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Abstract 
 

Hydroxyapatite (HA)/β-tricalcium phosphate (β-TCP) cellular composites were fabricated by 

robocasting. Small polymeric beads were intentionally added into the solid rods of the 

samples to generate artificial defects in order to characterize their influence on the fracture 

behavior in uniaxial compression. The samples were characterized by X-ray tomography at 

two resolutions to observe their architectural and microstructural features. The higher 

resolution images were obtained by "local tomography" in which the sample is placed near 

the X-ray source. These images allowed for observing details (i.e., the artificial defects) not 

visible at a lower resolution. Then ex situ compression tests were performed to follow the 

deformation of the sample at low resolution by tomography. The images showed a brittle-like 

behavior with the propagation of a main crack parallel to the compression direction. Finally, 

the high-resolution images of the initial sample were processed to create a finite element (FE) 

model of the whole sample and including the presence of artificial defects in the struts. The ex 

situ test and the modeling show the influence of the artificial defects on the crack initiation.  

 

Keywords: Calcium phosphate, porous ceramics, X-ray tomography, mechanical behavior, 

finite element modeling 

 

1. Introduction  
 

Calcium phosphate ceramics, especially hydroxyapatite (HA) and β-tricalcium phosphate (β-

TCP) have been widely used for bone substitution [1, 2, 3, 4]
 
because they exhibit a unique 

combination of properties: biocompatibility, osteoconductivity, osteointegration, 

bioresorption, and bioactivity [5]. HA/β-TCP composites (commonly named biphasic calcium 

phosphates [BCP]) have been developed [6] with the aim of optimizing material in terms of 

mechanical properties and resorption in the human body. An interconnected porosity is 

necessary to promote bone regeneration and vascularization around and inside the scaffolds, 

as well as to allow circulation of fluids in the scaffold. Several studies have shown that 

scaffolds need interconnected macropores with a size higher than 100 µm and micropores 

with a size between 10 and 100 µm to improve bone regeneration [7, 8, 9, 10].  

Various fabrication techniques have been used to fabricate porous calcium phosphate samples: 

the replica technique [11], sacrificial templates [12], and direct foaming [13]. Additive 

http://dx.doi.org/10.1016/j.jeurceramsoc.2016.11.035
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manufacturing (AM) has gained interest because it can provide samples with complex shapes 

and an intricate internal architecture, allowing control of mechanical properties [14, 15].  

Among the AM techniques available to process ceramics, robocasting is a robotic deposition 

of a ceramic ink (viscous slurry) through a nozzle following a computer-aided model. 

Robocasting can be distinguished from the other AM processes by the use of aqueous ceramic 

inks with a low amount of organic additives (typically less than 1wt%) [16, 17]. The inks are 

also highly viscous thus with a high solid loading. These features facilitate the densification 

during the heat treatment. The ceramic ink has to flow through the nozzle during the extrusion 

step and set after deposition [17]. The ink’s characteristics (e.g. high solid loading, 

concentration of organic additives such as dispersant) must be carefully controlled to avoid 

some specific defects. For example, if the solid loading is too low, the shrinkage will be too 

important during drying and cracks will appear [17, 18].  After deposition, there is also a risk 

of bending of the rods [19]. A too high solid loading will impose a high pressure for extrusion. 

This can cause an inhomogeneous re-distribution of liquid and ceramic particles into the ink 

[18, 20]. Thus the solid loading will be different throughout the structure. Thus, several 

studies have been dedicated to the optimization of this fabrication process for ceramics and 

the formulation of ceramic inks [16, 17, 21]. For example, Houmard et al. [22] fabricated 

BCP samples with a wide range of volume fraction and pore size. Other authors focused more 

on the mechanical properties of scaffolds processed by robocasting, such as Miranda et al., 

who reported the propagation of long cracks along the compression direction for HA and β-

TCP samples [23, 24]. 

