
HAL Id: hal-01814380
https://hal.science/hal-01814380

Submitted on 13 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Babix: an Educational Multitask Kernel for Arduino
Due

François Pessaux

To cite this version:
François Pessaux. Babix: an Educational Multitask Kernel for Arduino Due. [Technical Report] Work
not affiliated to any institution. 2016. �hal-01814380�

https://hal.science/hal-01814380
https://hal.archives-ouvertes.fr

Babix: an Educational Multitask Kernel for Arduino Due

François Pessaux
firstname lastname@yahoo.fr / firstname.lastname@ensta.fr

December 12, 2016

I want to thank Maxime Ayrault who worked on the second version of Babix during his
internship and fruitfully contributed to the implementation of mutex and semaphores. He also
debugged few insidious bugs I didn’t see or didn’t have time to kill.

1 What is Babix?

Babix is a little preemptive multitask kernel for Arduino Due I wrote to illustrate the basic
principles of task-switching in an operating system. Its purpose is first of all educational, hence
Babix remains simple enough to be taught. Babix is written in C as far as possible, with a
little bit of assembly inlines (since it is impossible to escape from them when writing low-level
operating system stuff ,). Processes can be dynamically created simply providing the address
of their entry function.

Therefore, Babix is not a complete, industrial or state-of-the-art operating system, not
real-time and not fully optimized.

It should normally not turn your Arduino Due into a hot and smoking device, nor make it
explode. I have tortured several boards a long time without killing any of them. But, just in
case, if yours gets transformed into a “I-don’t-know-what”, please do not send lawyers at my
door ,.

Downloads

Babix sources are freely available at http://francois.pessaux.perso.sfr.fr/arduino.html#
Babix. Two versions can be downloaded. The “lite” version is a bit simpler, without processes
termination. The “normal” version adds processes termination. The “lite” version is intended
not to change o much, in order to keep it simple to understand. The “normal” version may be
subject to evolutions and extensions.

2 Aim of this Document and Lecture Guide

This document explains the basics of a preemptive multitask kernel, from the concepts up to
the implementation. Prerequisites are very poor. The reader is expected to fluently program in
C (especially master pointers), to roughly know the structure of a µ-processor (registers, stack,
state register) and to have at least heard about assembly code. All the rest will be described
here.

The section 3 introduces the concept of multitask and the high-level view of what to do to run
“simultaneously” several “programs”. A presentation of the Arduino Due board, and especially
its µ-controller is addressed in section 4. The section 5 is the step-by-step implementation of the

1

simplest kernel. In section 6 we refine the implementation to allow “programs” to end (not any
more being infinite loops). Synchronization primitives (mutex and semaphores) are addressed
in section 7.

3 The Basic Concepts

First of all, let’s get rid of this bad expression “a running program”. A program is a static
thing: either a source code (written in any language, but OCaml is among the best ones, just
before C ,) or its compiled form, i.e. an inert executable binary file. When a binary executable
is loaded in memory (of any kind, RAM, ROM, EPROM. . .) to be ran, its “living” instance,
running on the processor (CPU), is rather called a process (or sometimes task with some subtle
differences for specialists).

3.1 Multitask

By multitask, one mostly (and intuitively) means “several processes running at the same time”.
However, one CPU can only execute the code (instructions) of one process at the same moment.
The magic is that the operating system will make so that the CPU will execute a little bit of
instructions of each processes in turn. Hence, globally, the user will feel that all his processes
are running at the same time. But, at each instant, only one process is really running.

There are several ways to run several processes:

• Cooperative multitask: In such a model, a process is responsible for leaving the CPU and
let it available for another process. In other words, processes must be friendly together.
A “nasty” process may decide to never give the hand to the others. When a process is
about giving the hand, it is responsible for preparing its leaving.

• Preemptive multitask: The operating system decides itself to interrupt the currently run-
ning process and gives the hand to another one. Processes are not “masters” and never
know when then will be interrupted.

Since a process never knows when it will be interrupted it cannot prepare itself for leaving.
A fortiori, it must even not be conscious that it can / will be interrupted. All the interruption,
removal from the CPU and return on the CPU must be fully transparent for a process.

Which process is chosen at each turn and who long the CPU will run its instructions before
switching to another process is a matter of scheduling policy. The literature is gorgeous on this
complex topic and we will adopt a very simple policy.

Conclusion: Babix is a preemptive multitask kernel and we only address this kind of
multitask in this document.

3.2 Time Sharing

We must ensure that each “a certain duration” the operating system stops the current process
and runs another one, until the next time. The “certain duration” is called a quantum of time.
It is the amount of time attributed to a process to run before it gets asleep.

While a process is running, the CPU is occupied on it: there is no way to magically have the
operating system “running in background” to monitor the elapsed time and to stop the process
once its quantum is elapsed. We need another mean to “interrupt” the CPU once the quantum
of time is elapsed: an interrupt, and more specifically a timer interrupt.

2

An interrupt is a hard-wired mechanism of the CPU allowing it to stop its execution when
an event occurs and jump to execute a routine “at fixed address” depending on the kind of
interrupt. Such a routine is called an interrupt handler. Once the handling of the interrupt is
finished, the CPU returns to the code it came from. Available interrupts depend on the kind
of CPU as well as what is saved by this latter before entering the interrupt handler (to be able
to return to the code to execute where it was interrupted).

A timer is a kind of hardware clock “ringing” once the time it was configured for is elapsed.
“Ringing” means . . . raising a dedicated interrupt.

Conclusion: with the duo timer / interrupt, we have a way to stop the CPU from executing
a process every quanta of time.

3.3 Scheduling Policy

Once the operating system has taken the hand it must asleep the process that was running but
also choose a new process to make it running. The simplest policy is “each process” in turn,
in equal portions of time and in circular order: round-robin policy. Think to a ring where each
process passes in front of the CPU to run:

Process 3CPU Process 1

Process 2

Process 0

Figure 1: Simple Round-Robin Scheduling Policy

The standard data-structure used to implement such a mechanism is a queue, i.e. a FIFO
(First In First Out) data-structure. A queue has two operations: enqueue to insert an element
at the end of the queue, take to extract the first element of the queue. Some implementations
can also add a function to test whether the queue is empty.

Conclusion: Babix uses a simple round-robin scheduling policy implemented by a simple
queue.

3.4 Context Switch

When a process is interrupted its “state” must be saved to be able to restore it when it will
get the CPU the next time. In the same spirit, the process chosen to be ran must retrieve the
state in which it was the last time it was interrupted. These two actions are called the context
switch.

The context is the “state” of a process at the time it is interrupted and is simply made
of all the CPU’s registers values. In a “real” operating system, the context may also include
some extra information like coprocessors registers, memory management unit (MMU) tables,
etc. Babix does not implement memory protection nor memory virtualization, hence only the
CPU registers will be saved.

• Question 1: “what are the registers to save?”
All the general purpose registers (used to perform arithmetic, logical, moves etc. opera-
tions), the stack pointer (often called SP) storing the current address of the stack top, the
status register (often called SR) storing the condition bits of the last executed instruction,
the program counter (often called PC) storing the address of the next instruction to exe-
cute. Saving the PC may raise questions in the reader’s mind since ... once arrived in

3

the context switch routine, the PC has already changed compared to when the CPU was
executing the process’s code. We will see further that the hardware helps us.

