2014) may be one reason explaining the more 

distinct variations in those records than in the count-based CHARC records. 

 

3.2. Fireevegetation relationships 

As attested by the abundant plant macrofossils in Lake Brazi (Fig. 4a), the north-exposed lake 

was always below the timberline for the past 11,000 years. Until about 10,200 cal yr BP, 

light-demanding pioneer species (Larix, Betula, and P. mugo) were present around the lake 

together with P. abies and shrubs (Vaccinium). High CHAR and CHARback values attest to 



high biomass burning at that time. Thereafter, Larix, Betula, and Vaccinium disappeared 

locally and P. abies and P. mugo became dominant with scattered P. cembra until about 4500 

cal yr BP. P. mugo probably grew locally on the floating bog that developed on the 

lakeshores, as it does today (Magyari et al., 2011). Under lowest biomass burning conditions 

(between 8000 and 4500 cal yr BP) local vegetation was dominated by P. abies. Biomass 

burning moderately increased around 4500 cal yr BP, synchronous with the local expansion 

of P. cembra and a very small increase in herb pollen percentages. Rising abundances of 

anthropogenic-pollen indicators suggest that human activities first modified the landscape 

near Lake Brazi around 3000 cal yr BP and resumed about 1500 cal yr BP onwards (Fig. 4a). 

The CHAR record shows that human activities did not substantially alter the fire regime in 

comparison to the mid-Holocene. However, peaks of anthropogenic pollen indicators 

coincide with phases of moderately higher biomass burning and with fire-episodes at about 

3000 cal yr BP and starting from ~1500 cal yr BP, suggesting that human activities were 

associated with the use of fire.  

Lake Lia was located in the treeline ecotone until about 8000 cal yr BP as attested by the 

concentrations of P.mugo and P. abies macrofossils and the high abundance of Vaccinium 

and herbaceous plant macrofossils (Fig. 4b). The stomata record from Lake Lia also supports 

this interpretation. The high abundance of herbaceous macrofossils until 8000 cal yr BP 

reflects the large extent of wet habitats. At Lake Lia, P. mugo probably grew on the 

lakeshore, particularly on the western steep rocky slope. Increasing abundance of P. abies 

macrofossils, however, indicate that the timberline was gradually creeping up the slope. 

Between 9000 and 8000 cal yr BP the density of the forest increased at Lake Lia and the lake 

remained below the timberline until about 3000 cal yr BP (Orbán et al. this issue). Between 

5800 and 3000 cal yr BP, P. abies was co-dominant with P. cembra. Fire activity increased 

(lower FRIs and higher biomass burning) between 5800 and 4500 cal yr BP. CHAR values 



remained overall low between 4500 and 2800 cal yr BP. After about 3000 cal yr BP, loss of 

tree macrofossils and low values of P. mugo macrofossils suggest that the treeline moved 

downhill and Lake Lia was situated mainly in the krummholz zone, as also suggested for 

other sites in the Retezat Mountains (Fӑrcas¸ et al., 1999). Decreasing LOI 550 °C values 

indicate that soil erosion increased between 4000 and 3000 cal yr BP, when the timberline 

descended. Short-term increases of CHAR values and robust charcoal peaks allow the 

identification of local-fire episodes during the past 2800 cal yr BP, i.e. after the soil-erosion 

increase. Anthropogenic-pollen indicators suggest that human activities modified the 

vegetation from 2200 cal yr BP onwards around Lake Lia. Concomitantly, FRIs decreased 

suggesting that some fire episodes were linked to human activities. 

 

4. Discussion 

4.1. Spatial differentiation 

At the treeline ecotone, site history, including climatic changes, wildfire history, and past 

human impact, play important roles in determining the current sensitivity of the climatic 

treeline to changing climate (Holtmeier and Broll, 2005). Reconstructed fire regimes on the 

two opposite slopes of the Southern Carpathians were markedly different (Fig. 5): the number 

of inferred fire episodes was smaller on the northern than on the southern slope, where 

periods of higher biomass burning and of more frequent fire episodes (shorter FRIs) occurred 

during the mid to late Holocene (Fig. 2). In theory, the small distance between the two sites 