The aim of this research is to perform a fundamental and qualitative study of the fracture 

process in uniaxial compression of BCP scaffolds by means of X-ray tomography. This non-

destructive technique provides three-dimensional (3D) images of the samples. It has been 

extensively used to characterize highly porous materials [25]. In or ex situ mechanical tests 

can also be performed by adding special rigs inside the tomograph. We have recently used this 

approach to characterize the uniaxial compression behavior of a porous β-TCP sample with a 

stochastic porosity generated by a sacrificial template method [26]. Additionally, the 

tomographic images can be used as input files for finite element (FE) modeling [27]. Meshing 

the 3D images allows performing calculations based on the real architecture of the specimens. 

In the present study, porous BCP samples were processed via robocasting and scanned by X-

ray tomography. Model materials were designed by adding artificial defects in the struts 

thanks to pore formers. Our aim was to generate defects having a controlled size in the 

structure. The location of these defects in the initial microstructure was determined by high-

resolution scans obtained with the so-called "local tomography" mode. Then an ex situ 

compression test was performed to follow the crack propagation by standard low resolution 

X-ray tomography. Finally, high-resolution images of the initial samples were processed to 

create an FE model and to check the influence of artificial defects in the struts on the 

mechanical behavior of the scaffolds. 

 

2. Materials and methods 
 

2.1. Sample fabrication 

 

Cellular samples with a solid phase containing a volume fraction of 80% HA and 20% β-TCP 

were fabricated following a protocol thoroughly described by Miranda et al. [28]. A 20 vol.% 

Pluronic F127 solution in water was prepared and cooled to approximately 4°C. Adequate 

quantities of HA (Science Applications Industries, France) and of β-TCP (Fluka, Switzerland) 

were mixed with this solution to form an aqueous paste with a solid loading of 30 vol.%, fluid 

at low temperature and solid at room temperature thanks to the addition of Pluronic. Two 
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vol.% of polymethacrylate (PMMA) spheres (Diakon CLG356, Lucite International, France) 

were added as porogens to create artificial defects inside the solid struts. The PMMA beads 

were previously sieved and the spheres with a diameter from 45 to 100 µm were selected. 

This particular size range was chosen because it allows having controlled defects in the rods 

which can be detected by X-ray tomography with resolution of few microns, as used in this 

work. This size range can also be distinguished from the residual micropores with a size of 

few microns [19, 23]. The ceramic ink and the PMMA beads were mixed in a jar. The mixture 

of ceramic ink and PMMA beads was introduced in the conical nozzle of the robocasting 

device (3-D Inks, Stillwater, USA) controlled by a software program (Robocad 3.0, 3-D Inks, 

Stillwater, USA). The nozzle had a diameter of 150 µm and was displaced to deposit the 

ceramic ink on a plane with a constant deposition speed of 20 mm.s
-1

. The spacing between 

two rods (from rod center to rod center) was fixed to 300 µm. After finishing the deposition of 

several parallel rods, the nozzle was displaced in the vertical direction and another layer of 

rods was deposited in a direction perpendicular to the previously deposited rods. The process 

was continued until all the layers were deposited. The deposition was made in an oil bath to 

avoid collapse of the layers during the process. After deposition, the samples were air-dried 

for 3 days. Finally, a two-step thermal treatment took place. The first step consisted of a 

debinding treatment at 550°C during 2 hours to remove the PMMA spheres (artificial defects) 

and organic binders. The sintering occurred during the second step at 1100°C during 4 hours. 

During sintering, it was expected that the large artificial defects would remain unsintered 

while the small pores between solid particles would close. The heating rate was 1°C/min until 

550°C and 2°C/min from 550 to 1100°C. The cooling rate was 5°C/min. The overall approach 

described in this paper (i.e., ex situ compression test, image processing steps, and FE 

modeling) was applied to one sample. This is justified by the difficulty to reproduce this time-

consuming approach to a large number of samples.  For this reason, our goal was to develop a 

qualitative approach about the influence of the defects on the macroscopic behavior. The 

results presented in this paper concern a sample with dimensions of 3.58 mm (in direction 3, 

which was the layer-by-layer direction during fabrication and the loading direction during 

compression), and 4.62 mm and 4.58 mm (length and width, directions 1 and 2, respectively).  

