
HAL Id: hal-01814542
https://hal.science/hal-01814542v1

Submitted on 13 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Three dimensional Deep Learning approach for remote
sensing image classification

Amina Ben Hamida, A Benoit, Patrick Lambert, Chokri Ben Amar

To cite this version:
Amina Ben Hamida, A Benoit, Patrick Lambert, Chokri Ben Amar. Three dimensional Deep Learning
approach for remote sensing image classification. IEEE Transactions on Geoscience and Remote
Sensing, 2018, 56 (8), pp.4420-4434. �10.1109/TGRS.2018.2818945�. �hal-01814542�

https://hal.science/hal-01814542v1
https://hal.archives-ouvertes.fr

THREE DIMENSIONAL DEEP LEARNING APPROACH FOR REMOTE SENSING IMAGE
CLASSIFICATION

Amina Ben Hamida* **, Alexandre Benoit*, Patrick Lambert*, Chokri Ben Amar**

*Univ. Savoie Mont Blanc, LISTIC,
F-74000 Annecy, France

(amina.ben-hamida,alexandre.benoit, patrick.lambert)@univ-smb.fr
** REGIM, Ecole Nationale d’Ingénieurs de Sfax

Route de Soukra, B. P. W, 3038 Sfax, Tunisie
chokri.benamar@ieee.org

ABSTRACT

Recently, a variety of approaches has been enriching the field
of Remote Sensing (RS) image processing and analysis. Un-
fortunately, existing methods remain limited faced to the rich
spatio-spectral content of today’s large datasets. It would
seem intriguing to resort to Deep Learning (DL) based ap-
proaches at this stage with regards to their ability to offer ac-
curate semantic interpretation of the data. However, the speci-
ficity introduced by the coexistence of spectral and spatial
content in the RS datasets widens the scope of the challenges
presented to adapt DL methods to these contexts. Therefore,
the aim of this paper is firstly to explore the performance of
DL architectures for the RS hyperspectral dataset classifica-
tion and secondly to introduce a new three-dimensional DL
approach that enables a joint spectral and spatial information
process. A set of three-dimensional schemes is proposed and
evaluated. Experimental results based on well known hyper-
spectral datasets demonstrate that the proposed method is able
to achieve a better classification rate than state of the art meth-
ods with lower computational costs.

Index Terms— Remote Sensing, Hyperspectral, Deep
Learning, pixel-based, Classification

1. INTRODUCTION

Today, Remote Sensing (RS) plays a fundamental role in pro-
viding a rich source of information for a variety of applica-
tions. It is now a major means for advanced and numerous
purposes such as the long-term climate studies, population
evolution analysis and sometimes even the precocious pre-
vention of calamities. In fact, RS has opened doors for not
only a deeper understanding of the Earth itself but also for
delicate investigations into its population and environmental
behaviors. In reality, such advances are mainly boosted by
the collaboration of serious industrial and academic research.
The impressive breakthroughs witnessed on a technical level,

acquisition tools as well as new open data models, have dra-
matically impacted RS data products. This fast progress has
mainly led to the creation of not only overwhelming quanti-
ties of datasets but also of very rich spatial and spectral con-
tent. Faced with harder and more complex images, the ren-
ovation of the classically used approaches has been needed.
In fact, the basic philosophy behind the first RS classification
methods relied on the so called ”shallow structures”. Dif-
ferent techniques have been used including artificial neural
networks [1], classification trees [2] and support vector ma-
chine [3]. The Bag of Visual Words (BoVW) was introduced
as a baseline for recent RS image classification [4] since it
enables a better understanding of the data content and the
inter-pixel dependencies. Although these tools were -until
recently- highly ranked in the classification field, they are
now incapable of coping with the abundance of today’s image
content. As a response to this lack of efficient methods, seri-
ous efforts have been made and several approaches have been
set up, such as the graphic based one detailed in [5] or some
handcrafted feature tools that can effectively describe the spa-
tial and spectral content of the images [6]. Despite high per-
formance, these approaches remain limited because of their
lack of a generic aspect, adaptation to different contexts and
an impassable need for expert knowledge in the parameter set
up phase. Therefore, there is an urgent need for more conve-
nient analysis methods and approaches that allow hierarchical
comprehension of the data and thorough learning of its con-
tent. Certainly, when dealing with tricky learning tasks, it is
currently almost impossible not to acknowledge the achieve-
ments of Deep Learning (DL). In fact, since the impressive
comeback of neural networks in 2006, the machine learning
community has become very popular, mainly thanks to the
emergence of DL based approaches and their remarkable per-
formances. Early deep methods started in simpler ways with
digit classification to recently become a winning tool for com-
plex image classification tasks in the 2012 Large Scale Visual
Recognition Challenge (ILSVRC2012). Over the past sev-

eral years, DL has been growing as one of the most efficient
techniques for a wide range of applications and fields and has
managed to overcome different challenges when dealing with
Big Data issues. However, it likewise brings more precision
and accuracy into smaller scale applications that mainly focus
on today’s wealth of spatial and spectral content. Therefore,
one of the main focuses is now pointed at the ability of DL ap-
proaches to solve RS data classification problems. Currently,
an important share of RS research is devoted to investigating
techniques that enable effective interpretation, analysis and
extraction of relevant knowledge.

In this paper, a general overview of the DL evolution
phases and the currently existing methods is presented. The
main challenges that are disrupting its progress are also
presented along with a special focus on DL techniques
used for RS image classification. Finally, a new deep net-
work structure is proposed and examined for an RS case
study on a small well-known hyperspectral dataset which
then draws the basic guidelines of how to deal with the
RS data blast. Models and trained weights are then made
available at https://github.com/AminaBh/3D_
deepLearning_for_hyperspectral_images.

2. DEEP LEARNING OVER THE YEARS

Over the years, a lot of research has been dedicated to ma-
chine learning and artificial intelligence. Obviously, talking
about neural networks is not a new subject as the field has
been around since the 1950s [7]. Starting from the mid-90s,
machine learning has gone through several transition peri-
ods paving the way for the impressive comeback of Neu-
ral Networks. However, the proposed techniques relied so
much on human involvement in the process for system tun-
ing and data annotation along with high computational power
requirements that neural nets where surpassed by other less
constrained methods such as support vector machine based
approaches. Consequently, without sufficient resources, neu-
ral network-based approaches went through a ”winter period”
where few advances appeared in state of the art methods.
Thanks to Geoffrey E. Hinton and his team, the world mi-
grated from shallow structures to deep architectures with the
introduction of Deep Belief Networks (DBNs) in 2006, which
have revolutionized both the academic and industrial worlds.
This progress has been greatly assisted by technical evolution
on different levels: the world has witnessed the birth of richer
annotated databases along with powerful computational tools
such as GPUs. Since then, much literature has been focused
on DL methods. The main tool behind the success of DL
is the introduction of more processing layers which induces
more representational levels and therefore, ensures progres-
sive dissociation of the concepts contained in the data. Con-
sequently, not only does DL enhance the learning process,
these approaches have also managed to overcome the classi-
cal ones by getting rid of the previously used engineered fea-

tures. Over the years, a rich repository has been established to
encompass numerous deep architectures. These methods can
be categorized into 3 main classes regarding their architec-
tures, aims and techniques that are detailed in the following
subsections.

2.1. Deep networks for unsupervised learning: Genera-
tive approaches

The absence of target labels or knowledge information dur-
ing the learning phase limits the application to a feature iden-
tification process. Most of today’s available data are unla-
beled datasets which raises the question: to what extent can
we learn meaningful representations? In this case, the lower-
level abstractions are more tightly related to simple features
and higher level abstractions are dedicated to high seman-
tic level concepts and objects. Different approaches belong
to this specific category namely autoencoders [8]. Basically,
They can perform image hierarchical learning through two
types of modules: a first set of data encoding layers followed
by a decoding set of layers that tries to reconstruct back the
input. Another proposed architecture for unsupervised learn-
ing is the Restricted Boltzmann Machine [9]. As first intro-
duced, this approach relied on connected neuron-like units
that make stochastic decisions about whether to be on or off.
Therefore, it can be seen as a neural network model [10]. Al-
though the main concept behind it seems very tempting for
image processing applications, its execution was difficult and
time-consuming. As a remedy for this problem, restrictions
were added to the network topology forbidding connections
between the variables within the same layer and leading to
the one layer restricted Boltzmann machines (RBMs, [11])
as well as its deeper version the Deep Boltzmann machine
(DBM). Deep Belief Networks (DBNs) where then proposed
in [12] and rely on a clever combination of RBMs along with
a classifier.