(5 km, Fig.1) does not preclude transport of charcoal particles between the two mountain 

slopes (Pisaric, 2002; Tinner et al., 2006; Oris et al., 2014). However, the different fire 

histories of the two sites can be more economically explained by the assumption that the 

mountain ridge (about 2300 m asl) acted as an efficient barrier to charcoal transport between 



the mountain slopes. The situation is similar to that of today, where the southern slope is 

more fire prone: over the past 10 years fires were smaller and less frequent on the northern 

than on the southern slopes (mostly no fires or burnt areas <100 ha yr
-1

 against more frequent 

fires and burnt areas reaching 750 ha yr
-1

, respectively (European Forest Fire Information 

System (EFFIS)). Contrasting spatial patterns of fire regimes have also been reconstructed 

based on macrocharcoal records elsewhere (Whitlock and Larsen, 2001; Carcaillet et al., 

2009; Genries et al., 2012) and highlight the need to increase the spatial density of palaeo-

records to reconstruct region-specific spatial patterns of fire-regime changes. The results are 

therefore consistent with observations that trends and patterns of change can be different for 

sites situated close to each other (Gavin et al., 2006; Feurdean et al., 2012). 

 

4.2. Drivers of the fire regime 

Biomass burning at Lake Brazi and Lake Lia was highest during the early Holocene (Fig. 5) 

probably because of drier climatic conditions linked to stronger summer insolation, as 

elsewhere in the Carpathians (Feurdean et al., 2012). The chironomid-inferred July air 

temperatures (CI-T) record at Lake Brazi (Tóth et al., 2015) closely follows summer 

insolation changes during the Holocene remaining mostly above present-day temperatures 

until about 6000 cal yr BP. However, the timing of the early-Holocene biomass-burning 

maximum was different at Lake Brazi and Lake Lia. Whereas CHAR strongly decreased at 

Lake Brazi ca. 9200 cal yr BP, at Lake Lia CHAR strongly increased at this time, suggesting 

that local factors may have been important in driving fire-regime changes. Early spring and 

growing-season climatic conditions exert a primary control on fire regimes due to their 

effects on fire ignition and spread and on fuel availability (Körner and Paulsen, 2004; 

Schwörer et al., 2014). Similar conditions have been inferred in other palaeoecological 

records around the treeline ecotone (Gil-Romera et al., 2014). 



 

4.3. Fire history and vegetation changes at Lake Lia and Lake Brazi 

The treeline ecotone persisted longer at Lake Lia than at Lake Brazi (until about 8000 cal yr 

BP) during the early Holocene because Lake Lia is located about 160 m higher, which might 

result in a mean monthly temperature difference of ~1–1.5 °C using a thermal lapse rate of 

~0.6 °C/100 m elevation (Agustí-Panareda and Thompson, 2002) between the two lakes. The 

lower temperatures at Lake Lia might have advantaged Pinus mugo and Ericaceous shrubs, 

which are more tolerant against thicker and longer-lasting snow cover than P. abies 

(Holtmeier, 2009). The rocky surface of a rock glacier on the western shore of Lake Lia 

(Urdea, 1992) may also have hindered the establishment of P. abies, which requires thicker 

soils (Henne et al., 2011). In addition, lingering permafrost in the rock glacier after the end of 

the Younger Dryas may have lowered the local ground temperature (Vespremeanu-Stroe et 

al., 2012). 

However, P. abies, P. cembra and Pinaceae macrofossils were already found from about 

10,500 cal yr BP at Lake Lia (Fig. 4), indicating that the treeline ecotone was approaching 

and that individual trees grew near the lake for about 2000 years before the timberline 

ascended above it (see also Orbán et al. this issue). Moreover, CI-T (Fig. 5) reached their 

highest values around 9400 cal yr BP, shortly before the onset of the first high-biomass 

burning and short FRIs period, and shortly before woody biomass locally increased as 

suggested by variations of P. abies macrofossil abundances. Taken together, this evidence 

suggests that frequent fires in the treeline ecotone between 9000 and 8000 cal yr BP could 

have prevented the closure of the timberline forest and helped to maintain a rather open 

landscape with abundant herbs and Ericaceae in the treeline ecotone until 8000 cal yr BP, 

when the P. abies dominated timberline finally ascended above the lake. Higher biomass 

burning and shorter FRIs starting from about 



9200 cal yr BP also coincide with low lake levels at Lake Brazi and at other sites in the 

Carpathians from around 9000 cal yr BP (Buczkó et al., 2013) suggesting that the climate 

became relatively dry. Hence, biomass burning before 9000 cal yr BP at Lake Lia may have 

been low due to the combination of low fuel availability that limited local fire occurrence and 

moist local climatic conditions. In contrast, the reduced local fire activity around Lake Brazi 

was probably due to the modulating effect of the dominance of P. abies throughout the 

Holocene, a species observed to reduce fire activity (Ohlson et al., 2011; Schwörer et al., 

2015), and possibly more humid conditions on the northern slope. 