 

2.2. Structural characterization 

 

Different characterization methods were used. (1) Geometric relative density was calculated 

from the weight and the dimensions of the sample, considering a density of 3.16 g.cm
-3

 and 

3.14 g.cm
-3 

for the fully dense HA and β-TCP, respectively. (2) One of the faces another 

sample was carefully polished to 1 µm with diamond paste to observe the solid phase. After 

polishing, the sample was cleaned by ultrasonic bath to remove the polishing debris in the 

pores. After polishing, the sample was etched by a thermal treatment at 1000°C over 1 hour. 

Then the polished and etched face was observed with scanning electron microscope (SEM), 

(ZEISS, SUPRA55 VP, Germany) at a voltage of 1 kV without metallization. (3) The phase 

composition was identified by X-ray diffraction (XRD, Siemens D-500, Munich, Germany) 

using Cu Kα radiation (λ=0.15406 nm). The acquisitions were carried out at a scanning rate of 

1.8°/min in the 2θ range of 20-80°. The HAp, β-TCP and α-TCP were searched by 

comparison with the JCPDS cards 09-0432, 09-0169 and 09-348 respectively. The weight 

ratio of the phases was also determined. (4) Mercury intrusion porosimetry (Auto Pore IV, 

Micromeritics, USA) was used to determine the interconnection pore size distribution by 

intrusion of liquid mercury into the pores with a maximal pressure of 400 MPa.  
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2.3. X-ray tomography 

 

A laboratory X-ray tomograph (v/Tome/X, Phoenix, Germany) described in detail by Buffière 

et al. [29] was used to scan the whole sample in its initial state at a "low" resolution of 15 µm. 

The tomograph was operated at a voltage of 80 kV and an intensity of 280 µA with no 

filtering on incident X-rays. The 3D final images were then obtained by a standard filtered 

back projection algorithm implemented in the software coupled to the tomography [30]. To 

observe the finer details of the microstructure in this initial state, local tomography was used 

[31]. For this, the sample was placed near the X-ray source; the detector’s field of view was 

then smaller than the size of the sample. This resulted in only a part of the sample (the 

cylinder of reconstruction) being irradiated by X-rays under all the viewing angles. Some 

authors have proved that reconstruction can be performed in this local mode [32, 33]. It is 

particularly well adapted to porous samples due to their low density [31]. The reconstructed 

tomogram has a lower signal to noise ratio than in conventional tomography, but a high 

resolution (voxel size of 3 µm) reconstruction of the irradiated part of the sample can be 

obtained. To scan another part of the sample, it was necessary only to physically displace the 

specimen above the rotating stage. Finally, we gathered eight high-resolution images, each 

representing a part of the sample, to have a representation of the whole sample. 

To complete the characterization by X-ray tomography in the initial state, small pieces of rods 

were additionally scanned with a second higher resolution tomograph described by Etiemble 

et al. [34] (EasyTom Nano, Rx Solutions, France) with a voxel size of 0.7 µm. The rods were 

scanned with a tension of 60 kV and an intensity of 150 µA without using local tomography.  

An ex situ uniaxial compression test was finally performed to follow the crack initiation and 

propagation in the sample at low resolution (voxel size of 15 µm). The sample was 

incrementally loaded outside of the tomograph thanks to a BOSE Electroforce 3200 

compression machine (Prairie Valley, USA) equipped with a 200 N load cell and a capacitive 

displacement sensor, and scanned in the tomograph after the application of different levels of 

strain. To test the samples at higher loads (above 200 N), an Instron 8502 (High Wycombe, 

UK) universal hydraulic machine equipped with a 5000 N load cell and a linear variable 

differential transformer (LVDT) displacement sensor was used. The test was displacement 

controlled with a speed of 0.03 mm.min
-1 and was interrupted several times to scan the 

sample. To avoid contact damage, the two faces of the sample in contact with the loading 

platens were embedded with paraffin wax for the two testing conditions. Additionally, during 

the first loading, the sample was unloaded and reloaded six times to calculate the Young's 

modulus from the unloading slopes. 