2.2. Deep networks for supervised learning: Discrimina-
tive approaches

Target labels are expected to help learning and data classifica-
tion, whether they are present in a direct or indirect form. This
category of approaches is intended to accomplish pattern clas-
sification tasks, often by characterizing the posterior distribu-
tions of classes presented in the data. They are also called dis-
criminating deep networks. Deep Stacking Networks (DSN),
Convolutional Neural Networks (CNNs)[13] and Recurrent
Neural Networks [14] are the main architectures used for su-
pervised tasks. As first introduced, the main idea behind the
DSN design derives from the concept of arranging series of
simple classification modules, as proposed and explored in
[15] and [16]. At an early stage, classifiers are set to then be
stacked on top of each other ensuring the learning of complex
concepts. The DSN architecture was originally presented in
[17]. Although different varieties of DSNs were created in

order to diminish the computational cost of the process, these
architectures remain very expensive, which challenges their
users and deflects interest toward other sets of approaches.
One of the main alternatives is the Convolutional Neural Net-
work (CNN), as first presented in [13]. These Convolutional
Layers (Conv) can be viewed as a series of trainable filters
that slide all over the input’s dimensions (width, height and
even depth). Since these layers share many weights but sig-
nificantly less than classical fully connected neuron based net-
works, the stacking of the layers on top of each other allows
a gradual increase in the data representation semantic level
without exploding the computational cost. Usually, a series
of fully connected layers followed by a classifier are inserted
at the end of each phase. This basically finalizes the represen-
tation learning process by modeling the target concepts from
a composition of their already high semantic level input fea-
tures. The CNNs benefit from the bonus of introducing the
sub-sampling property which guarantees a decrease in fea-
ture map resolutions thus reducing the computing costs while
enforcing robustness against translations. In fact, discrimi-
native approaches generally follow a similar philosophy that
aims at first representing input images as high resolution low
level features representations, starting by oriented contours,
that are gradually sub-sampled and composed into more com-
plex and more numerous patterns while going threw the net-
work architecture. Depending on the task, a final layer may be
used to format output to the required type. Luckily, all these
basic tools have allowed the creation of a rich benchmark of
robust designs for different CNN networks. These architec-
tures have been found highly effective and been commonly
used in computer vision and image recognition [18], [19].

2.3. Hybrid deep networks

The term hybrid for this third category refers to the deep ar-
chitecture that either comprises or makes use of both gener-
ative and discriminative model components. These architec-
tures often operate in a multistage learning process, where
the generators are trained using a specific strategy. The recent
Generative Adversarial Networks [20] highlights the interest
of simultaneously training the two components where a gen-
erator continuously improves and tries to fool a discriminator
which continuously tries to differentiate real and fake gener-
ated data. Recently, it was shown in [21] that deep hybrid
architectures, or multi-level models that integrate discrimina-
tive and generative learning objectives, offer a strong viable
alternative to multi-stage learners.

2.4. The evolution of different CNNs

As one of the most successful deep architectures, CNNs have
progressively found their way into today’s applications. By
less by 20 years, we moved from the 5 layered leNet5 archi-
tecture [13] dedicated to digits recognition to the more ad-
vanced Residual Network [22] variants that can include hun-

dreds of layers that are now able to recognize thousands vi-
sual concepts. Actually the main architecture that effectively
familiarized the world with CNNs is the 8-layer AlexNet.
As detailed in [23], this technique has the advantage of be-
ing deeper and more expressive than the other approaches by
stacking a series of Convolution layers. The AlexNet archi-
tecture was a clear winner at the ILSVRC challenge of 2012
and since then, this challenge has been systematically won by
CNNs every year, always improving performance levels by
improving depth, width, processing path strategies while re-
ducing the number of parameters [24, 25]. Then, as the world
has evolved towards more sequence-dependent applications
(video, text, etc.), Recurrent Neural Networks(RNN) whose
output depends on the input and the previous iteration states
complete CNN architectures. The Long Short-term Memory
(LSTM) cells [26] is a flexible example of such family that
enables long and short range interactions by the use of train-
able state gates. Such tools enable impressive results on var-
ious application use cases such as image captioning [27] and
video semantic segmentation [28].

3. DEEP LEARNING FOR REMOTE SENSING
IMAGE CLASSIFICATION

The content of satellite images with high resolution in both
space and frequencies is remarkably complex, providing de-
tails of objects like houses, trees, or even cars on the parking
lots. In order to be able to fully describe the content of these
images, a deep hierarchical representation is highly recom-
mended. The lowest level is represented by primitive vectors
describing the color, texture and shape. At a higher level,
simple objects like roads, forests or lakes are described by
unique combinations of primitive vectors. However, individ-
ually considered, these objects can not describe the scene or
grasp the overall meaning of the image as they give different
interpretations according to their neighboring, as well as their
spatial and spectral positions. Therefore, in order to extract
meaningful information from the image, the spatial interac-
tions to the next level of the representation hierarchy must be
taken into account. These models lead to the discovery of se-
mantic rules that define the final level of abstraction: high
level semantic classes like residential districts, commercial
areas or ports are of high semantic level. This extremely rich
repository of information has created the need for DL as a key
solution.

3.1. State of the Art DL for RS

It is often possible to resort to ideas that come from the multi-
media field to proceed with RS datasets. Current multimedia
inspired DL models have managed to provide a baseline for
the use of DL in RS key applications. Recent challenges focus
on semantic segmentation and ensure high accuracy rates in
the case of a traditional 3 spectral bands task [29]. However,

the creation of more complex RS data has catalyzed more
research into better understanding of data with rich spectral
content such as hyperspectral and multispectral images. As
detailed in [30], first trials only relied on the spectral informa-
tion presented in the data itself. For instance, the approaches
as presented in [31], [32] and [33] suffered a lack of spatial
information and therefore probably disregarded a very impor-
tant element of the image content. The same problem was
seen when only processing the spatial content of the data as
detailed in [34], [35], [36] and [37]. Therefore, more com-
plex yet effective solutions have been presented in different
forms and models to take into account both spectral and spa-
tial components guaranteeing a maximum profit from the in-
sights and information restrained in the images. Early solu-
tions resorted to a marginal processing of spectral and spa-
tial information as presented in [38]. In this case, the spec-
tral information is processed apart from the spatial compo-
nent which is extracted later to be joined for feature extraction
based on deep architectures like stacked autoencoders (SAE).
Neural network classifiers are then implemented in the final
layer. Auto encoders are also the basic concept behind the
model introduced in [39], presenting a spatio-spectral frame-
work that merges spectral information from adjacent pixels to
add spatial information to the processed pixel. Hidden lay-
ers are then inserted in order to learn the spectral features and
a supervised learning is ensured by an output softmax layer.
Incorporating both spatial and spectral information improves
the classification performances as mentioned in all methods
above. However, the use of SAE or more generally using
large layers of fully connected neurons explode the number
of parameters to train and demand a large number of training
samples. In the case of datasets with few annotations, training
systems with a large number of parameters is not tractable or
lead to over-fitted and sub-optimal solutions. In the specific
case of hyperspectral image analysis, DL methods recently
opened wide doors into taking huge leaps. More specifically,
3D (i.e. one spectral dimension plus two spatial ones) CNNs
were introduced as a solution to obtain an accurate and com-
putationally efficient architecture. As presented in [40], a 3D
like approach starts the process with a randomized PCA ap-
plied on the spectral dimension of the image. Therefore, the
inputs for the first convolutional (Conv) layer (C1) are 3D
patches of size s×s×Cr where s is the width and height of the
spatial patch while Cr is the number of the retrained principle
spectral components. A second Conv layer is applied to the
output of C1. Finally, a C2 element vector is produced and fed
as input to a Multi-Layer Perceptron (MLP) classifier. How-
ever, with this approach, each retrained spectral dimension
is processed independently with standard 2D convolutional
filters. Another approach is developed in [41], where a 3D
convolution is literally deployed by the first layer followed by
two 1D Convs and ending with two Fully Connected Layers
(FC). This approach is close to the one presented in [42] but
adds spatial information. However, it still introduces a large

amount of parameters (60000) that need to be trained with
only 1800 samples. The main concern in most of the cases
presented above is then how to deal with the high number of
parameters to be trained with few samples while improving
image analysis. Recently, architectures significantly reduce
this ratio such as [43] that maximizes the parameter reuse.