• Question 2: “where to save these registers?”
There are at least two solutions. First one, save in a memory area owned by the kernel
and specific for each process. This means that when the kernel creates a new process, it
must allocate some memory to store its context. Second one, directly on the stack of the
process. This is the retained solution for Babix since it is very simple. However, the nasty
point is that if the process heavily uses the stack, if at the context switch moment there
is not enough stack remaining to push the context, the process will simply crash. If the
kernel does not check the available space on the stack it will also crash. Babix does not
perform this check, again it aims at being simple to understand.

The outgoing process’s context must be saved and the incoming process’s context must be
restored. Restoration is fully symmetric. Registers are written with the values from the saved
context. In particular, to give the hand to the new process code, the PC is written with the
(saved) address of the next instruction to execute when this process was interrupted.

Conclusion: The context switch consists in saving all the registers of the CPU at the
moment where the outgoing process is interrupted, then choose a new process to run and finally
restore the registers of the CPU with the saved context of the new process.

4 The Arduino Due and its µ-controller

Now that basics are set, we need to address a little the internals of the Arduino Due and especially
its µ-controller (MCU) since to properly context switch, handle interrupts, etc. the kernel has to
be aware of the structure and processes of the MCU (what are the registers, what does happen
when an interrupt occurs, how stack is organized, etc.).

This presentation is very light and cannot replace the official datasheet of the MCU [2] and
the one of the board [1].

The core of the Arduino Due is a µ-controller SAM3x8E (SAM3X ARM Cortex-M3) at 84 MHz
from Atmel Corporation. This µ-controller hosts a ARM 32 bits architecture and several in-
put/output interfaces (digital, analogical, CAN, USB, etc.).

4.1 Registers

The registers of the SAM3x8E can mostly be summarized as (c.f. SAM3x8E datasheet section
12.4.3 page 61):

• 13 general purpose registers (R0 - R12).

• A stack pointer register (R13 or SP).

• A link register (R14 or LR) used to store the return address of a subroutine call.

• A program counter register (R15 or PC) where the MCU stores the address of the next
instruction to execute.

• A status register PSR where the condition bits of the last executed instruction are and
some other stuff about the state of the MCU.

• 4 other registers used to control the MCU and its exceptions (we won’t care of them for
sake of simplicity).

Note that the SP is a banked register, i.e. depending on the MCU state (“user” or “super-
visor”, i.e. “unprivileged” or “God mode”) this register automatically “points” to two different

4

registers. This allows to have separate stacks, one for the “normal” processes and one for the
kernel (operating system), which enhances the security of the kernel. Babix does simple and
does not have separate stacks.

4.2 Stack

The SAM3x8E implements a full descending stack. This means that the stack pointer indicates
the last stacked item on the stack memory (SAM3x8E datasheet section 12.4.2 page 60). This
is not like the usual implementation of stacks in software where the stack pointer indicates the
next free “cell” on the stack!

Stack on
In

cr
ea

si
n

g
 a

d
d
re

ss
es

25

’a’

0x34F00

25

’a’

0x34F00

SP

SP

Usual software

implementation

of a stack

the SAM3xE

Figure 2: Usual Software Versus SAM3x8E Stacks

The stacks grows towards the decreasing addresses. In other words, when pushing a data,
the stack pointer decreases. When popping a data, the stack pointer increases. Hence, for an
empty stack, the stack pointer designates the ended of the memory allocated for the stack.

4.3 Exceptions / Interrupts

In the remaining of this document we may also use the term interrupt for exception. There is
no difference on this MCU and the SAM3X8E datasheets prefers the term exception.

When an exception occurs, a complex mechanism is triggered. We address here a slightly
simplified presentation, leaving some dark details untold. These omitted details do not have
a primordial importance for our simple kernel. The complete description of the exception
mechanism can be found in the SAM3x8E datasheet section 12.6.

4.4 Exception Entry

When an exception occurs, the MCU automatically pushes on the stack eight data words of
32 bits each (c.f. SAM3x8E datasheet section 16.6.7.5 page 85). This stack frame contains the
values stored in the registers R0 - R3, R12, LR, PC and PSR. The order in which they are pushed,
hence their layout in the stack will be addressed later in 5.2.2.

The fact that the PC is automatically stacked is the important point for having an exception
mechanism working. More precisely, at the stacking moment, the PC already indicates the
address of the next instruction (of the interrupter process) to execute. If this save was not done
by the hardware, it would be impossible to save the PC without executing a “move” instruction
. . . hence automatically modifying the PC before it is saved.

In parallel to the stacking mechanism, the MCU performs a lookup in the exception vector
table to get the address of the code (handler) to execute. The vector table can be seen as an
indirection array, indexed by the number of the occurred interrupt and containing the address
of the related handler. The PC gets loaded with the address of the corresponding handler.

5

PC <−Addr handler IT1

Code handler IT0

...

Code handler IT1

...

Addr handler IT0

Addr handler IT1

Addr handler IT2

...

Fixed address

Code handler IT2

...

IT #1

Figure 3: Exception Vector Table Mechanism

Also in parallel, the MCU writes an EXC RETURN value to LR. Hopefully, LR is also saved
automatically by the hardware! This value is a bitmask to later load in the PC to specify the
end of the exception handler, hence the exception return.

4.5 Exception Return

When a handler has finished its processing, it must load the EXC RETURN value into the PC. The
EXC RETURN is the one that was automatically stored in LR at exception entry (c.f. SAM3x8E

datasheet section 16.6.7.6 page 86). This value is a kind of “marker” that the MCU recognizes
as an illegal instruction address but as an “end of exception handler” tag. The MCU then
automatically restores, from the stack, the registers that were automatically saved at exception
entry. Once done, the PC recovered the address of the next instruction of the process to run,
then the process continues without having even noticed that it has been interrupted.

5 Going to the Practice

It is now time to enter in the gory details, where these details have their importance. Imple-
menting a multitask kernel on another MCU will inevitably introduce small but subtle and
important differences due to the exception management, the MCU’s instructions etc. However,
a very small part of the kernel is impacted . . . mostly part written in assembly code. Indeed, in
C there is no way to access the registers of a processor. The compiler know them and use them
for the code it generates. But never the user has the hand on them . . . unless he introduces
assembly inlines in his C code.

Attention: Source files must be C and not C++. In effect, C++ introduces some nasty
mechanisms (overloading mostly) preventing some mechanisms we will use later. If you however
want to use C++ features (like the most probable one: Serial.print () for debug), you will
have to enclose specific pure C material by:

#ifdef c p l u s p l u s
extern ”C” {
#endif
Blah blah pure C source .
#ifdef c p l u s p l u s
}
#endif

Not following this rule will make some strange things happening, like impossibility to redefine
“weak symbols”. Be aware the .ino source files of Arduino are compiled as C++ files (as well
as .cpp ones). .c files are compiled as regular C.