 

2.4. Image processing procedure 

 

Image processing of the 3D reconstructed tomograms was performed using ImageJ software 

[35]. The 8 high-resolution images were first processed to improve the image quality through 

adjustment of contrast and brightness and the application of a median filter over neighbors of 

one voxel (Fig. 1a). This figure shows that the artificial defects are indeed present in the 

sintered rods. Then the images were thresholded to separate the macropores, the ceramic 

phase, and the artificial defects. Each of these phases had a different grey level (Fig. 1b): 0 for 

the macro-pores, 128 for the artificial defects, and 255 for the ceramic phase. At this stage, it 

could have been possible to stitch the thresholded images together to obtain a high-resolution 

image of the whole sample. However, the result would have been a large image which could 

not be easily used for finite element modelling. It appears as more relevant to generate an 

image of the initial sample at a low resolution (i.e., the one used for the ex situ compression 

test: 15 µm) and containing the information brought by the high-resolution images (i.e., the 
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small defects in the solid struts). For this purpose, these high-resolution thresholded images 

were scaled to change their voxel size from 3 to 15 µm (Fig. 1c). The scaling operation 

preserved the segmentation made at high resolution but blurred the image (as shown in Fig. 

1c). To avoid this blurring effect, a second thresholding was performed on the scaled images, 

using a conservative value of the grey level to make sure that no artificial defect was lost 

during this step (Fig. 1d). The smallest artificial defects have a typical diameter of 3 voxels at 

the low-resolution scale. Therefore, they could possibly be lost without this precaution. It 

must be stated, however, that this procedure clearly results in a non-physical slight increase in 

the size and number of the artificial defects. Finally, the 8 images were stitched two by two 

until the image of the whole sample was created (not shown in Fig. 1). The final image of the 

whole sample contained the information of the presence of the artificial defects in different 

locations inside the sample, rather than actually describing their morphology in detail. This 

image was used as an input for the FE model (see section 2.7). 

 

 
(a)                                                                                (b) 

          
         (c)                                                                      (d) 

Fig. 1: (a) Local tomography image slice of part of the sample (voxel size: 3 µm), (b) the 

same slice after the image processing steps separating the three phases (voxel size: 3 µm), (c) 

the slice after scaling (voxel size: 15 µm), and (d) the scaled slice after the second 

thresholding (voxel size: 15 µm) 

 

 

500 μm 500 μm 

500 μm 500 μm 
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2.5. Quantitative analysis of the image 

 

The high-resolution thresholded images (i.e., those with a voxel size of 3 µm) were used to 

perform different morphological characterizations, whose measurement principles are 

explained in detail by Maire et al. [36]. It was performed by applying plugins (i.e., Java 

programs implemented in ImageJ) to the images. A first plugin aimed at obtaining the relative 

density of the sample by counting the number of voxels belonging to the solid phase (the 

white voxels) and dividing it by the total number of voxels. Plots of the relative density in 

each slice as a function of the location of these slices were also created. A second plugin 

measured the characteristic size of each phase (rod size and pore size). This was made by 

applying a series of 3D erosion and dilation operation with an increasing size to the phase of 

interest. This measurement can be compared to sieving of a powder [36]. The results were 

presented as the pores’ or rods’ sizes distributions in the sample. 

 

2.6. Determination of the Young's modulus by nanoindentation 

 

Nanoindentation was performed by an instrumented nanoindentation system (Agilent G200, 

Agilent Technologies, USA). A Berkovich tip indented polished rods with a speed of 10 nm.s
-1

, 

a dwell time of 10 s, and a maximum load of 100 mN. An indentation depth of 2 µm was 

chosen to have an indent size sufficiently large to be representative of the entire rod’s elastic 

properties (i.e., the ceramic phase and the potential residual micropores). A series of 10 

indents was made with one indent per rod. The Young's modulus was calculated from the 

force/displacement curve using the Oliver-Pharr method [37]. A value of 28 ± 2 GPa was 

found and used in the FE model (see section 2.7). This value is in agreement with values of 

Young's modulus obtained by nanoindentation for porous HA and β-TCP samples with the 

same volume fraction of micropores considering a rule of mixtures for BCP components [38, 

39]. 

 

2.7. FE model 

 

The image of the initial sample previously fabricated (see section 2.4) was used as an input to 

build the FE model. The rods (i.e., the ceramic and the artificial defects) were meshed with 

1124000 quadratic tetrahedra having an average edge size of 69 µm using Avizo 8 software 

[40]. To differentiate the mesh elements corresponding to the ceramic phase from those 

corresponding to the artificial defects, a special Java program was developed to create an 

Abaqus input file where the elements were classified according to their corresponding phase. 