3.2. CNNs for RS image Classification

In view of the wealth of recent RS image content, it is crucial
to find deep architectures that maintain the balance between
efficiently processing huge amounts of data and not explod-
ing the computational costs while also providing high accu-
racy. The employment of deep classification techniques for
the RS field would seem to be a promising path of applica-
tions. However, further investigation reveals different chal-
lenges that must be overcome to reach accurate low cost data
interpretation. The main challenge is to efficiently adapt deep
architecture to take into account not only the spatial dimen-
sion of hyperspectral images but also their rich spectral con-
tent. Out of all the current DL networks, CNNs are one of the
best available tools for machine vision. These models have
helped DL become one of today’s hottest topics. Thanks to
the variety of layers one CNN can encompass, these networks
provide an efficient tool for data comprehension and represen-
tation. The fact that they can be fitted to different applications
and are relatively low cost architectures for tremendous tasks
make them one of the most extensively used DL approaches.
In this paper use cases, CNNs are a primordial choice that
can be fitted to RS classification tasks. Basically, these ar-
chitectures must perform well without over-fitting or under
training the system. However, the evolution towards effective
CNNs in such cases has been diminished by the following
challenges.

• High dimensional data
When dealing with high dimensional data, DL ap-
proaches become computationally-expensive. These
high costs are mainly due to the slow learning pro-
cess that is needed to learn the data abstractions and
establish an effective representation from low lev-
els to the highest semantic interpretations. In fact, a
high-dimensional data source contributes greatly to
the volume of the raw data, as well as complicating
learning from this data. The most effective solution
so far proposed is the use of CNNs since the neurons
in the hidden layer units do not need to be connected
to all of the nodes in the previous layer, but to a more
localized receptive field. Moreover, the resolution of
the image data is also reduced when moving toward
higher layers in the network as depicted in [44], [45]
thanks to pooling layers. However, this problem re-
mains very challenging and leads to more complex and
harder issues.

• Large heavy models
DL models have so far accomplished remarkable re-
sults relying on deep and wide models. Therefore, large
numbers of parameters are required to learn compli-
cated features and representations from the data itself
as explained in [46]. These heavy models are hard to
train, costly to fit and complicated to establish. More-
over, such heavy models are greedy in terms of labeled
data. This requirement is hard to establish since the
field is suffering from a serious lack of rich hyperspec-
tral and multi-spectral annotated data.

• Architecture Optimization
The key point in favor of using DL today is its ability
to cope with a wealth of applications. However, this re-
sults in hardening and complicating the tasks of estab-
lishing deep models that are inexpensive and effective
in processing data. Obviously, regarding the variety of
fields that today’s community is involved in, one can
notice an urgent need to optimize deep architectures in
terms of computational costs, accurate results and re-
quired training information. Recently various strate-
gies have been proposed to optimize pre-trained archi-
tectures in terms of inference speed and memory foot-
print reduction by layer factorization and weights prun-
ing [47, 48, 49]. However, such post training opti-
mization strategies cannot allow to disregard architec-
ture design optimization prior training since large ar-
chitectures cannot be reliably trained on small datasets.
Therefore, a lot of wise choices must be taken at early
stages: selecting one specific type of deep network,
choosing whether to fine-tune a pre-trained architecture
or starting from scratch.

The CNN structure introduces an accurate solution for
most of the previously presented challenges. However, more
recent studies that tend to enhance the use of deeper architec-
tures have also been established. Residual modules as pre-
sented in Residual Networks [22] have made it possible to
design extremely deep networks with more than a thousand
layers. More recently, Dense Networks were presented in
[43] that emphasize the interest of denser connections across
layers. The main purpose of such methods is generally to ad-
dress complex problems with high variability targets at mul-
tiple scales. Recent works tried to adapt these concepts to hy-
perspectral data use cases as detailed in [50]. The aim of this
paper is to prove the efficiency of non-complex architectures.

4. 3D DEEP LEARNING ARCHITECTURE FOR RS
IMAGE SEMANTIC SEGMENTATION

As a solution for the challenges presented in the previous sec-
tions, we introduce a new three dimensional based architec-
ture that is dedicated to hyperspectral images and tackles most
of the DL for RS aspects of difficulty.

4.1. General overview of the architecture

A joint spatio-spectral model is needed to examine both spec-
tral and spatial information in hyperspectral data. The ad-
vantage of such a framework is that both the components
are merged and joint in a non separable way from the early
stages of the process. This solution makes maximum use
of the information presented in the data and radically lowers
costs. This paper proposes to use a new 3D CNN architecture
that, unlike the previously mentioned approaches, simultane-
ously processes the spatial and spectral components with real
3D convolutions giving better investments of the few sam-
ples available with fewer trainable parameters. This proposal
decomposes the problem as the processing of a series of vol-
umetric representations of the image. Therefore, each pixel is
associated to an n×n spatial neighborhood and a number of f
spectral bands. As a result, each pixel is treated as a n×n×f
volume. The main concept behind this architecture is to com-
bine the traditional CNN network with a twist of applying 3D
convolution operations instead of using 1D convolution op-
erators that only inspect the spectral content of the data. An
overview of the 3D architecture is presented in Figure 1.

Fig. 1: Overview of the proposed 3D Deep architecture.

Different blocks of CNN layers are stacked on top of each
other in order to ensure deep efficient representations of the
image. Firstly, a 3D convolution based set of layers is intro-
duced in order to cope with the three dimensional input vox-
els. Each and every one of these layers encompass a number
of volumetric kernels that simultaneously execute convolu-
tions on the width, height and depth axis of the input. Such
3D convolutions stack is followed by a set of 1 × 1 convo-
lution (1D) layers that discards the spatial neighborhood and
a series of Fully Connected layers. Basically, the proposed
architecture considers 3D voxels as input data and first gener-
ates 3D feature maps that are gradually reduced into 1D fea-
ture vectors all along the layers. This procedure is ensured by
the choice of specific configurations of the convolution filter
strides and paddings following equation 1, where the stride
is the distance between two consecutive positions of the ker-
nel expressed with a number of pixels. The padding is used
to manage boundary effects and is basically employed as a
number of zeros concatenated at the beginning and at the end

of an axis. Using padding enables to make the convolution
output the same size as the input while no padding reduces
the output data shape.

SizeOut =

(
SizeIn−KernelSize+ 2× pad

stride

)
+1 (1)

As previously said, the input is fed to the network as a 3D vol-
ume (voxel) of size n×n×f . The first phase consists of using
a series of N3D 3D convolutional layers. Each layer i is char-
acterized by a number of ki filters. The kernels of the filters
are of size (mi×mi× fli) where mi<=n and fli<=f. In this
case, convolution layers are deployed for two purposes. First,
they are introduced as conventional spatio-spectral convolu-
tion layers with a stride equal to 1. Then, they play the role of
pooling layers thanks to the choice of larger strides to down
sample the data as suggested in [51]. The duality between
Conv and Pool layers in a sequential way progressively learns
and reduces the data components’ dimensions. The fli > mi
rule along with the removal of padding on the spatial dimen-
sion for some layers make the transition towards the creation
of a first 1D output vector. This output is then fed to a series
of N1D 1D Conv layers that each encompasses pi filters. In
the end, the network introduces a set of NFC Fully Connected
(FC) layers that ends with a Softmax classifier where the soft-
max activation of the ith output unit is detailed in (2). Since
the final layer’s size is chosen to be equal to the input number
of targeted classes (nclass), this FC guarantees a probabilistic
representation for the different classes.

P (xi) =
exi

nclass∑
c

exc

(2)

where xi denotes the 1D output vector of the final Conv layer.
An example of a 3D Conv layer network is illustrated in

Figure 2 where, f = 103, n = 3, fli = 3 and mli can take 3
or 1 as values. Padding is used on the spectral scale only. The
strides are alternated between one and two in order to create
a pooling effect after every convolutional operation.

So, as a summary and as detailed in Algorithm 1, the pro-
posed process starts by dividing the hyperspectral image into
two different sets of pixels: a training set of pixels and a test-
ing one. In fact, each pixel is taken into account as a 3D
n×n×f voxel in the paper’s context. A training period is con-
sidered to parse one time all the pixels of the training dataset
(one epoch) to learn the network weights. Follows a test pe-
riod that evaluates the performance level reached on the whole
test dataset. Those two periods are applied MaxEpoch times
to get the final result. In this way, the evolution of the network
performance is monitored all along the training.