6

5.1 Basic Data-Structures

We first present the basic types and data-structures of the kernel. All of them are located in
kernel.h.

typedef uint32 t mcu word t ;
This represents the machine word of the MCU. Since the SAM3X8E is a 32 bits processor, so

is the machine word. This will especially be the size of the registers we will save and restore.

typedef int16 t proc id t ;
A process must be identified in a unique way. We choose to number them. Since the Arduino

Due has 96 Kb of memory, we wont create tons of processes, hence 216 identifiers will be largely
sufficient!

#define MAX PROCESSES (8)
Since the kernel will have to store the processes, we must set a maximal number of processes

living at the same time. To ease extensibility, you could have used a linked list instead. Anyway,
do not forget that each process will have a memory space for its stack. Memory is limited on
the Arduino Due. If too many processes are allowed, you will run out of memory possibly just
the the stacks segments.

struct p id queue t {
i n t 1 6 t cur nb ; /∗ Current number o f e lements . ∗/
i n t 1 6 t f i r s t ; /∗ Index o f the f i r s t e lement . ∗/
p r o c i d t p ids [MAX PROCESSES] ;

} ;

The scheduler being a round-robin one, we need a queue. This queue will store only the
processes identifiers. The implementation of the queue is very standard and does not present
any particularity. For this reason, we do not detail it.

#define STACK SIZE (1 << 9)
struct p r o c e s s t {

p r o c i d t pid ;
mcu word t ∗ t op s tack ;
mcu word t ∗ sp ;

} ;

The kernel needs to record some information about each living process. It needs to keep its
identifier, the starting address of the allocated stack in order to be able to free this memory
once the process is ended and finally, the stack pointer of the process. This last information is
crucial since it represents the address where the context of the process has been saved when it
was switched from running to asleep. In effect, since the context of a process is saved onto its
stack, one only needs to remind the process’s stack pointer to retrieve the whole context.

struct k e r n e l t {
/∗∗ Saved s tack po in t e r o f the main process . ∗/
mcu word t main task sp ;
/∗∗ Array conta in ing a l l the l i v i n g proces se s . ∗/
struct p r o c e s s t p r o c e s s e s [MAX PROCESSES] ;
/∗∗ I d e n t i f i e r o f the cu r r en t l y a c t i v e process . ∗/
p r o c i d t c u r r e n t p r o c e s s i d ;
/∗∗ FIFO for round−rob in s imple s chedu l ing . ∗/
struct p id queue t queue ;

} ;

7

Finally, the kernel is represented by a unique structure, with an array of processes, the
scheduling queue and the identifier of the currently running process.

The field main task sp seems a bit odd. It represents the stack pointer of the “main” task,
i.e. the process parent of all the other processes. Indeed when your program starts, before
creating processes, there is already one running. In fact, it is the invisible main () that the
Arduino build process inserted to wrap the setup () and loop () standard functions. If no
“new” process is created or if all the dynamically created ones are ended, your program is still
running. What does it do? It simply runs the loop () function until the board is powered off.
And when the last dynamically created process ends, the kernel must give back the hand to the
initial “process”. Since it is not really a process it has no related struct process t and a fortiori
is not in the array of processes. So we need save / restore its context in another location: in
this field.

Note that it is double-satisfactory that this initial “fake process” is not considered as the
others since it has nothing special to do and is ran only when there is no real processes. And
we don’t want to schedule (i.e. periodically give some time to) a useless piece of code doing
nothing. This kind of initial parent of any other process also exists in “other” operating systems
and is often call idle (to reflect that when it runs, there is nothing else to do: the machine is
idle).

It would also be possible to keep the “idle” process in the table of processes, simply not put
it in the queue to prevent from having it scheduled. This may have simplified a very little bit
de context switch routine. For the next version. . . ,

#define SYSTICK FREQUENCY HZ (1000)
We must finally define the quantum of time allocated to the processes, i.e. the delay between

task switching. Since we use a timer, we rather define the frequency (the inverse of the quantum)
at which an active process is switched off.

5.2 The Context Switch

We now address the context switch routine, leaving the creation of a process for later since
it can be more easily understood once the context switch is understood. The implementation
related to this section is in context.c.

5.2.1 Triggering a Context Switch

To periodically trigger the context switch we could have used one of the general purpose timers
of the Arduino Due (known as TCx with x from 0 to 3). However the SAM3X8E has a dedicated
timer for operating system stuff, leaving the other timers free for user applications. This timer
is called SysTick and can be configured to generate a SysTick interrupt periodically. We then
could have decided to perform the context switch in the handler of this interrupt. However,
the best practices and guidelines of the SAM3X8E strongly advice to use instead a dedicated
exception: PendSV. Handling an exception takes some time (depending of the length of the code
to execute). The SysTick interrupt also serves for other functions of the “standard library” of
the Arduino. Hence, it is better to keep it fast and short.

Let’s summarize. A SysTick exception will be generated each quantum of time. The handler
of SysTick will raise a PendSV exception. The handler of PendSV will perform the context switch.

It is not directly possible to attach a handler to the SysTick exception since the Arduino de-
velopment environment already installs one in the compiled programs to make some “standard”
functions of the “standard” library working properly. Instead, a smart mechanism is used: weak
symbols supported by the gcc compiler.

8

Perform taskTime Elapsed

Exception

PendSV

Exception

SysTick

SysTick

Handler

Raise PendSV

PendSV

Handler

switching

Figure 4: Context Switch Sequence

A weak symbol is a . . . symbol that can be redefined by the programmer. Such a symbol
may have a default value. If the programmer defines his own symbol (typically a function) with
the same name than a weak symbol, instead of complaining “multiply defined symbol”, the
compiler will use the user’s one instead of the default one. If a weak symbol does not have a
default value, then if the user tries to use it (typically calling a function) then the compiler will
raise an “undefined symbol” error. If the weak symbol does not have a default value but is not
used in the program, then it is simply ignored.

The handlers defined in the Arduino library for the SysTick and PendSV call each a “hook”
function which is weakly defined with a default behavior (doing nothing for the first one, and
stopping the program – i.e. looping forever – for the second one). These definitions can be
found in the Arduino standard library files cortex handlers.c and hooks.c.

void SysTick Handler (void)
{

i f (sysTickHook ()) return ;
. . .

}
void PendSV Handler (void) { pendSVHook () ; }

int sysTickHook (void) a t t r i b u t e ((weak , a l i a s (” f a l s e ”))) ;
void pendSVHook(void) a t t r i b u t e ((weak , a l i a s (” h a l t ”))) ;

Hence, we will simply redefine sysTickHook () and pendSVHook (). The first one will
simply trigger a PendSV interrupt by writing in the right MCU register. The second one will be
our context switch routine.

Note: attention to enclose these functions in an extern C” ” block as previously stated in
5, otherwise the redefinition of the symbols won’t work.

int sysTickHook ()
{

SCB−>ICSR |= SCB ICSR PENDSVSET Msk ;
return (0) ;

}

a t t r i b u t e ((naked)) void pendSVHook (void)
{

/∗ . . . Our coming code to perform the con tex t swi t ch . ∗/
}

5.2.2 What to Save / Restore

It is now time to understand what is saved by the hardware on the stack and what do we need to
save in extra. As stated in 4.4, the hardware automatically saves the registers R0 - R3, R12, LR,
PC and PSR at exception entry. And we are in a function called by a handler. So, these registers
have been saved. Moreover, our function pendSVHook () having no arguments (of type void),
we know that the stack won’t have changed since the hardware did its save.