This program associated the grey levels of the initial image (i.e., 128 for the artificial defects 

and 255 for the ceramic phase) to each element of the mesh. Two element sets were 

considered in the simulation: a first one for the elements corresponding to the ceramic and a 

second one for the elements corresponding to the artificial defects. The macropores between 

rods were not meshed. A relatively coarse mesh was chosen to ensure a reasonable calculation 

time, with an average size of 69 µm, larger than the mean defect size comprised between 35 

and 84 µm after sintering. An elastic behavior was assumed for the two phases, as this 

calculation aimed at evaluating the local stresses in the sample. Calculations including a 

failure criterion were beyond the scope of this paper. The average Young's modulus of the 

rods was determined by nanoindentation, as previously explained. For the elements 

corresponding to artificial defects, an empirical Young's modulus of 1 MPa was considered. 

The mesh was coarse because the elements’ average size of 69 µm was higher than the 

defects’ size. Thus the elements associated to artificial defects correspond to zones containing 

mainly artificial defects but also some ceramic phase. A Poisson's ratio of 0.28 was considered 
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for the two set of elements [41]. Different negative displacements equivalent to the strains 

reached during the different loadings in the ex situ test were applied to the nodes of one side 

of the sample whereas the nodes on the other side were displacement constrained. A reference 

calculation where all the elements were assigned the behavior of the ceramic phase (i.e., as if 

the rods did not contain any artificial defect) was also performed. Comparison between the 

results given by the two calculations could bring information about the influence of the 

artificial defects on the macroscopic behavior.  

 

3. Results 

 

3.1. Architecture of the sample 

 

Fig. 2 shows a 3D reconstruction and a SEM image of a part of the sample showing its 

architecture. The alternation of orthogonal rods from one layer to an adjacent one is clearly 

visible (see Fig. 2a).  

 
(a)                                                                          (b) 

Fig. 2: (a) 3D reconstruction of a part of the sample from X-ray tomography and (b) a SEM 

image showing the side of the sample in directions 1 and 2 

 

Fig. 3 gives the relative density distribution measured with the high-resolution images along 

the sections perpendicular to the three main directions of the sample shown in Fig. 2. Due to 

the spatial resolution of the technique, micropores resulting from incomplete sintering are not 

detected and this measure assumes fully dense rods. The relative density calculated from 

ImageJ is 0.60 ± 0.01, meaning a volume fraction of macropores in the whole sample of 0.40 

± 0.01. The evolution of relative densities in the cross sections in directions 1 and 2 between a 

highest value of 0.85 and a lowest of 0.30 is explained by the alternating orthogonal rods. The 

cross sections with the maximum relative density along direction 1 correspond to sections 

crossing the rods orientated in direction 2 and the less dense ones to sections crossing the 

sample between these rods (Fig. 3). Along directions 1 and 2, a higher density is calculated in 

the first and last cross sections corresponding to the sides of the samples. The higher density 

is due to the deposition done at the end of the rods. To go from one rod to another, the nozzle 

does not stop the deposition as shown in Fig. 2b in the plane perpendicular to the deposition. 

Along direction 3, the variations of the relative density are less logically important. 

Fig. 4a shows the rod size distribution measured by ImageJ with the 3D granulometry plugin. 

The rod diameter lies between 119 and 161 µm with a peak for a diameter of 147 µm and a 

smaller peak for 126 µm. The pore size distribution measured by 3D image analysis (Fig. 4b) 

is characterized by a main peak between 84 and 133 µm with a maximum frequency at 120 

µm. This peak is related to the macroporosity between the rods. The pore size distribution also 
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exhibits values between 35 and 84 µm, corresponding to the artificial defects added by 

PMMA beads in the rods.  