4.2. Main common parameters

When establishing a DL architecture, the most crucial phase
is to make wise choices for the different parameters to be set.

Algorithm 1: Classification of Hyperspectral images at
the pixel level. Each pixel is processed w.r.t. its neigh-
borhood only as a voxel of shape n× n× f .

Input : S: number of samples per batch ;
epochIT train: number of iterations

required to parse all the train dataset with S samples
per batch (one epoch);

epochIT test: number of iterations required
to parse all the test dataset with T samples per batch
(one epoch);

MaxEpoch: Maximum number of epochs to
train the network;

Xtrain: Input training voxels;
Xtest: Input testing voxels

Output: mAccuracy: the average accuracy on the test
dataset;
All trained weights

for epoch in range MaxEpoch do
Testing: evaluate accuracy for each voxel from
Xtest

for it in range epochIT train do
1) Randomly sample S voxels from Xtrain

not already been considered in the current
epoch;
2) Forward propagation of the S input voxels
through the network in order to calculate the
average loss;
3) Backward propagation to update network
weights with respect to the average loss value;

end
Testing: evaluate accuracy for each voxel from
Xtest

for it in range epochIT test do
1) Sample T voxels from Xtest not already
been considered in the current epoch;
2) Run a forward propagation on the batch
samples.
3) Retrieve and cumulate the obtained
accuracy values

end
compute mAccuracy, the average accuracy values

on the entire test dataset obtained in the current
epoch.

end

Fig. 2: Example illustrating the evolution of feature shapes
(sizeOut) of each layer (output size is obtained according to
Eq. 1).

Although different models can be obtained from one basic
DL architecture, one can easily notice that there are common
parameters that can be fulfilled from the early stages of the
network creation.

• Solver method plays a major role in improving loss
during the learning process and contributes in both the
forward and backward propagation phases and there-
fore ensures the update of the network’s parameters.
Different solver methods have been introduced so far
such as the Stochastic Gradient Descent (type: “SGD”),
Adam (type: “Adam”), Nesterov’s Accelerated Gra-
dient (type: “Nesterov”) and RMSprop (type: “RM-
SProp”) as detailed in [52] and [53] . The Stochastic
Gradient Descent “SGD” with momentum set to 0.9
was selected for this use case. Several tests with dif-
ferent solver types were the reason behind this choice
which appears to be a simple and robust method.

• Weights regularization method is basically used to in-
troduce lateral regularization to the network. The main
types of normalization methods are L1 and L2 weights
regularization which both provide the choice to either
normalize within the same channel or even normalize
across channels. L1 normalization proved to be more
efficient in the paper’s context. One recent regulariza-
tion technique is the dropout method [54] which ran-
domly disables some inputs thus reducing neuron de-
pendencies. This also complements L1 and L2 regu-
larization by preventing the network from over fitting.
Therefore, we have combined the use of both L1 and
a 0.5 probability dropout on the Fully Connected layer
only.

• Non-linearity as detailed in the previous section, most
of the attention today is dedicated to the use of ReLU

non-linearities since they enable faster training conver-
gence. Recent non-linearities such as ELU [55] have
also been experimented but did not lead to improved
results.

• Weight Initialization is a crucial pre-processing phase
for DL network training since it sets the state of differ-
ent parameters at the starting point. Different methods
can be used including the recent Xavier and MSRA [56]
methods. The MSRA was chosen since it is adapted to
the ReLU non-linearities that we used.

• The learning rate coordinates to what extent each step
of the process influences the weight updates. We con-
sider an initial learning rate of 0.001 to explore rapidly
the search space and find a good local minimum. Then,
each MaxEpoch/3 iteration, learning rate is divided
by 10 in order to converge to a lower local loss value
and then increase accuracy (MaxEpoch is the number
of epochs needed to train the network).

• The batch size instead of optimizing the network from
a single sample at a time, which can lead to sub-optimal
solutions, averaging errors over a set of samples was
proved to be more efficient. Therefore, batch size in-
fluences the loss convergence efficacy and in turn the
system’s update phase, which makes it a very critical
parameter and basically data dependent. Values rang-
ing from 10 to 1 were tested on the small considered
dataset and the optimal choice is equal to 3.

• Bias or batch normalization: batch normalization has
recently been proposed to normalize neuron activation
across layers and replace neuron bias variables. De-
spite being efficient, batch normalization requires con-
sistent and stable batch statistics in the training and test
database. This is often helped by the use of a large
batch size. This constraint is difficult to fulfill on tiny
databases so each time we restricted our experiments to
neuron layers equipped with bias parameters initialized
to 0 at the beginning of the training.

5. EXPERIMENTS AND ANALYSIS

In this section, the experiments conducted on RS images us-
ing DL architectures are presented and compared to other
state of the art approaches.

5.1. The datasets

The results are obtained from experiments applied on the
University of Pavia, the Pavia Center and the Kennedy Space
Center datasets, all collected by the AVIRIS sensor and shown
in RGB colors in Figure 4. The first employed data was a cap-
ture of an area over Pavia University, northern Italy, with a
spatial resolution of 1.3 m. The image comprises 610 × 340

Fig. 3: Overview of our 3D architectures.

pixels with 103 bands. Next, the Pavia Center is a 102-band
dataset that presents one image of size 1096 × 1096 pixels
and of 1.3 m geometric resolution. Finally, the Kennedy
Space Center dataset was acquired over the Kennedy Space
Center (KSC), Florida, USA, on March 23, 1996. This image
has 224 bands from 400 to 2500 nm and the spatial res-
olution is 18 m. After removing water absorption and low
signal-to-noise (SNR) bands, it has 512×453 pixels with 176
bands. The first two datasets include some challenging scenes
among the 9 classes which are respectively Water, Trees,
Asphalt, Self-Blocking Bricks, Bitumen, Tiles, Shadows,
Meadows and Bare Soil for Pavia University and Asphalt,
Meadows, Gravel, Trees, Painted Metal Sheets, Bare Soil,
Bitumen, Self-Blocking Bricks and Shadows for the Pavia
Center dataset. The KSC dataset include 13 classes which are
respectively Scrub, Willow swamp, Cabbage palm hammock,
Cabbage palm/oak hammock, Slash pine, Oak/broadleaf
hammock, Hardwood swamp, Graminoid marsh, Spartina
marsh, Cattail marsh, Salt marsh, Mud flats and Water.

5.2. Different 3D architectures

Extensive sets of experiments were conducted. The main ap-
proaches that best summarize the performance level of the 3D
architectures are reported below. The most performing mod-
els and trained weights are then made available at https://
github.com/AminaBh/3D_deepLearning_for_
hyperspectral_images. The strategy is to start from a
simple state of the art architecture and then gradually extend it
by understanding its bottlenecks. Figure 3 presents an overall
view of the considered deep networks where the Conv layers
with a stride equal to 1 are referred to as Conv and those with
a stride equal to 2 as ConvPool. The number of filters per

Fig. 4: Captured Images: (a) Pavia U,(b) Pavia C and (c)
Kennedy Space Center.

layer is introduced as [number of filters]. So, in Figure 3,
each layer is presented as follows: “LayerName[number of
filters]”. The a, b, c, d and e schemes respectively represents
the 3, 4, 6, 8 and 10 layer-networks as detailed below.

• 3 layers VS 4 layers: a VS b
As first inspired from the [42] network, the presented
architecture created a 3-layer 3D network that gathers
two 3D layers, one single 1D layer along with two FC
layers and a Softmax. However, the important num-
ber of neurons included in the first FC layer increases
the number of parameters without really improving the
accuracy rates. This layer is basically dedicated to in-
crease the capacity of the final classifier while taking
care of the spatial arrangement in the feature maps.
However, the increased number of parameters conflicts
with the low number of training samples. Therefore, in

a new 4-layer network, only one FC, with the number
of neurons equal to the number of targeted classes, is
left and a new Conv layer with a stride equal to two is
added to play the role of a pooling layer. The network
is then able to keep up with the same performance level
with a lower training cost.