Fire activity at Lake Lia remained high until about 7000 cal yr BP probably because fuel 

availability increased, as attested by the lower abundance of herbaceous macrofossils and 

increased abundance of P. mugo and P. abies plant macrofossils. High percentages of 

Corylus pollen, transported from lower elevations, were recorded until about 7400 cal yr BP 

(Vincze et al., submitted for publication). Corylus is a fire-resistant resprouter (Finsinger et 

al., 2006) and may suggest that climatic conditions were still sufficiently dry to support high 

biomass burning in the P. abies dominated timberline forest. Dry climate conditions until 

about 7000 cal yr BP are also indicated by higher-than present CI-T (Fig. 5) and by low lake-

levels at Lake Brazi (Buczkó et al., 2013).  

Between ca. 7100–6900 cal yr BP, CI-T decreased in a step-like manner (Fig. 5). Decreasing 

summer temperatures can well explain the rapid timberline-species descent at 6000–5000 cal 

yr BP, marked by the local expansion of P. cembra at Lake Lia and later at Lake Brazi. The 

cooling may have reduced evapotranspiration, thus also reducing fire occurrence at Lake Lia. 

The later expansion of P. cembra at Lake Brazi could be explained by the lower elevation of 

Lake Brazi where the zone of P. cembra occurrence would arrive later as the treeline 

descended, and the competition provided by the closed P. abies-dominated forests below the 



timberline on the northern slope that were less affected by the summer temperature change 

after 7000 cal yr BP.  

Surprisingly, biomass burning increased and FRIs became shorter at Lake Lia between 5500 

and 4500 cal yr BP, when CI-T were lower (Fig. 5) and diatoms suggest higher lake levels 

and/or increasing water turbulence at Lake Brazi (Buczkó et al., 2013) than previously. 

Similarly, increasing lake levels and cooler climate conditions, which do not comply with 

increased fire occurrence, were noted from the Eastern, the Western and from other parts of 

the Southern Carpathians between 5500 and 4200 cal yr BP (Tóth et al., 2015). An interval 

characterized by higher charcoal abundance is also visible in other records from the 

Carpathians located between 1000 and 1400 m asl between 5800 and 4800 cal yr BP 

(Feurdean et al., 2012). In those records the charcoal abundance increase coincides with the 

pollen-inferred rapid expansion of Carpinus betulus that may have been favoured by a higher 

fire activity in the montane belt (Feurdean et al., 2012). However, the biomass-burning 

increase at Lake Lia was not related to the expansion of C. betulus at lower elevation because 

the rise of C. betulus pollen percentages already started ca. 1000 years earlier (Vincze et al., 

submitted for publication). We cannot exclude that charcoal particles were transported from 

burnt areas located at lower altitudes, as may happen in areas with steep topography (Tinner 

et al., 2006). Neither archaeological data nor anthropogenic indicators (Cerealia, Secale, or 

secondary indicators) suggest early livestock grazing during the late Neolithic in the Retezat 

Mountains (Fig. 4 and Vincze et al., submitted for publication), in contrast to the northern 

Romanian Carpathians (Feurdean et al., 2016). 

 

4.4. Did anthropogenic fires influence the late-Holocene treeline ecotone vegetation? 



The absence of evidence for early human activities and decreasing CI-T around 3000 cal yr 

BP suggest that decreasing summer temperature caused a downslope timberline shift at Lake 

Lia. In spite of reduced fuel-availability due to the subsequent dominance of P. mugo 

shrublands at Lake Lia, fires still occurred. A comparison between Lake Lia's fire record and 

climate proxies suggests that climatic conditions possibly continued to influence the fire 

regime: the short-FRI period between 1900 and 1300 cal yr BP at Lake Lia matches well with 

a period characterized by increasing CI-T (Fig. 5) and by the gradual shallowing and 

eutrophication of Lake Brazi (Buczkó et al., 2013); likewise, higher lake level at Lake Brazi 

between 3010 and 2800 cal yr BP coincides with decreased fire activity. Yet, the CI-T and 

the diatom-inferred water-depth reconstructions may be influenced by anthropogenic nutrient 

enrichment, casting doubt on the climate–fire relationship. 