 

Fig. 3: Relative density 

distributions along the three 

main directions calculated by 

3D image analysis 

 

 

Fig. 4: (a) Rod size distribution 

of the sample obtained by 3D 

granulometry on a tomographic 

image and (b) pore size 

distribution 

 

 
 

3.2. Characterization of the microstructure in the solid rods 

 

Local tomography (Fig. 5a) gives details on the microstructure of the rods: intentionally 

added artificial defects (some are highlighted in a red frame) and imperfect boundaries 

(indicated by an arrow) between two orthogonal layers. As seen in Fig. 5b, the small artificial 

defects are randomly located in the rods. Due to this random location, they are connected or 

not to the macropores located between the rods. Some of them have a non-spherical shape 

(Fig. 5a): these pores with a more elongated shape are probably formed by the burning out of 

two adjacent PMMA beads.  
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(a)                                                                           (b)                                                                                          

Fig. 5: (a) Slice of a high-resolution image (voxel size of 3 µm) from local tomography 

showing artificial defects and incomplete bonding between the different layers (arrows), (b) 

3D visualization of the artificial defects from local tomography images 

 

To investigate in more detail the microstructure of the rods, a polished cross section was 

prepared and observed with SEM. Residual micropores due to incomplete sintering are 

revealed in the rod (Fig. 6a). This residual porosity is also noticed with specific very high-

resolution tomography by a difference of grey level values in the rods (Fig. 6b). This 

tomographic image has a voxel size of 0.7 µm and was acquired using a small piece of sample 

(with dimensions of approximately 1 x 1 x 0.7 mm
3
). Moreover, the incomplete sintering at 

the junction between the two orthogonal rods (already seen in local tomography images in 

Fig. 5a) is visible in this image.  

 

 
(a)                                                                              (b) 

Fig. 6: (a) SEM image of a cross section of a rod (magnification x 1000) and (b) an X-ray 

tomography high resolution image (voxel size of 0.7 µm) of several rods 

 

The XRD pattern of the scaffold is shown in Fig. 7. Only HA and -TCP phases are detected 

and no trace of -TCP is found. HA/β-TCP weight ratio of 19/81 is obtained. This value is 

close to the targeted one (20/80).  
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Fig. 7: XRD pattern of the sintered scaffold. HA (*) and β-TCP (○) are identified with 

comparison with JCPDS cards 09-0432 and 09-0169 respectively. 

 

The size of the residual pores left by incomplete sintering measured through SEM images is 

2.6 ± 1.1 µm. In addition, the interconnection pore size distribution of the robocast HA/β-TCP 

sample was measured by mercury intrusion porosimetry (Fig. 8). The peak between 47 and 

114 µm with a maximum value of 91 µm corresponds to the interconnections through the 

macropores and the open artificial defects. The second peak between 0.3 and 2.4 µm with a 

maximum value of 1.3 µm is linked to the intrusion of mercury into the residual micropores 

left by incomplete sintering.  

 

Fig. 8: Pore size distribution 

measured by mercury 

porosimetry 

 

 

 

Mercury porosimetry reveals a total volume fraction in the sample of micropores with a size 

lower than 15 µm of 0.26 ± 0.02. This value is coherent with the difference between the 

volume fraction of pores obtained by geometric measurement (total porous volume, 0.64 ± 

0.02) and by image analysis of the tomographic volume (macroporous volume, 0.4 ± 0.01). 

Consequently, the respective volume fractions of each type of pores in the whole sample are 

0.4 for macropores, 0.26 for residual micropores and 0.012 for artificial defects. These values 

give a total volume fraction of pores in the whole sample of 0.67 which is coherent with the 

geometric value of 0.64. The difference can be explained by some errors in the measurement 

(resolution of the tomographic volume used, presence of some micropores which were not 

impregnated by mercury during porosimetry measurement). In the rods, the volume fraction 

of pores is 0.02 for the artificial defects and 0.43 for the micropores.  

 

3.3. Ex situ compression tests 

 

Fig. 9a presents the stress/strain curves obtained for the sample during the ex situ test. The 

black curve represents the entire stress/strain curve, until the rupture of the sample. The other 

curves correspond to four loadings interrupted to scan the sample at different strains. An inset 
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on the beginning of the stress/strain curve is also shown in Fig. 9b. The shape of the curve is 

discussed in the next section. The mechanical behavior is characterized by a linear elastic part 

followed by a plateau before brittle failure. The compression strength (i.e., the maximum 

stress reached during the test) is 14.2 MPa. Table 1 presents the values of compression 

strength for the sample and values from literature which will be commented in the Discussion 

section. 