• 6 layers network: c
The noticeable drop in the number of trained param-
eters in the 4-layer network provided an interesting
opportunity to develop deeper models with more Conv
layers. Therefore, one 6-layer 3D architecture was
created relying on two 3D Conv layers followed by
4 1D layers, where the duality Conv/ConvPool is se-
quentially applied to the network. Finally, one FC with
a Softmax was kept. The number of filters for each
layer was set to 35 except for the first Conv that only
gathered 20 filters. In fact, a wide spectrum of filter
numbers with values ranging from 5 to 50 filters per
layer was tested. The optimal combination is then pre-
sented in this paper. This choice goes with the standard
state of the art tendency that shows that fewer filters
are required at the beginning of the architecture.

• Squeezing the net: towards deeper architectures: d
and e
Since different deep models can guarantee the same ac-
curacy level, the choice among them is then based on
the cost and number of parameters each network can
take. Therefore, as inspired from the SqueezeNet pre-
sented in [57], the trials to compress the model led to
the creation of lighter models. Thanks to the use of
smaller numbers of filters along with 1 × 1 × 3 filters
in the pooling phase, the network can reach the same
accuracy levels with a smaller number of parameters.
Indeed, 1 × 1 Conv layers with a number of neurons
lower than the one in the previous standard convolu-
tional layer (2 neurons for ConvPool VS 35 neurons
for Conv) allows a significant reduction of the number
of parameters. As a result, deeper architectures were
created for better learning.

• 8 and 10-layer networks: d and e A deeper light ar-
chitecture has been created with fewer parameters. A
8-layer 3D network was created first introducing the
duality between 3 3D Conv layers and 3 1D ConvPool
layers, followed by 2 1D layers and a single FC with
a softmax. The same goes for a 10-layer network with
the advantage of adding one more sequence of 3D lay-
ers along with pooling ones.

• Networks width vs depth Talking about the depth of
the deep networks is a very rich debate that generates a
lot of questions. However, it has been recently proved
[46] that one of the keys for better performances is to
find the right balance between the network’s depth and

width. In other words, fixing the number of layers per
network is a very crucial step that has a huge impact
on the efficiency of the architecture. But, knowing that
the network has a variant number of filters per layer
catalyzes the concerns about which number to choose.
Therefore, estimating the appropriate number of filters
for each layer (the width of the network) according to
its depth is an important decision to be taken in order to
harmonize the cost and accuracy of a deep network. In
this paper, the first layer is characterized with 20 filters
while the rest of the layers have 35 filters, except for
the pooling layers that have 2, 4 or 8 filters according to
their position in the network as discussed in the above
“Squeezing the net” section.

5.3. Experiments and Results

Experiments and tests were executed on the 3, 4, 6, 8 and 10
Conv layered architectures as detailed in the previous section.
For the sake of an accurate comparison with state of the art
methods, two main data splitting strategies were used. When
proceeding with the 3 and 4-layer networks, only 200 ran-
domly chosen pixels per class were used for training (almost
4%) while the rest of the data pixels were kept for the testing
phase. Then, in the case of deeper architectures, 5% of the im-
ages were deployed for training using the same class balance
strategy. Each model is trained and evaluated 3 times using
different non overlapping train and test random splits. Ac-
curacy levels are averaged to report a synthetic performance
measure. We measured a redundant 0.2% precision error and
do not report this value within the tables to lighten the presen-
tation. All the tests were executed on a 4-core intel i7-6600U
laptop CPU with no GPU included. The presented results
were obtained using the caffe library [58].

• 3 layers VS 4 layers : a VS b
First, as detailed in [4], the introduction of the 3D ar-
chitecture is inspired from [42]. Technically, two main
differences distinguish the proposed architecture from
the one detailed in [42]. First, trainable convolution
layers with strides greater than one are used instead of
the classically used max pooling filters. Then, the 100
neuron FC introduced by [42] is replaced by a 50 neu-
ron FC. However, the accuracy difference cannot only
be explained by these factors. In fact, as detailed in
Table 1, if the number of neurons in the FC layer is
divided by 2 (50 neurons vs 100 in [42]), the parame-
ter number decreases by almost 18% while the perfor-
mance level remains stable. This shows that the ini-
tial system has actually too many degrees of freedom
which misleads the image representation and limits the
system efficiency. Although these primitive results do
not enhance the level of the accuracy rate, they pro-
vide us with hints towards establishing better models.
The first observation to be taken into account is that the

choice of the spatial neighborhood is very crucial and
data dependent. Here, the 5 × 5 input spatial neigh-
borhood seems to be the optimum choice for the Pavia
University dataset while the 3×3 one performs better in
the cases of the Pavia Center and Kennedy Space Cen-
ter datasets. However, the 7 × 7 spatial neighborhood
seems to be very extended compared to the spatial com-
ponents of the datasets which makes it a low performer.
Furthermore, the decrease in the number of neurons in
the first FC layer results in a decrease in the number of
the overall trained parameters without influencing the
accuracy rates.

As detailed in Table 2, the removal of the first FC layer
along with the introduction of the spatio-spectral con-
cept in the network enables better results compared to
[42]. In fact, in this case the data representation is more
relevant when going from 3D voxels to 1D vectors fol-
lowed by a single nc-neuron FC layer (nc = number of
the dataset classes) combined with a Softmax. Not only
does this model benefits from better accuracy rates, it
also witnesses an important decrease on the computa-
tional cost level. Going down from more than 60,000
parameters trained in [42] to 28,749 parameters, the
proposed 4-layer network ensures both a better learn-
ing of the data content and a lower training cost pro-
cess. Here again, the results prove that the choice of the
spatial neighborhood is a 5× 5 for the Pavia University
and a 3 × 3 for the Pavia Center. The reliance on the
3D Conv layers for combined spatio-spectral classifica-
tion of the data is therefore a basic key for better results
when compared to [42] that only resort to the spectral
signature of each pixel in the classification process.

• 6-layer network: c
Establishing a 6-layer network was inspired by the im-
portant decrease in the number of parameters in the 3 to
4-layer transition case. The introduction of a sequence
of Conv and Pooling duets in the network gather both
the benefits of going deeper and involving fewer pa-
rameters. In other words, more Conv layers ensure
higher semantic level representation of the data while
the Pooling ones guarantee a dimension reduction of
the representation. This way, the dimension of the vec-
tors at the entry of the FC layer is remarkably reduced
thus significantly reducing the number of parameters.
As shown in Table 3, an important decrease in the num-
ber of parameters (from a tenth of the previous 60,000)
is witnessed, along with an increase in the accuracy
rate. These tests also prove that the choice of the spatial
neighborhood is highly dependent on the data content.
The same model can outperform the [5] results in the
case of the Pavia Center dataset with a 3× 3 neighbor-
hood while it does not reach the state of art approach

results in the case of Pavia University even when using
5× 5 neighborhood.

• Squeezing the net, 8 or 10-layer networks: d or e.
According to the results presented in the previous three
tables, the main key behind a successfully performing
deep network is to create a balance between a deep yet
light architecture. When examining the models, it can
be seen that the number of layers in the network (the
depth) and the number of neurons per layer (the width)
manipulate the most important share of the network
performance. Therefore, in Tables 6 and 7 the tests
were executed for different combinations of a number
of neurons per layer, a number of 3D layers per ar-
chitecture and the overall number of layers in the net-
work. Although a wider range of values was tested for
each parameter presented below, only the most effec-
tive ones are mentioned at this stage.

Table 6: Squeezing the net on Pavia University: (c), (d)
and (e) using 5% of the data for training.

Conv
Nb

3D
Conv
Nb

Pooling
neuron Nb

paramet-
er Nb

Accuracy Training
time
(s)

6 2 [2,2,35] 11123 94.6% 9000
6 2 [2,2,8] 4680 86% 8700
6 2 [2,2,4] 3931 92.3% 8514
8 2 [2,2,35,35] 27470 96,3% 10000
8 3 [2,2,35,35] 20993 96.8% 10834
8 3 [2,2,2,35] 16340 94.1% 9324
8 3 [2,2,2,4] 6862 97.2% 7605
10 3 [2,2,35,35] 40740 94.3% 11474

Table 7: Squeezing the net on Pavia Center: (c), (d)
and (e) using 5% of the data for training.