Fires can have a significant and long-lasting impact on vegetation structure and composition 

by disfavouring fire-sensitive species and by promoting open spaces and fire-resistant species 

(Stähli et al., 2006; Leys et al., 2014b; Schwörer et al., 2015). Short FRIs, ranging between 

80 and 560 years fire
-1

, occurred between 1900 and 1300 cal yr BP at Lake Lia. The increase 

of secondary anthropogenic-pollen indicators (mainly P. lanceolata) from ca. 2000 cal yr BP 

at Lake Lia (Fig. 4) suggests that anthropogenic disturbance could also have contributed to 

the increase in fire activity through intentional burning of the P. mugo shrublands to open the 

landscape further for summer pastures and meadows. These short FRI estimates are in broad 

agreement with records from the Alps, where P. mugo has been observed to be resistant to, 

and possibly even favoured by, the occurrence of fires with FRIs of ca. 250 years (Stähli et 

al., 2006) and 30e735 years fire
-1

 (Leys et al., 2014a). Such low FRIs also comply with the 

qualitative assessment of the flammability of P. mugo, which was rated as “producing fires 

that likely present significant control problems requiring effort and resources” 

(Xanthopoulous et al., 2012).  



Warming climate, as shown by increasing CI-T (Fig. 5), might have favoured high-altitude 

pastoral activities as also suggested for the Rodna Mountains (Geanta et al., 2014), Apuseni 

Mountains (Feurdean et al., 2009) and the Alps (Tinner et al., 2003). Human activities 

(pastoralism, clearance, burning) may have prevented the timberline from rising naturally in 

the warmer conditions. The rapid increase of anthropogenic-pollen indicators together with 

decreasing pollen abundances of P. mugo and P. cembra around 700 cal yr BP at Lake Lia 

suggests that the local tree and shrub cover was opened by more intensive pastoral activity 

during the Middle Ages, when anthropogenic land-cover change involved greater clearance 

of the mountain-pine thickets to obtain new pastures (Solár and Janiga, 2013). The absence of 

detected fire-episodes from 700 cal yr BP onwards at Lake Lia may thus be the result of 

reduced fuels due to livestock grazing that effectively suppressed fire occurrence (Bowman et 

al., 2011) by thinning the P. mugo shrublands for grassland. At Lake Brazi, in contrast, 

discontinuous occurrence of anthropogenic-indicator pollen (Fig. 4) since 2600 cal yr BP 

suggests that human activities were less extensive in the P. abies dominated forest below the 

timberline than on the southern slope. Nevertheless, distinct anthropogenic-indicator pollen 

peaks coincide with charcoal peaks (some of which were identified as fire episodes) 

supporting the notion that pulses of anthropogenic land-cover change alternated with rapid 

forest regeneration (Tinner et al., 2003; Finsinger and Tinner, 2006; Feurdean et al., 2013b). 

 

4.5. Comparison with other central European regions 

The fire history in the Southern Carpathian treeline ecotone differs from the lowland 

Transylvanian plain and elsewhere in Europe, where a distinct shift from natural to “human 

fire regimes” has been detected at the Neolithic/Bronze Age transition (Tinner et al., 1999; 

Feurdean et al., 2012; Molinari et al., 2013; Morales-Molino and García-Antón, 2014). In 

those regions, late-Holocene biomass burning, as inferred from CHAR records and from FRI 



reconstructions, markedly exceeded the mid-Holocene range of variability, often leading to 

substantial changes in vegetation composition and sometimes to the local extinction of fire-

sensitive species (Tinner et al., 2000; Rey et al., 2013; Morales-Molino et al., 2015). The 

comparatively low late-Holocene fire activity (Fig. 5) and the late appearance of 

anthropogenic-pollen indicators in the Retezat Mountains suggest that prehistoric cultures 

exploited the marginal high-mountain pastures less intensively than in the Alps. 