  
Fig. 9: (a) Compression stress/strain curves corresponding to the successive loadings and to 

the test until rupture (black curve) and (b) a magnified view of the final stress/strain curve’s 

beginning showing the increase of stiffness in the linear part 

 

 

Table 1: Values of effective Young's modulus calculated from the loading/unloading curves 

Calculation Effective Young's modulus (GPa) 

Average on the four unloading curves   2.31 ± 0.33 

First unloading curve (Fig. 8) 1.84 

Fourth unloading curve (Fig. 8) 2.65 

Average on the four loading curves 1.47 ± 0.19 

 

Fig. 9 presents a loading and two unloading curves for the sample at low strains used to 

calculate the Young's modulus. The stiffness is higher during the unloading cycle compared 

with the loading cycle (Fig. 9), and reaches the highest value at the onset of unloading. The 

stiffness during unloading increases with the cycle number. Loading/unloading hysteresis is 

also visible in the curve as well as an irreversible residual strain at the end of the unloading 

steps. The effective Young's modulus was calculated from the loading and unloading parts of 

the loading/unloading cycles (Fig. 10). The different values obtained are summarized in Table 

1. A higher value of Young's modulus (2.3 GPa) is obtained compared with the value obtained 

with the loading curve (1.5 GPa). The Young’s modulus increases as the loading/unloading 

cycle number increases. The reason for these differences is discussed in the next section. In 

the case of the Young's modulus, a comparison with the literature is very difficult because this 

parameter is highly dependent on the relative density, the fabrication process, and the volume 

fraction of the two phases (HA and β-TCP). In a previous study, we obtained a Young's 

modulus of 1.38 GPa (calculated with unloading curves) for a randomly porous β-TCP with a 

relative density of 0.29 [26]. 
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Fig. 10: Loading and unloading 

cycles undergone by the sample. 

The loading curve corresponds 

to the first loading curve of the 

Fig. 8a.  

 

 

 

Fig. 11 and 12 show the evolution of the crack in two vertical slices corresponding to two 

different locations in the sample during the ex situ compression test. The location of these two 

slices in the sample is indicated in Fig. 11a and 12a. The slice shown in Fig. 11 is located near 

a sample’s free surface. The crack initiates from this side as shown with the red arrow and in 

the insight in Fig. 11c. As the test continues, this crack further propagates along direction 3. 

The second slice (Fig. 12) located inside the sample shows the crack propagation in direction 

2. The crack reaches this section of the sample after the third loading (see the red arrows in 

Fig. 12d). At the end of the test, the crack separates the sample into two parts. In addition, the 

insight in Fig. 11c shows the crack initiates in a rod where an artificial defect is present. A 

second defect is also present close to the first one in the left. These two close defects can act 

as stress concentrators and initiate the crack. However, this image does not allow for 

concluding exactly about the precise location of the crack initiation because the crack could 

also be initiated from the macropores located below. Section 3.4 details the results of the FE 

calculations.  
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                                      (a) 

 
(b)                                                                           (c) 

 

 
(d)                                                                           (e)                                             

 

Fig. 11: (a) 3D reconstruction of the sample showing the location of a vertical slice (red 

frame) which is presented after at different steps of the ex situ compression test: (b) at the 

initial state, (c) after the second loading (with a magnified view on the crack initiation), (d) 

after the third loading, and (e) after the fourth loading (red arrows show the crack initiation 

and propagation) 
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                                     (a) 

 
(b)                                                                           (c) 

 
(d)                                                                           (e) 

Fig. 12: (a) 3D reconstruction of the sample showing the location of a second vertical slice 

(red frame) which is presented after at different steps of the ex situ compression test: (b) at the 

initial state, (c) after the second loading, (d) after the third loading, and (e) after the fourth 

loading (red arrows show the crack initiation and propagation) 

 
3.4. FE modeling 

 

Fig. 13 presents results of the FE calculations. The calculated local stresses in the slice where 

the crack initiation is visible (see Fig. 11c) are shown in Fig. 13a (reference calculation 

without the artificial defects) and 13b (calculation with the artificial defects). Magnified views 
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on the crack initiation are presented in Fig. 13c (tomographic slice), 13d (reference 

calculation without the artificial defects) and 12e (calculation with the artificial defects). 