9

The other registers must now be “manually” saved in the outgoing process’s context. This
includes the registers R4 – R11. But attention, as stated in the section 4.4, the register LR has
been loaded with an EXC RETURN value that will have to be loaded in the PC when the outgoing
process will get the hand in the future. Hence, LR must also be saved in the context.

To summarize, we have 2 kinds of context saves: the one automatically done by the hardware
at exception entry and the one the context switch routine must do in software. This lead to
two structure in kernel.h:

struct s o f t s a v e t {
mcu word t r4 ;
mcu word t r5 ;
mcu word t r6 ;
mcu word t r7 ;
mcu word t r8 ;
mcu word t r9 ;
mcu word t r10 ;
mcu word t r11 ;
mcu word t l r ;

} ;

struct hard save t {
mcu word t r0 ;
mcu word t r1 ;
mcu word t r2 ;
mcu word t r3 ;
mcu word t r12 ;
mcu word t l r ;
mcu word t pc ;
mcu word t psr ;

} ;

The tricky question is “why must the fields of these structures be layout in this order, and
not in the reverse one or even another order?”. The answer comes from two points.

• The C point: when the compiler allocates a structure on the stack, the starting address
is at the lowest address in a descending stack.

• The “push” instruction of the SAM3X8E (which is the STMDB instruction) performs “accesses
in order of increasing register numbers, with the lowest numbered register using the lowest
memory address and the highest number register using the highest memory address”
(citation from the SAM3X8E datasheet section 12.12.6.2 page 110).

The combination of these two facts leads to the given correct layout of the C structure
according to the way the MCU works. A complete context to save (and symmetrically, restore)
for a process can hence be sketched by the following figure.

5.2.3 The Switch Routine

First of all, as sketched in the previous section 5.2.1, the definition of pendSVHook () starts by
a strange annotation: attribute ((naked)). This attribute tells to the compiler “do not
generate any code saving registers or anything at the beginning of this function”. Normally,
the compiler knows in the code it generates for a function which are the registers used, hence
whose content coming from the caller will be killed. Hence, to avoid spoiling the caller’s state,
the compiler saves these registers at the entry of the function then restore them at the exit.

In our case, our function has for unique aim to exactly start by saving the registers, then
replacing their content by some other values. We do especially not want the compiler to modify
these registers in our back! Moreover, the compiler does not know the full story: there are
not only the registers used in the function to save, but all the registers. And it does not also
know that is must not restore them: we do, with some particular values the compiler does not
know about. With this attribute, we are then sure that when entering our function, no extra
instructions will be added before our own code and no extra ones will be after our own code.

The context switch routine has a very simple structure separated in three steps.

1. Save the registers of the outgoing process that were not saved by the hardware at exception
entry.

10

H
ar

d
w

ar
e

+
 S

o
ft

w
ar

e
S

av
es

 =
 C

o
m

p
le

te
 C

o
n

te
x
t

S
av

e

R6

R4

R5

R7

R8

R9

R10

R11

LR

R0

PC

PSR

LR

R12

R3

R2

R1

In
cr

ea
si

n
g

 A
d
d

re
ss

es

Stack Memory Area

...
H

ar
d
w

ar
e

S
av

e

S
o

ft
w

ar
e

S
av

e

Figure 5: Context Structure in Memory on the Stack

2. Choose new process to run (incoming process).

3. Restore the registers that were not saved by the hardware from the incoming process’s
context.

Doing any other computation before the step 1 would kill the registers, hence definitively
corrupt the system. During the step 2, we can do any computation we want without any fear
to kill the registers: they all have been saved. After the step 3, nothing can be done since the
MCU will have its registers reloaded with the correct content for the incoming and the MCU
will continue its execution by resuming the incoming process.

To access the registers we need to inline some assembly code. gcc allows to interface “easily”
C and assembly via the asm construct. This allows the assembly code to read and write C
variables and perform jumps to C labels. A complete documentation on this construct can be
found in [3]. We provide here the minimum information to understand the coming code.

An asm construct can have two general forms, depending on whether it is a “computa-
tional”instruction or a “jump” instruction:

• asm [volatile] (asm-template : out-operands : in-operands : clobbers)

• asm [volatile] goto (: in-operands : clobbers) : C-goto-labels)

volatile instructs the compiler to not remove the inlined assembly code for any reason
and forbids some optimizations. asm-template is a string containing assembly instructions in
which operands can refer to C variables listed in out-operands and in-operands (%0 is the first
of the out/in list, %1 is the second and so on). out-operands and in-operands are lists of comma
separated C expressions. clobbers is a comma separated list of registers and values modified
by the assembly instruction in addition of those listed in the out-operands.

In a asm goto, the C-goto-labels represents the list of all the C labels where the inlined
assembly code may jump.

11

It is important to understand that the compiler does not “read” the content of the inlined
assembly code! It does not know nor understand what this code does. All the semantics of the
effects done by the inlined assembly code must be reflected in the out, in and clobbers lists.
Missing one of them may cause the compiler ignore that some values or registers changed (or
not) during the instruction. This will spoil the compiler’s assumptions and it will generate
incorrect code for the surrounding C code you wrote: the interface will be broken.

For the same reason, using a “branch” assembly instruction in a regular asm instead of in
an asm goto will make so that the compiler does not “see” a jump, hence will mostly probably
generate wrong code.

Now, back to the code. . . The push and pop instructions on the SAM3X8E are aliases to STMDB

and LDMIA. We present here the skeleton of the context switch routine and we will complete
it incrementally. The prelude saves the current (outgoing) process’s context. The postlude
restores the new (incoming) process’s context and triggers the exception return.

a t t r i b u t e ((naked)) void pendSVHook (void)
{

/∗ Push the con tex t on the current process ’ s s t ack .
push i s a synonym for STMDB sp ! , r e l i s t ∗/

asm volat i le (” . s ave ou tgo in con t ex t : \n\ t ”) ;
asm volat i le (”push { r4 − r11 , l r } \n\ t ”) ;

. . . Find a new proce s s to run and get the po in t e r on i t s context . . .

/∗ Pop the con tex t o f the incoming process on i t s (the current process ’ s)
s t ack .
pop i s a synonym for LDMIA sp ! r e g l i s t ∗/

asm volat i le (” . r e s t o r e i n com ing con t ex t : \n\ t ”) ;
asm volat i le (”pop { r4 − r11 , l r } \n\ t ” : : :

” r4 ” , ” r5 ” , ” r6 ” , ” r7 ” , ” r8 ” , ” r9 ” , ” r10 ” , ” r11 ”) ;
/∗ Exi t from excep t ion by jumping at LR which must be 0xFFFFFFF9.

See SAM3x8E da tashee t 16 . 6 . 7 . 6 page 86. ∗/
asm volat i le (”bx l r \n\ t ”) ;

}

There remains three things to do: find a new process to run, then if some exists, record the
outgoing process’s context address in the kernel and finally switch to the incoming process’s
context address in order to have SP pointing at the right location before the final “pops”.