Conv
Nb

3D
Conv
Nb

Pooling neu-
ron Nb

parameter
Nb

Accuracy

6 2 [2,2,35] 11123 96.1%
6 2 [2,2,4] 3931 92.8%
8 2 [2,2,35,35] 27470 98,3%
8 3 [2,2,2,4] 6862 98.9%

As detailed in the tables above, The decrease in the number
of neurons per pooling layer enables lighter models that main-
tain the same accuracy rate ranges. Basically, the decrease in
the width of the network provides more opportunities to cre-
ate deeper models. Therefore, the 6-layer network performs
less than the 8 and 10-layer ones. However, the 8-layer archi-
tecture seems to be the best choice especially when relying
on three 3D layers, along with a small number of neurons in
the pooling layers. Not only does it reduce the number of
parameters but it also enhances the accuracy rate.

Table 1: Accuracy level of the 3-layer CNN models (a) using 4.4% of the data for training.

network Conv
Nb

3D
Conv
Nb

1D
Conv
Nb

Spatial
neigh-
bor-
hood

Spectral
depth

FC Nb Fc
neu-
rons
Nb

Pavia
univer-
sity

Pavia
Center

paramet-
er Nb

Training
time(s)

a 3 0 3 1× 1 3 2 [50,9] 75.9% 90.4% 51669 1386
a 3 2 1 3× 3 3 2 [50,9] 79.3% 96.7% 53189 432
a 3 2 1 5× 5 3 2 [50,9] 89.2% 94.5% 56669 10257
a 3 2 1 7× 7 3 2 [50,9] 85.9% 96.2% 61949 24465
[42] 3 0 3 1× 1 3 2 [100,9] 92.5% None None None

Table 2: Accuracy level of the 4-layer CNN models (b) using 4.4% of the data for training.

network Conv
Nb

3D
Conv
Nb

1D
Conv
Nb

Spatial
neigh-
bor-
hood

Spectral
depth

FC Nb Fc
neu-
rons
Nb

Pavia
univer-
sity

Pavia
Center

paramet-
er Nb

Training
time(s)

b 4 0 4 1× 1 3 1 [9] 75.0% 93.4% 17759 1203
b 4 2 2 3× 3 3 1 [9] 84.0% 97.1% 27524 360
b 4 2 2 5× 5 3 1 [9] 93.8% 96.4% 28749 9000
[42] 3 0 3 1× 1 3 2 [100,9] 92.5% None None None

Table 3: Accuracy level of the 6-layer CNN models (c) using 5% of the data for training.

network Conv
Nb

3D
Conv
Nb

1D
Conv
Nb

Spatial
neigh-
bor-
hood

Spectral
depth

FC Nb Fc
neu-
rons
Nb

Pavia
univer-
sity

Pavia
Center

paramet-
er Nb

Training
time(s)

c 6 0 6 1× 1 3 1 [9] 86.5% 94.1% 4754 1500
c 6 2 4 3× 3 3 1 [9] 90.9% 98.5% 6074 600
c 6 2 4 5× 5 3 1 [9] 94.6% 97.08% 6074 12000
[5] - - - - - - - 98.1% 97.0% None None

Table 4: Accuracy level of the 8-layer CNN models (d) using 5% of the data for training.

network Conv
Nb

3D
Conv
Nb

1D
Conv
Nb

Spatial
neigh-
bor-
hood

Spectral
depth

FC Nb Fc
neu-
rons
Nb

Pavia
univer-
sity

Pavia
Center

paramet-
er Nb

Training
time(s)

d 8 0 8 1× 1 3 1 [9] 90.3% 94.7% 2161 940
d 8 2 6 3× 3 3 1 [9] 92.9% 98.9% 3681 286
d 8 2 6 5× 5 3 1 [9] 97.2% 98.1% 6862 7605
[5] - - - - - - - 98.1% 97.0% None None

Table 5: Accuracy level on Kennedy Space Center dataset using 5% of the data for training.

network Conv
Nb

3D
Conv
Nb

1D
Conv
Nb

Spatial
neigh-
bor-
hood

Spectral
depth

FC Nb Fc
neu-
rons
Nb

Accuracy paramet-
er Nb

Training
time(s)

b 4 2 2 3× 3 3 1 [13] 71.01% 18698 105
c 6 2 4 3× 3 3 1 [13] 77.5% 1175 98
d 8 2 6 5× 5 3 1 [13] 84.2% 2251 145

Fig. 5: Accuracy (%) VS amount of training data (%) using the 8-layer CNN model (network d).

The best derived combination in our case is an 8-layer net-
work with 3 3D blocks. The number of filters are equal to
20 for the first Conv layer and increased to 35 for the follow-
ing Conv layers. However, the numbers of neurons for each
Pooling layer are respectively equal to 2,2,2 and 4. Here, we
proceed with an input voxel of size [5,5,103]. Table 4 high-
lights the best performing architectures in the case of 8-layer
networks.

5.4. Architecture Selection

The introduction of different architectures in the previous sec-
tions enables different performance levels. At this stage, the
choice of an optimal network is made. As previously detailed,
many factors interfere with the selection process of a best per-
forming network. In fact, the progressive evolution toward a
deeper, yet lighter network, draws the guideline toward an
easier choice.
The first presented architectures (a and b), managed to es-
tablish a solid baseline for the creation of deeper 6, 8 and
10-layer Networks. Since, the c, d and e models enable high
accuracy rates, the computational cost plays then a major role
in the choice making process. As detailed in tables 1, 2, 3,
4, 5, 6 and 7, the 8 layer network enable the highest accuracy
rates for all of the 3 datasets. Besides, it ensures low compu-
tational costs with lower training parameter numbers. There-
fore, for what comes next, the 8 layered-architecture will be
used. As seen in Figure 6, the display of the output classifi-
cation map doesn’t give much information about the system’s
precision since the accuracy rates overpass the 90% in most
of the 6 and 8 layers cases of study. Therefore, the confu-
sion Matrices are drawn and presented in Figure 8 in order
to demonstrate the performance level of the networks. In this
figure, the first two datasets represents classes ranging from

0 to 8 and the KSC confusion matrix represents classes rang-
ing from 0 to 12 according to their enumeration order used
in section 5.1. Although these matrices show highly accu-
rate classification rates, they also demonstrate the confusions
made by the trained network as shown in Figure 8. In the
case of the Pavia University dataset, the Bitumen pixels are
mixed up with the Shadow pixels with almost 1/10 mistaken
pixels among all the classified ones. The lowest accuracy rate
(almost 60%) is witnessed in the case of the Kennedy space
Center Image, where the Cabbage palm/oak hammock class is
confused with 4 other classes: The mistaken pixels are clas-
sified as 20% oak/broadleaf hammock, 10% Cabbage palm
hammock and less than 10% divided between slash pine and
water. The system behavior toward such classes is basically
driven by the high spectral and spatial similarity between the
two class characteristics.

Table 8: Processing time required to reach 95% of the
final accuracy on the Pavia University dataset.

Architecture Iterat-
ions
Nb

Processing
Time (s)

Accuracy
(early)

final
Accu-
racy
(100%)

8 layers 1× 1 23733 313 85.8% 90.3%
8 layers 3× 3 23500 95 88.3% 92.9%
8 layers 5× 5 23233 2535 92.4% 97.2%
6 layers 5× 5 23233 40000 89.8% 94.6%
4 layers 5× 5 23233 3000 89.1% 93.8%

In order to get better insights on the choice of a given archi-
tecture, taking a look at the accuracy and loss values along the
training phase is critical. Actually, these indicators can vali-
date the choice of hyper-parameters, such as the learning rate,
but it also shows the training stability and how an architecture

Fig. 6: The Pavia University dataset: (a) Image, (b) Ground Truth, (c) Classification output 6-layer network.

Fig. 7: Processing time required to reach 95% of the final ac-
curacy on the Pavia U dataset using the 8-layer 3×3 network.

reaches a stable performance level. Plotting those curves for
several architectures can however be confusing, added to the
fact that they are not perfectly reproducible due to random
weights initialization. Then, for readability, we report the
monitored values obtained at a specific iteration close to the
maximum accuracy value but before the steady state. It some-
how represents a form of early stopping in the training process
where system performances are estimated. More specifically,
we select the iteration index that reports 95% of the final ac-
curacy value. Note that averaging those values along multi-
ple experiments enhances related values confidence. Figure 7
shows an example of such monitoring report on a single ex-
periment. One can also observe a step at iteration 22000 for
both the loss and accuracy curves. This actually corresponds
to the iteration where a decrease in the learning rate occurs.
This change suddenly improves accuracy since a good local
minimum has been found previously and then convergence to

a lower loss value is made possible. In the proposed networks
setup, this step happens few iterations before the proposed
architectures report 95% of their final accuracy value. Fi-
nally table 8 makes the synthesis of the obtained results on the
most performing architectures. As a conclusion, the 8 layer-
architectures enable high accuracy rates within a reasonable
period of time in the paper context. One can also notice the
impressive convergence speed of the 8 layer architecture rely-
ing on 3 × 3 pixels neighborhood. Such architecture enables
access to high accuracy values at very low cost and is then the
best compromise to obtain rapidly a good classifier in envi-
ronment with low energy and processing time limitations.