Since the Middle Ages, more intensive land-use of subalpine pastures led to a drastic thinning 

and/or reduction of P. mugo thickets throughout the Carpathians (Nedelea and Comӑnescu, 

2009), thereby indirectly suppressing fire occurrence. Over the past ca. 50 years, and more so 

after the demise of the social system in the 90's, pastoral activities have strongly decreased in 

several sectors of the Carpathians causing the re-expansion of P. mugo in the alpine treeline 

ecotone (Tsaryk et al., 2006; Nedelea and Comӑnescu, 2009; Solár and Janiga, 2013). The 

increasing biomass availability, together with the potential effect of more frequent heat waves 

in Central Europe in the coming decades (Schär et al., 2004), may thus lead to increased fire 

risk in the high elevation mountain environments of the Carpathians. However, how fire risk 

will develop in the mountain-pine thickets of the Carpathians will largely depend on the 

amplitude and nature of climate change, on the vegetation changes associated with the 

climate changes, and on land-use management.  

 

5. Conclusions 

This study provides the first long-term fire-episode reconstruction related to treeline 

variability in the Retezat Mountains and adds a valuable perspective on the impact of climate 

and land-use changes on high-altitude vegetation in European mountain regions. Results 

suggest that highest biomass burning occurred during the warmer and drier early Holocene, 



when the treeline was rising towards its highest elevation. Fire frequency spatially reflected 

the different microclimates of the north and south slopes and the positions of the sites in 

relation to the treeline ecotone. Anthropogenic vegetation change increased during the past 

ca. 2000 years, especially on the south slope, and is related to a moderate biomass burning 

increase until ca. 1300 cal yr BP. Thereafter, more intensive land-use activities in the high-

mountain areas led to the indirect suppression of local-fire occurrence due to the thinning 

and/or cutting of P. mugo thickets (fuel suppression) around the treeline. With the on-going 

land-abandonment in economically marginal areas, such as those at the treeline ecotone, the 

natural reforestation by P. mugo thickets may potentially lead to moderately higher fire 

occurrences. 
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Figures and Tables 

 

Fig. 1. Map of the location of the study area in the Carpathians (a) and the study area. Map 

from National Geographic's MapMaker Interactive 

(http://mapmaker.education.nationalgeographic.com/). 

 

 

Fig. 2. Fire-episode reconstruction for Lake Brazi (modified from Finsinger et al., 2014) and 

Lake Lia. Upper and lower panels: reconstructed fire-episode histories based on macroscopic-

http://mapmaker.education.nationalgeographic.com/


charcoal accumulation rates by area (macro-CHARA) and by counts (macro-CHARC); middle 

panel: macroscopic charcoal concentrations (pieces cm
-3

). Grey lines in top and bottom 

panels: macro-CHAR residuals (macro-CHARi e macro-CHARback); red line: threshold; red 

crosses: significant charcoal peaks that survived the screening tests; grey dots: insignificant 

charcoal peaks. Pink vertical bands highlight the CHARA values that exceed the 99th 

percentile threshold within 900-year moving windows, i.e. potential CHARpeaks. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

 

 

Fig. 3. Comparison between change-point analysis based on charcoal-accumulation rates by 

counts (CHARC; top) and by area (CHARA; middle) and sample deposition times for Lake 

Brazi (left) and Lake Lia (right). Black lines in top and middle panels: CHAR records, 



vertical blue lines: change points in the CHAR records, empty circles: change points in the 

randomly generated CHARsedrate records, grey shaded areas: periods of higher CHAR values. 

(For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

 

 

Fig. 4. Summary diagrams for Lake Brazi (a) and Lake Lia (b) with loss-on-ignition (LOI, % 

dry weight), the most relevant plant macrofossil taxa (black histograms; accumulation rates), 

pollen taxa (grey shaded curves; percentages), conifer stomata (black line; accumulation 



rates), inferred fire-return intervals (FRI based on CHARA), and total CHARA. Grey shaded 

areas in the FRI and CHARA plots highlight periods of shorter FRIs and periods of higher 

biomass burning as inferred based on the change-point analyses (see Fig. 3). In Lake Brazi 

Betula pollen grains were identified as either Betula nana type (grey area) or Betula 

pubescens type (grey line). 

 

 

Fig. 5. Comparison between chironomid-inferred July-air temperature from Lake Brazi (top) 

(Tóth et al., 2015) and fire histories inferred based on CHARback and FRIs at Lake Brazi and 

Lake Lia. Grey shaded areas: periods of shorter FRIs at Lake Lia. 

 

 