New process election Since processes are stored in a queue, this part simply relies on queue
manipulation. The outgoing process must be re-inserted in the queue (but only if it is not the
“idle” task : remember, as stated in 5.1, we do not want to schedule the initial “fake process”).
The incoming process must be extracted from the queue and its identifier is reminded as the
one of the new running process.

. . .
asm volat i le (”push { r4 − r11 , l r } \n\ t ”) ;

�
/∗ Guess the outgo ing process id . ∗/
ou tgo ing p ro c i d = ke rne l . c u r r e n t p r o c e s s i d ;
/∗ Only enqueue the outgo ing process i f i t i s not the ” I d l e ” ta sk . ∗/
i f (ou tgo ing p ro c i d != MAIN PROCESS ID)

enqueue (&ke rne l . queue , ou tgo ing p ro c i d) ;
/∗ Guess the incoming process id . ∗/
i n coming proc id = take (&ke rne l . queue) ;
/∗ Record the new running process . incoming proc id cou ld be removed and

rep laced by ke rne l . c u r r en t p r o c e s s i d in f a c t . ∗/
ke rne l . c u r r e n t p r o c e s s i d = incoming proc id ;

12

. . .
}

Saving the outgoing process’s context address If the outgoing process is the idle task
then is it not in the kernel’s table of processes. Hence the context address must be saved in
the separate location kernel.main task sp (c.f. section 5.1). Otherwise, the context address
is saved in the field sp of the process’s structure in the kernel array of processes. To do so, we
load R1 with the address where to store the context address.

Attention: we conceptually want to assign a variable which would correspond in C to
outgoing proc−>sp = ... ; or kernel .main task sp. However, this cannot be done directly in
assembly. On must load the address of the variable in a register, then write at the address
contained in this register. This is a kind of ∗ptr = ... ; in C, where ∗ptr is considered as an
output. However, when loading the address in R1, this address is an input, not an output! In
effect, the mov r1, %0 instruction does not modify itself the memory location designated by
%0.

Once the address where to store the value of SP is loaded, we must get the content of SP.
This is done using the instruction mrs which stores this value in R2.

Finally there only remains to transfer R2 at the address designated by R1. The particu-
lar clobber "memory" tells to the compiler that “the memory is modified somewhere” by this
instruction.

. . .
k e rne l . c u r r e n t p r o c e s s i d = incoming proc id ;

$\ red {\RHD}$
/∗ Save the outgo ing process ’ SP.

I f the process i s the main process , then save i t s SP in the ke rne l
s t ruc ture , o therwi se in the process ’ s s t r u c t u r e .
r1 = outgo ing s tack po in t e r . ∗/

i f (ou tgo ing p ro c i d != MAIN PROCESS ID) {
outgo ing proc = &kerne l . p r o c e s s e s [ou tgo ing p ro c i d] ;
asm volat i le (”mov r1 , %0 \n\ t ” : : ” r ” (&outgo ing proc−>sp) : ” r1 ”) ;

}
else asm volat i le (”mov r1 , %0 \n\ t ” : : ” r ” (&ke rne l . main task sp) : ” r1 ”) ;
/∗ Rea l l y save outgo ing SP. ∗/
asm volat i le (”mrs r2 , msp \n\ t ” : : : ” r2 ”) ;
asm volat i le (” s t r r2 , [r1] \n\ t ” : : : ”memory”) ;
. . .

}

Restoring the incoming process context’s address The outgoing process’s context ad-
dress being saved, we simply need to update the register SP with the incoming process context’s
address. This way, the coming “pops” will act on the incoming process’s stack, where its context
was saved. Symmetrically to the save, the restoration is done either from the idle task’s storage
location or the kernel’s table of processes. We load in R0 the address where to get the value to
load in the SP. Then writing in the SP register is done using the dedicated msr instruction of
the SAM3X8E.

. . .
asm volat i le (” s t r r2 , [r1] \n\ t ” : : : ”memory”) ;

�
/∗ Restore the incoming process ’ SP.

I f the process i s the main process , then load i t s SP from the ke rne l
s t ruc ture , o therwi se from the process ’ s s t r u c t u r e .
r0 = incoming s tack po in t e r . ∗/

13

i f (incoming proc id != MAIN PROCESS ID) {
incoming proc = &kerne l . p r o c e s s e s [i ncoming proc id] ;
asm volat i le (”mov r0 , %0 \n\ t ” : : ” r ” (incoming proc−>sp) : ” r0 ”) ;

}
else asm volat i le (”mov r0 , %0 \n\ t ” : : ” r ” (ke rne l . main task sp) : ” r0 ”) ;
/∗ Rea l l y wr i t e incoming SP. ∗/
asm volat i le (”msr msp , r0 \n\ t ”) ;
. . .

}

The context switch routine is now complete.

5.3 Creation of a Process

We have written a context switch routine allowing to periodically change the running process.
However, there remains an important question: “how to start a process?”. We have seen the
chicken, we must now address the egg!

Obviously, to create a process we will need to allocate a stack memory area for it and put it
inside the queue to have it scheduled. The most interesting question is “how to do so that, once
is the queue, it will get the CPU as if it had been switched out in the past?”. The answer
is simply to simulate a “past witch out”. Hence, we need to put on its stack the equivalent of
what would have been saved by a context switch.

But what are the values to put? Indeed, the process has not yet ran. Hence, its working
registers do not matter. The only important registers values are:

• PC which is where the process must (re)-start. It is the address of the process starting
function.

• SR which represents the condition flags of the last instruction the process executed. Since
it never ran, we simply clear the register.

• SP which represents the stack pointer after the fake context save we want to simulate.

• LR which must contain the EXC RETURN value that the PendSV exception would have au-
tomatically saved in the “hardware save” (c.f. 5.2.2).

To clear the PSR we write 0’s everywhere except in the bit 24 which must be always 1
according to the SAM3X8E datasheet section 12.4.3.8 page 66.

The initial EXC RETURN is the bitmask value 0xFFFFFFF9 reflecting the fact that we do
not implement a separate stack pointer register for ”system” and ”user” mode (c.f. SAM3X8E

datasheet section 16.6.7.6 page 86).

The creation of a process is done by the function create process () in process.cpp. The
only reason why this source file is a C++ instead of a C one is to be able to print messages
using Serial.print (). This function takes one argument, the address of the process entry
function. It must first check that the number of living processes does not exceeds the maximum
allowed. If there is still some room for a new process, it must be registered in the kernel and a
stack must be allocated.

Attention: we voluntarily omit the need for an exclusive access to the kernel tables by this
function for the moment. We will address this question once we will have seen mutex, in section
7.1.

p r o c i d t c r e a t e p r o c e s s (void (∗ code) ())
{

/∗∗ Stack top as a l l o c a t e d with mal loc . Reminded fo r l i b e r a t i o n . ∗/
mcu word t ∗ s t a ck top ;
/∗∗ Pointer to the s tack once a hardware s tack frame has been pushed . ∗/
struct hard save t ∗ s p a f t e r h a r d s a v e ;

14

(PC)

S
o

ft
w

ar
e

S
av

e

H
ar

d
w

ar
e

S
av

e

Entry Function

Process

(R6) −−−

(R4) −−−

(R5) −−−

(R7) −−−

(R8) −−−

(R9) −−−

(R10) −−−

(R11) −−−

(R0) −−−

(PSR) 0x01000000

(R12) −−−

(R3) −−−

(R2) −−−

(R1) −−−In
cr

ea
si

n
g

 A
d
d

re
ss

es

...