5.5. Computational cost and training data requirements

Obviously, the developed deep architecture over-performs the
existing methods in the case of the Pavia Center dataset. Un-
like different approaches such as [59], [60] and [61], the 3D
proposed architectures enable from scratch-training with no
prior data preprocessing. Not only does it simplify the pro-
cessing task, the 3D architecture enables the same perfor-
mance levels as the previously mentioned approaches. Be-
sides, the time taken is a main factor when evaluating DL
architectures. Here, the classification process takes almost 3
hours at the most with a single Intel i7-6600U laptop CPU
(no GPU used) in the case of heavy architectures along with
relatively large dataset images. However, it only takes less
than 2 minutes in the case of light networks with few train-
ing samples. Another key factor that normally influences the
performances of these classification processes is the amount
of data involved for the training phase. For example, when
using only 5% of the image pixels for training, the 3D archi-
tecture can’t overpass the 98% accuracy rate in the case of
the Pavia University dataset (even when using the most per-
forming architecture). However, when dedicating 10% of the

Fig. 8: Confusion Matrix using the 8 layered-network (a) Pavia U (b) Pavia C (c) KSC.

data for training as experimented in [59], the accuracy rates
in that case are more than 99.4%. As detailed in 5, the 3D ar-
chitecture is capable of reaching a 99% accuracy rate while
only using 9% of the image pixel to train the network. The
state of the art method detailed in [38] also deploys 9% of the
dataset for training. However, this approach under-performs
the proposed 3D architecture with a 98% accuracy level for
about 20,000 trained parameters against our 99% accuracy
level for less than 7,000 trained parameters.

5.6. Model transferability

The previous sections demonstrate the possibilities of estab-
lishing a new light Deep Neural Network that takes into ac-
count both the spectral and the spatial raw data. It has been
proven so far that this architecture performs well in the case
of hyper-spectral data. However, regarding the lack of richly
annotated hyper-spectral images, this paper and more gener-
ally state of the art methods only examine and review training
and testing in the same context. First, the training is executed
using a subset of a single image that is specific to a given
context. Then, testing and inference is based on the remain-
ing pixels of the same image, i.e we generalize on the same
context. However, many questions can arise from this strat-
egy, since the deep learning models are highly exposed to the
possibility of over-fitting, so, did the model over-fit on each
specific data context ? Can the learned features be transfered
from one dataset to the other ?
Therefore, in what follows, the learned feature transferability
between different contexts is proposed, trained using one spe-
cific image and evaluated based on a second image. Since the
target classes are the same, transfer learning between Pavia
University and Pavia Center is proposed. However, the num-
ber of spectral bands differs (103 bands vs 102 bands) so that
the output dimensions of the convolution layers will differ
from one dataset to the other. In this context, it is necessary to
resort to architecture fine tuning: given a neural network ar-

Table 9: Accuracy level for Fine-tuning using 5% of the data
for training.

Train data Test data Network spatial
size

Accuracy

Pavia U Pavia C d 3× 3 98.4%
Pavia C Pavia U d 3× 3 90.4%

chitecture trained on a given dataset, all its architecture com-
ponents (except the last fully connected layers) are kept and
their weights are made constant. Finally, the fully connected
layers are replaced with new ones whose number of connec-
tions (weights) are compatible with the new dataset and the
shape of the convolution layer output. A rapid training of the
new network component is performed on the new dataset on
its own training set and performances are evaluated on the test
set. As detailed in Table 9, the use of a pre-trained 8-layer
model in the case of the Pavia University and Pavia Center
datasets provide an accurate pixel wise classification of the
data. In fact, the Deep Neural Networks are able to maintain
nearly the same precision level when fine-tuned and trained
from scratch. (98.4% VS 98.9% and 90.4% VS 92.9%). Ba-
sically, the pre-trained architectures proposed in this paper
demonstrate a strong ability to generalize to other context im-
ages. As in the case of the Pavia University and Pavia Center
datasets, the re-use of pre-trained networks saves the huge ef-
fort required to re-create a specific architecture to be trained
from scratch from each and every use case.

6. CONCLUSION

The processing of hyperspectral data in general is a very del-
icate procedure that demands the effective use of both spatial
and spectral components. The benefit of the 3D architecture
introduced in this paper is to not only accurately classify the

hyperspectral data but also to establish deep comprehension
of the images at low cost. One of the most valuable con-
sequence is the ability to efficiently optimize deep networks
on small sized annotated datasets which then also reduce the
cost of the data. The main concern now is to investigate ways
to innovate and enhance the created models in order to pro-
cess with larger, heavier datasets. As a remedy for such a
challenge, both Residual and Dense Networks enable the fu-
sion of different representation levels. Therefore, they would
seem like an appealing solution to enhance the existing CNN
architectures. Furthermore, Hyperspectral data calibration is
still an open issue that currently confines its use to limited
areas. An interesting path would therefore to create architec-
tures that are able to cope with this issue.

7. REFERENCES

[1] T. Kavzoglu and P. M. Mather, “The use of backpropa-
gating artificial neural networks in land cover classifica-
tion,” International journal of remote sensing, vol. 24,
no. 23, pp. 4907–4938, 2003.

[2] D. K. McIver and M. A. Friedl, “Using prior probabil-
ities in decision-tree classification of remotely sensed
data,” Remote sensing of Environment, vol. 81, no. 2,
pp. 253–261, 2002.

[3] M. Fauvel, J. Chanussot, and J. A. Benediktsson, “Eval-
uation of kernels for multiclass classification of hyper-
spectral remote sensing data,” in Acoustics, Speech and
Signal Processing, 2006. ICASSP 2006 Proceedings.
2006 IEEE International Conference on, vol. 2. IEEE,
2006, pp. II–II.

[4] A. Ben Hamida, A. Benoit, P. Lambert, and
C. Ben Amar, “Deep learning approach for remote sens-
ing image analysis,” in Big Data from Space (BiDS’16).
Publications Office of the European Union, 2016, p.
133.

[5] S. Lefevre, L. Chapel, and F. Merciol, “Hyperspectral
image classification from multiscale description with
constrained connectivity and metric learning,” in IEEE
Workshop on Hyperspectral Image and Signal Process-
ing: Evolution in Remote Sensing (WHISPERS), 2014.

[6] G. Camps-Valls, D. Tuia, L. Bruzzone, and J. A.
Benediktsson, “Advances in hyperspectral image classi-
fication: Earth monitoring with statistical learning meth-
ods,” IEEE Signal Processing Magazine, vol. 31, no. 1,
pp. 45–54, 2014.

[7] F. Rosenblatt, “The perceptron: A probabilistic model
for information storage and organization in the brain,”
Psychological review, vol. 65, no. 6, p. 386, 1958.

[8] G. E. Hinton and R. R. Salakhutdinov, “Reducing the
dimensionality of data with neural networks,” science,
vol. 313, no. 5786, pp. 504–507, 2006.

[9] R. Salakhutdinov and G. Hinton, “Deep boltzmann ma-
chines,” in Artificial Intelligence and Statistics, 2009,
pp. 448–455.

[10] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A
learning algorithm for boltzmann machines,” Cognitive
science, vol. 9, no. 1, pp. 147–169, 1985.

[11] A. Fischer and C. Igel, “An introduction to restricted
boltzmann machines,” Progress in Pattern Recognition,
Image Analysis, Computer Vision, and Applications, pp.
14–36, 2012.

[12] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learn-
ing algorithm for deep belief nets,” Neural computation,
vol. 18, no. 7, pp. 1527–1554, 2006.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recog-
nition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[15] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle,
“Greedy layer-wise training of deep networks,” in Ad-
vances in neural information processing systems, 2007,
pp. 153–160.

[16] L. Breiman, “Stacked regressions,” Machine learning,
vol. 24, no. 1, pp. 49–64, 1996.

[17] L. Deng, D. Yu et al., “Deep learning: methods and
applications,” Foundations and Trends R© in Signal Pro-
cessing, vol. 7, no. 3–4, pp. 197–387, 2014.