Stack Memory Area

Initial

Code

(LR) −−−

(LR) 0xFFFFFFF9

Figure 6: Initial Context Structure in Memory on the Stack

/∗∗ Pointer to the s tack once a so f tware s tack frame has been pushed . ∗/
struct s o f t s a v e t ∗ s p a f t e r s o f t s a v e ;
i n t 1 6 t nb proc e s s e s = ke rne l . queue . cur nb ;

/∗ Check fo r enough room for a new process . ∗/
i f (nb proc e s s e s > MAX PROCESSES) {

return (MAIN PROCESS ID) ;
}
/∗ Reg i s t e r the process in the proces se s t a b l e . ∗/
ke rne l . p r o c e s s e s [nb proc e s s e s] . pid = nb proce s s e s ;

/∗ Al l o ca t e a s tack segment . ∗/
s t a ck top = (mcu word t ∗) mal loc (s izeof (mcu word t) ∗ STACK SIZE) ;
i f (s t a ck top == NULL) return (MAIN PROCESS ID) ;
/∗ Record the top o f the s tack to f r e e i t l a t e r . ∗/
ke rne l . p r o c e s s e s [nb proc e s s e s] . t op s tack = stack top ;
. . .

}

Once the stack is allocated, we must fill its with the initial frame (i.e. hardware + software
saves). We first fill the hardware save fields corresponding to PC and PSR.

Since the SAM3X8E implements a full descending stack, the stack pointer indicates the last
stacked item on the stack memory. The stack grows towards the lower addresses. Hence, the
address of the top of the stack when the hardware save “would have been done” corresponds to
the beginning our struct hard save t (from which we access the fields of the structure). It is
the first address after the end of the stack zone, minus the size of a “hardware save”.

. . .
k e rne l . p r o c e s s e s [nb proc e s s e s] . t op s tack = stack top ;

�
s p a f t e r h a r d s a v e = (struct hard save t ∗)

(((u i n t 32 t) &s tack top [STACK SIZE − 1]) − s izeof (struct hard save t)) ;
/∗ I n i t i a l i s e PC with the process ’ func t i on code . ∗/
s p a f t e r ha rd s av e−>pc = (mcu word t) code ;

15

save

S
o
ft

w
ar

e
S

av
e

H
ar

d
w

ar
e

S
av

e

(R6) −−−

(R4) −−−

(R5) −−−

(R7) −−−

(R8) −−−

(R9) −−−

(R10) −−−

(R11) −−−

(R0) −−−

(PSR) 0x01000000

(R12) −−−

(R3) −−−

(R2) −−−

(R1) −−−

...

Stack Memory Area

Initial

(LR) −−−

(LR) 0xFFFFFFF9

(PC)

stack_top

In
cr

ea
si

n
g
 A

d
d
re

ss
es

sp_after_hard_save

sp_after_soft_save

&stack_top[STACK_SIZE]

= sp_after_hard_save

= bottom of the stack

− size of a hardware

save

− size of a software

Figure 7: Initial Context Structure in Memory on the Stack (Addresses)

/∗ Clear the SR. ∗/
s p a f t e r ha rd s av e−>psr = 0x01000000 ;
. . .

We proceed in the same way to fill the fields of the struct soft save t corresponding to
the register LR. The address of the top of the stack when the software save “would have been
done” corresponds to the beginning our struct soft save t. It is the address of the hardware
stack frame, minus the size of a “software save”.

This is also the address we store in the kernel table as the address of the process’s context.
Indeed, it is the final position of the stack pointer after a complete save and from where the
context will be restored when the process will run for the first time.

. . .
s p a f t e r ha rd s av e−>psr = 0x01000000 ;

�
s p a f t e r s o f t s a v e = (struct s o f t s a v e t ∗)

(((u i n t 32 t) s p a f t e r h a r d s a v e) − s izeof (struct s o f t s a v e t)) ;
s p a f t e r s o f t s a v e −> l r = 0xFFFFFFF9 ;
/∗ Record the process handler to the context , i . e . on ly i t s s t ack po in t e r . ∗/
ke rne l . p r o c e s s e s [nb proc e s s e s] . sp = (mcu word t ∗) s p a f t e r s o f t s a v e ;

. . .

Finally, we just have to insert the new process in the queue in order to make it eligible for
having the CPU and we increment the number of living processes.

. . .
�

/∗ One more process i s in the pipe . . . Enqueue i t . ∗/

16

enqueue (&ke rne l . queue , nb proc e s s e s) ;
k e rne l . queue . cur nb = nb proce s s e s + 1 ;
return (nb proc e s s e s) ;

}

5.4 The Initialization and “User” Tasks

Aside the core of the processes management, there remains a little bit of administrative stuff
to do to have all of this working. First, a short initialization of the MCU must be done. Next,
the user must launch his processes.

5.4.1 Configuration

For a kernel as simple as Babix, very few configuration is required. We must configure the
interruptions to make them preemptive, to allow them to be handled and to make the exception
PendSV having the lowest priority. This last point ensures that the task switching mechanism
will not be more important than other interrupts (I/Os, etc.), hence prevents from losing other
events.

The system tick frequency must be setup depending on the quantum of time wanted for the
processes.

The initialisation must be done before the multitask can start. Typically, this is done in the
usual setup () function on the Arduino or in a separate function called by this latter.

void setup ()
{

. . .
/∗ Set i n t e r r u p t s to be preemptive . Change the grouping to s e t no

sub−p r i o r i t y .
See SAM3x8E da tashee t 12 .6 .6 page 84 and 12 .21 .6 . 1 page 177. ∗/

NVIC SetPriorityGrouping (0 b011) ;
/∗ Configure the system t i c k frequency to ad ju s t the time quantum a l l o c a t e d

to proces se s . ∗/
SysTick Conf ig (SystemCoreClock / SYSTICK FREQUENCY HZ) ;
/∗ Set the base p r i o r i t y r e g i s t e r to 0 to a l l ow any excep t ion to be

handled .
See SAM3x8E da tashee t 12 . 4 . 3 . 14 page 62. ∗/

set BASEPRI (0) ;
/∗ Force the PendSV excep t ion to have the l owes t p r i o r i t y to avoid k i l l i n g

o ther i n t e r r u p t s .
See SAM3x8E da tashee t 12 .20 .10 .1 page 168. ∗/

NVIC SetPrior ity (PendSV IRQn , 0xFF) ;
. . .
}

5.4.2 Creating Processes

This is done simply using the function create process (), providing it the address of the
function to execute as a task. Since processes are not “called” by functions, they can’t receive
arguments. For the same reason, they do not return any result. Hence functions to run by
processes must be of type void ... (void).

In this first presentation of Babix, processes are not allowed to end. This means that their
functions must be endless loops. In section 6, we will relax this restriction.