[18] D. C. Cireşan, U. Meier, L. M. Gambardella, and
J. Schmidhuber, “Deep, big, simple neural nets for hand-
written digit recognition,” Neural computation, vol. 22,
no. 12, pp. 3207–3220, 2010.

[19] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-
column deep neural networks for image classification,”
in Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on. IEEE, 2012, pp. 3642–
3649.

[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” in Advances in neural in-
formation processing systems, 2014, pp. 2672–2680.

[21] I. Ororbia, G. Alexander, C. L. Giles, and D. Kifer,
“Unifying adversarial training algorithms with flexi-
ble deep data gradient regularization,” arXiv preprint
arXiv:1601.07213, 2016.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, 2016, pp. 770–778.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
genet classification with deep convolutional neural net-
works,” in Advances in neural information processing
systems, 2012, pp. 1097–1105.

[24] M. D. Zeiler and R. Fergus, “Visualizing and under-
standing convolutional networks,” in European confer-
ence on computer vision. Springer, 2014, pp. 818–833.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich, “Going deeper with convolutions,” in Proceed-
ings of the IEEE conference on computer vision and pat-
tern recognition, 2015, pp. 1–9.

[26] M. M. Botvinick and D. C. Plaut, “Short-term memory
for serial order: a recurrent neural network model,” Psy-
chological review, vol. 113, no. 2, p. 201, 2006.

[27] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show
and tell: A neural image caption generator,” in Proceed-
ings of the IEEE conference on computer vision and pat-
tern recognition, 2015, pp. 3156–3164.

[28] M. Fayyaz, M. H. Saffar, M. Sabokrou, M. Fathy,
R. Klette, and F. Huang, “Stfcn: Spatio-temporal
fcn for semantic video segmentation,” arXiv preprint
arXiv:1608.05971, 2016.

[29] J. Long, E. Shelhamer, and T. Darrell, “Fully convolu-
tional networks for semantic segmentation,” in Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 3431–3440.

[30] L. Zhang, L. Zhang, and B. Du, “Deep learning for re-
mote sensing data: A technical tutorial on the state of
the art,” IEEE Geoscience and Remote Sensing Maga-
zine, vol. 4, no. 2, pp. 22–40, 2016.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
genet classification with deep convolutional neural net-
works,” in Advances in neural information processing
systems, 2012, pp. 1097–1105.

[32] J. Zabalza, J. Ren, J. Zheng, H. Zhao, C. Qing, Z. Yang,
P. Du, and S. Marshall, “Novel segmented stacked au-
toencoder for effective dimensionality reduction and
feature extraction in hyperspectral imaging,” Neurocom-
puting, vol. 185, pp. 1–10, 2016.

[33] K. Karalasa, G. Tsagkatakisb, M. Zervakisa, and
P. Tsakalidesa, “Deep learning for multi-label land
cover classification,” in SPIE Remote Sensing. In-
ternational Society for Optics and Photonics, 2015, pp.
96 430Q–96 430Q.

[34] M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanus-
sot, and J. C. Tilton, “Advances in spectral-spatial clas-
sification of hyperspectral images,” Proceedings of the
IEEE, vol. 101, no. 3, pp. 652–675, 2013.

[35] K. Huang, S. Li, X. Kang, and L. Fang, “Spectral–
spatial hyperspectral image classification based on knn,”
Sensing and Imaging, vol. 17, no. 1, p. 1, 2016.

[36] W. Zhao and S. Du, “Learning multiscale and deep rep-
resentations for classifying remotely sensed imagery,”
ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 113, pp. 155–165, 2016.

[37] F. Zhang, B. Du, L. Zhang, and L. Zhang, “Hierarchical
feature learning with dropout k-means for hyperspec-
tral image classification,” Neurocomputing, vol. 187, pp.
75–82, 2016.

[38] X. Ma, J. Geng, and H. Wang, “Hyperspectral image
classification via contextual deep learning,” EURASIP
Journal on Image and Video Processing, vol. 2015,
no. 1, p. 20, 2015.

[39] A. Romero, C. Gatta, and G. Camps-Valls, “Unsuper-
vised deep feature extraction for remote sensing image
classification,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 54, no. 3, pp. 1349–1362, 2016.

[40] K. Makantasis, K. Karantzalos, A. Doulamis, and
N. Doulamis, “Deep supervised learning for hyperspec-
tral data classification through convolutional neural net-
works,” in Geoscience and Remote Sensing Symposium
(IGARSS), 2015 IEEE International. IEEE, 2015, pp.
4959–4962.

[41] V. Slavkovikj, S. Verstockt, W. De Neve, S. Van Hoecke,
and R. Van de Walle, “Hyperspectral image classifica-
tion with convolutional neural networks,” in Proceed-
ings of the 23rd ACM international conference on Mul-
timedia. ACM, 2015, pp. 1159–1162.

[42] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, “Deep
convolutional neural networks for hyperspectral image
classification,” Journal of Sensors, vol. 2015, 2015.

[43] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der
Maaten, “Densely connected convolutional networks,”
arXiv preprint arXiv:1608.06993, 2016.

[44] Y. Bengio, Artificial neural networks and their applica-
tion to sequence recognition. McGill University, 1991.

[45] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A
neural probabilistic language model,” Journal of ma-
chine learning research, vol. 3, no. Feb, pp. 1137–1155,
2003.

[46] S. Zagoruyko and N. Komodakis, “Wide residual net-
works,” arXiv preprint arXiv:1605.07146, 2016.

[47] S. Han, H. Mao, and W. J. Dally, “Deep compres-
sion: Compressing deep neural networks with prun-
ing, trained quantization and huffman coding,” arXiv
preprint arXiv:1510.00149, 2015.

[48] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A.
Horowitz, and W. J. Dally, “Eie: efficient inference en-
gine on compressed deep neural network,” in Proceed-
ings of the 43rd International Symposium on Computer
Architecture. IEEE Press, 2016, pp. 243–254.

[49] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli,
R. Venkatesan, B. Khailany, J. Emer, S. W. Keckler,
and W. J. Dally, “Scnn: An accelerator for compressed-
sparse convolutional neural networks,” in Proceedings
of the 44th Annual International Symposium on Com-
puter Architecture. ACM, 2017, pp. 27–40.

[50] Z. Zhong, J. Li, L. Ma, H. Jiang, and H. Zhao, “Deep
residual networks for hyperspectral image classifica-
tion.” Institute of Electrical and Electronics Engineers,
2017.

[51] J. T. Springenberg, A. Dosovitskiy, T. Brox, and
M. Riedmiller, “Striving for simplicity: The all convo-
lutional net,” arXiv preprint arXiv:1412.6806, 2014.

[52] L. Bottou, “Large-scale machine learning with stochas-
tic gradient descent,” in Proceedings of COMP-
STAT’2010. Springer, 2010, pp. 177–186.

[53] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[54] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Dropout: a simple way to pre-
vent neural networks from overfitting,” Journal of ma-
chine learning research, vol. 15, no. 1, pp. 1929–1958,
2014.

[55] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast
and accurate deep network learning by exponential
linear units (elus),” arXiv preprint arXiv:1511.07289,
2015.

[56] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification,” in Proceedings of the IEEE in-
ternational conference on computer vision, 2015, pp.
1026–1034.

[57] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf,
W. J. Dally, and K. Keutzer, “Squeezenet: Alexnet-
level accuracy with 50x fewer parameters and < 0.5 mb
model size,” arXiv preprint arXiv:1602.07360, 2016.

[58] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell, “Caffe:
Convolutional architecture for fast feature embedding,”
in Proceedings of the 22nd ACM international confer-
ence on Multimedia. ACM, 2014, pp. 675–678.

[59] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi,
“Deep feature extraction and classification of hyper-
spectral images based on convolutional neural net-
works,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 54, no. 10, pp. 6232–6251, 2016.

[60] Y. Yuan, J. Lin, and Q. Wang, “Dual-clustering-based
hyperspectral band selection by contextual analysis,”
IEEE Transactions on Geoscience and Remote Sensing,
vol. 54, no. 3, pp. 1431–1445, 2016.

[61] Q. Wang, J. Lin, and Y. Yuan, “Salient band selection
for hyperspectral image classification via manifold rank-
ing,” IEEE transactions on neural networks and learn-
ing systems, vol. 27, no. 6, pp. 1279–1289, 2016.