17

void proce s s2 ()
{

for (; ;) {
S e r i a l . p r i n t (” I ’m 2 ”) ;
de lay (3700) ;

}
}

void proce s s3 ()
{

for (; ;) {
d i g i t a lWr i t e (13 , HIGH) ;
de lay (1000) ;
d i g i t a lWr i t e (13 , LOW) ;
de lay (1000) ;

}
}

6 Allowing Process Termination

Processes are not always infinite loops, and this is even more interesting when they can be
created dynamically (otherwise, once the maximal number of living processes is reached, none
won’t be created later).

The “lite” version of Babix does not implement termination. The “normal” version does

6.1 The principle

If the function of a process ends (by an explicit return or simply by reaching the end of its
body), the standard funcall mechanism will cause the execution to return at the caller (using a
bx LR instruction). The problem is that in our case, there is no caller: we made so that the PC

was rerouted at the function’s first instruction to run the function!
In a multitask system, the end of a process must trigger a system call to remove the process

from the scheduler, free the resources it was owning (memory, stack, file handles, etc.), remove
the process from the kernel tables, etc.

To trigger a system call, Babix must provide a end process () function dedicated to ter-
minate the process using it. In some sense, the process commits suicide. When this function is
called by the process, it must indicate that this process is about to end by any kind of marker,
and must trigger a rescheduling (i.e. cause a task switching).

When the context switch routine will be invoked, it will distinguish the case of a regular
context switch and the case of a process termination.

6.2 The Termination System Call

To cause a task switch, we simply do the same thing than what happens when a quantum of
time is elapsed: trigger a PendSV exception.

To mark the process as ended, we simply chose to turn the current running process identifier
in the kernel to a negative value. Hence, if this identifier is negative, the kernel knows that the
process whose identifier is the absolute value must be terminated. This also means that the
identifier of the “main” task (“idle”) must be 0 (it never ends).

Until the exception is really processed, the process is still running. In effect, if the process is
able to call end process (), that’s because it is running. Since the process has nothing more
to do, the function end process () makes it looping forever (indeed, until the task switching
routine is called and see that the process is to be ended).

a t t r i b u t e ((naked)) void end proce s s ()
{

ke rne l . c u r r e n t p r o c e s s i d = − ke rne l . c u r r e n t p r o c e s s i d ;
SCB−>ICSR |= SCB ICSR PENDSVSET Msk ;
for (; ;) ;

}

18

One more time, this function is marked “naked” to prevent the compiler from saving regis-
ters. This would not be a real issue since nevermore this process will run again. However, this
would be totally useless.

6.3 Impact on the Context Switch Routine

In fact, the impact is very light. Changes are located after the save of the registers and
before the restoration of the incoming process’s SP.

When determining the outgoing process we just need to test if the current process identifier
is negative. If so, then we must remove it from the kernel table and free its stack. Before putting
back the process, one must ensure that it is not terminated.

a t t r i b u t e ((naked)) void pendSVHook (void)
{

. . .
/∗ Guess the outgo ing process id . ∗/
ou tgo ing p ro c i d = ke rne l . c u r r e n t p r o c e s s i d ;

�
/∗ I f the PID i s negat ive , then the process with a PID being the ab so l u t e

va lue i s ended and must be des t royed . ∗/
i f (ou tgo ing p ro c i d < 0) {

ke rne l . p r o c e s s e s [− ou tgo ing p ro c i d] . pid = MAIN PROCESS ID ;
f r e e (k e rne l . p r o c e s s e s [− ou tgo ing p ro c i d] . t op s tack) ;

}
/∗ Only enqueue the outcomming process i f i t i s not the ” I d l e ” ta sk . ∗/
i f ((ou tgo ing p ro c i d != MAIN PROCESS ID) && (ou tgo ing p ro c i d > 0))
. . .

Then, the determination of the incoming process does not change at all. The last change is
for the outgoing process’s SP save. We must save it only if there is one, i.e. only if we are not
handling an end of process (which, in this case, doesn’t exist anymore). Hence, we must guard
the code that was previously saving SP by a simple test ensuring that the outgoing process
identifier is positive.

�
i f (ou tgo ing p ro c i d >= 0) {

�
/∗ Same code than p r e v i ou s l y . . . ∗/
i f (ou tgo ing p ro c i d != MAIN PROCESS ID) {

outgo ing proc = &kerne l . p r o c e s s e s [ou tgo ing p ro c i d] ;
asm volat i le (”mov r1 , %0 \n\ t ” : : ” r ” (&outgo ing proc−>sp) : ” r1 ”) ;

}
else

asm volat i le (”mov r1 , %0 \n\ t ” : : ” r ” (&ke rne l . main task sp) : ” r1 ”) ;
/∗ Rea l l y save outgo ing SP. ∗/
asm volat i le (”mrs r2 , msp \n\ t ” : : : ” r2 ”) ;
asm volat i le (” s t r r2 , [r1] \n\ t ” : : : ”memory”) ;

�
} /∗ End of added guard t e s t . ∗/

�
. . .

6.4 Ending a User Process

As previously stated, the process’s function simply has to call the function end process ().
Attention, forgetting to call this function before the end of a process will crash as explained in
6.1.

19

7 Synchronization Primitives

When running several process “in paralel”, all goes right as long as none of them share resources.
Resources can be files, peripherals, etc, . . . or even simply a variable.

Suppose that two process P1 and P2 share a common global variable v initialized à 0. Both
of them endlessly increment this variable. Both of them read the value of v, wait a certain
amount of time, then write back in v the incremented value.

Process P2Process P1

int v ;

v = tmp + 1 ;

tmp = v ;

sleep (1) ;

print (v) ;

v = tmp + 1 ;

tmp = v ;

sleep (2) ;

print (v) ;

Figure 8: Concurrent Processes

We could expect v to get the values 1, 2, 3, 4, 5 Unfortunately one rather gets a silly
sequence like 1, 1, 2, 3, 2 Indeed, each process makes a copy of v (in tmp) at the moment
where it is running. If the process gets switched out and if the other one writes in v, the copy
of v owned by the first process is now out-of-date. When this first process will get the hand,
it will write its own incremented value, hence smash the one previously written. Accesses to v

are said concurrent. In other words, the concurrency tends to reduce the effective parallelism.

v = 0

Process P1

Process P2

tmp = v

tmp = v

wait

wait

wait

v = tmp + 1

v = tmp + 1

v = 1 v = 1

not = 2 !

time

Figure 9: Concurrent Scenario for the Processes

This raises the need for synchronization primitives: processes must access shared resources
respecting some rules. As shortly stated in 5.3, this problem already exists in the code we
wrote for the kernel. Since processes can by dynamically created, if two processes try to create
a process, the kernel data-structures will be accessed concurrently. For instance, one possible
consequence can be to have two new processes with the same identifier.

7.1 Mutex

One of the simplest synchronization mechanism is the mutex. It ensures an exclusive access to
a delimited zone of code: only one process can be in the part of code protected by the mutex.
A mutex is a (very simple) data-structure with two operations:

• Acquisition: allows the calling process to attempt entering a protected section of code.
While the acquisition fails, the process is not allowed to reach the section. Once the mutex
is acquired by the process, it is sure that it will be the only one in the section of code.

• Release: allows a process having acquired the mutex to let it available to other processes.
This operation never fails. It must be called at the end of the protection zone of code.

20

To guaranty an exclusive access to a section of code (called critical section), it is sufficient
to enclose this section between an acquisition and a release of a semaphore.

f ()

{

do something ;

mutex_acquire () ;

do something in the critical section ;

mutex_release () ;

do something ;

}

Basically, the data-structure underlying a mutex is a simple boolean flag telling if the ex-
clusive access is already in use. Hence, in C, it is a simple integer. The file mutex.h defines
a type alias, typedef volatile uint32 t mutex t ; to represent a mutex. Obviously, a short or
even a char could have been chosen.

Conceptually, the acquisition function (mutex acquire ()) must check if the mutex is true
or false. If it is true then the mutex is already occupied and the acquisition fails. If it is false
then the mutex is free, it must be toggled to true and the acquisition succeeds.

However, if two process are trying to acquire the mutex, between the reading of the mutex
value and its writing, a context switch can occurs. This causes the same problem than the one
describe in the introduction of this section! The access to the mutex’s variable is concurrent.
Same problem than the initial one for our expected solution /.

The hardware provides the solution: the instruction sets of nowadays CPUs contain a few
number of atomic (i.e. non-interruptible) instructions. Depending on the architecture, these
instructions may vary. On the SAM3X8E, we will use the ldrex and strex instructions (c.f.
SAM3X8E datasheet section 12.5.7 page 78 and section 12.12.8 page 112).

ldrex Rt, [Rn] loads a word from a memory address. strex Rd, Rt, [Rn] tries to store
a word (contained in Rt) to a memory address (contained in Rn). The address used in the
instruction must be the same as the address in the most recently executed ldrex instruction.
If strex succeeds the store, it writes 0 to its destination register (Rd) and it is guaranteed that no
other process has accessed the memory location between the ldrex and the strex instructions.

With these instructions, the pseudo-code algorithm for a mutex acquisition gets simple:

mutex_acquire (mutex)

{

restart:

while ’ldrex (mutex) == 1’ ; /* Wait for the mutex to be free. */

if ’strex (1, mutex) == 1’ goto restart ;

}

Once again, the real implementation requires to inline assembly code. To be efficient and to
avoid saving the registers we use, we only uses the registers R2 and R3. In effect, these registers
(with R0 and R1) are considered as scratch registers. This means that, by convention, a calling
function must expect them to be destroyed by the called function.

The mutex is passed as argument by address. In effect mutex acquire () must write in the
variable of the mutex. To do so, there is no other solution than passing its address.

The coming code is pretty simple and comments should be sufficient for the understanding.
Note the use of the asm goto statement for branching instructions (as stated in 5.2.3).

21

void mutex acquire (mutex t ∗mutex)
{

/∗ No need to save the r e g i s t e r s used in t h i s func t i on . In e f f e c t , we only
use sc ra t ch r e g i s t e r s r2 and r3 . Gcc seems to s t o r e our argument in r0
which i s a l s o a sc ra t ch r e g i s t e r . ∗/

take :
/∗ Ask an e x c l u s i v e access on the l o c k and ge t i t s va lue by the way

(c . f . da ta shee t s e c t i on 12 .5 .7 page 78 and s e c t i on 12 .12 .8 page 112. ∗/
asm volat i le (” ld r ex r3 , [%0] \n\ t ” : : ” r ” (mutex) : ” r3 ” , ”memory”) ;
/∗ Check the va lue o f the l o c k . I f i t i s taken (==1) we must r e t r y . ∗/
asm volat i le (”mov r2 , #1 \n\ t ” : : : ” r2 ”) ;
asm volat i le (”cmp r2 , r3 \n\ t ”) ;
asm volat i le goto (”beq %0 \n\ t ” : : : : take) ; /∗ Loop back . ∗/

/∗ Lock i s not == 1 , hence i s f r e e . Let ’ s t r y to acqu i re i t by t r y i n g
s t o r i n g 1 in s i d e .
Not−succes s va lue returned va lue in r3 .
Value to s t o r e in r2 (i . e . va lue 1) .
Address o f the l o c k i s ’mutex ’ . ∗/

asm volat i le (” s t r ex r3 , r2 , [%0] \n\ t ” : : ” r ” (mutex) : ” r3 ” , ”memory”) ;

/∗ Check re turn va lue : i f 0 wr i t e succeeded o therwi se f a i l u r e . In case o f
f a i l u r e we must r e t r y the whole process (i . e . reading the l o c k ’ s va lue
and i f p o s s i b l e t r y i n g to wr i t e 1 i n s i d e . ∗/

asm volat i le (”mov r2 , #1 \n\ t ” : : : ” r2 ”) ;
asm volat i le (”cmp r2 , r3 \n\ t ”) ;
asm volat i le goto (”beq %0 \n\ t ” : : : : take) ; /∗ Fai lure : loop back . ∗/
return ;

}

The release of a mutex is trivial. Since the calling process is sure to have an exclusive
access to the mutex, no race condition (concurrent access) is possible. Hence mutex release

() simply resets the variable of the mutex, putting 0 inside. Its implementation is written with
assembly inlines, but it could be pure standard C.

void mutex re l ea se (mutex t ∗mutex)
{

/∗ No need to save the r e g i s t e r , we use a sc ra t ch r e g i s t e r . ∗/
asm volat i le (”mov r2 , #0 \n\ t ” : : : ” r2 ”) ;
asm volat i le (” s t r r2 , [%0] \n\ t ” : : ” r ” (mutex) : ”memory”) ;
return ;

}

Obviously, a process releasing a semaphore that it didn’t obtain but that was obtained
by another process will spoil the mechanism! It would unlock the critical section although a
process is still inside. It is the responsibility of the programmer to take care of his usage of
synchronization primitives.

To prevent race conditions on the kernel data-structures, the function create process ()

seen in 5.3 must start by a mutex acquisition and end by a release of this mutex. Attention,
the mutex must be released in any case of exit of the function! This means that each return
case must not forget to call mutex release () otherwise, the mutex will remain locked forever,
preventing any future call to create process () to succeed.

7.2 Semaphore

A semaphore is simply a generalization of a mutex where the access to the protected section of
code is restricted to a certain number of processes, not only one. The underlying data-structure
of a semaphore is still an integer, initialized with the maximum number of allowed processes in
the code section it guards.

22

A function sem acquire () (often caller P () in the literature) tries to get the access to
the semaphore. If the semaphore’s value is not 0 then the access is granted and the value
is decremented. Otherwise, the access is denied. Symmetrically, a function sem release ()

(often caller V () in the literature) liberates an access to the semaphore, incrementing its value.
The implementation of semaphores in semaphore.c is based on the same instructions than

for the mutex. The structure of the code is very similar, involving the add and sub assembly
instructions instead of simply some mov.

References

[1] Arduino. Arduino Due. https://www.arduino.cc/en/Main/arduinoBoardDue.

[2] Atmel Corporation. SAM3X/SAM3A Datasheet. SAM3X/SAM3A Series Complete.
http://www.atmel.com/devices/sam3x8e.aspx.

[3] GNU Software Fundation. Extended Asm - Assembler Instructions with C Expression
Operands. https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html.

23