Without the artificial defects (Fig. 13d), high stresses are predicted in the horizontal rods and 

especially near the joints with the orthogonal rods. This is consistent with the experimental 

observations, which show the propagation of the crack in the horizontal rods. The stress 

distribution in the section is logical because it is controlled by the periodic structure. When 

including the artificial defects, the stress distribution appears to be different (Fig. 13e). 

Different stress concentrations are observed in the vicinity of the artificial defects. In the zone 

where the crack initiates, the calculation without the artificial defect does not predict higher 

stress between the two macropores (see the yellow frame in Fig. 13d). When the artificial 

defects are taken into account, stress concentrations appear around the defect (see the yellow 

frame in Fig. 13e). A comparison between Fig. 13d and 13e shows that the stress 

concentrations are present along the crack path. The second artificial defect present in the left 

also creates stress concentration in its vicinity (see the purple frames in Fig. 13d, and 13e). 

Finally, with the artificial defects in the model, an increase of stress is noted in a horizontal 

rod where no artificial defect is present (compare the bottom part of the images in Fig. 13d 

and 13e). 

 

         
                                                   (a)                                                (b) 

 
(c)                                              (d)                                                (e) 

Fig. 13: Contours of the calculated maximal principal stress for the calculation (a) without 

and (b) with the artificial defects, (c) magnified view of the slice from tomographic image on 

the crack initiation, and (d) and (e) magnified views of the contours where the crack initiates. 

In (d) and (e), a yellow arrow points out the stress field around the artificial defect crossed by 

the crack, and a yellow frame shows the stress field around the second artificial defect. The 

yellow arrow and frame are reported in (c) to illustrate the exact location of the defects. 
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4. Discussion 

 

Characterization of the robocast samples 

The cellular ceramic sample considered here shows a square prism periodic structure. It has a 

high volume fraction of pores (0.64). However, the macropores, which characterize the 

macroscopic structure, only represent 0.4 of the whole sample. The difference between these 

two values represents the fraction of micropores and artificial defects in the solid rods of the 

sample. The sintered rods are not fully densified, as testified by an internal volume fraction of 

micropores of 0.43. This can be related to the relatively low sintering temperature of 1100°C 

leading to a limited densification of the ceramic, as already noted by several authors [42, 43]. 

However, this temperature was chosen to avoid the phase transformation from β to α-TCP 

which generally occurs around 1150°C [44, 45]. A small amount of α-TCP phase has already 

been detected in similar HA/β-TCP scaffolds sintered at 1140°C [22]. It is known that α-TCP 

can have a detrimental effect on the mechanical properties [42, 44]. HA/β-TCP weight ratio of 

84/16 was found in the sintered sample whereas a value of 80/20 was targeted. These close 

values show that the robocasting and sintering did not affect the sample’s chemistry. 

During the robocasting process, the syringe diameter was 150 μm. Considering the solid 

loading of the ceramic ink of 30 vol% and the relative density of the sintered rods of 57%, the 

volume shrinkage is 46% and the linear shrinkage is 13%. Thus, the expected rod diameter 

after shrinkage is 130 μm. This is consistent with the measured rod diameter distribution 

between 119 and 161 µm. The highest values probably correspond to rod overlapping between 

two adjacent rods. It is important to note that we neglect a possible elastic movement of the 

ink when it is deposited.  

A rod spacing (from center to center of the rods) of 300 µm was chosen for the ink’s 

deposition. Considering the nozzle diameter of 150 µm, it means that during the process, the 

space between two rods was 150 µm. Since the rods shrink in every dimension during 

sintering, the macropore size is also expected to decrease in the same proportion: thus the 

expected macropore size is also 130 µm (for 150 µm during deposition). The experimental 

macropore size is between 84 and 133 µm. This may be explained by an elastic 

"displacement" of the ink when it gets out of the nozzle and by the rod collapse during drying. 

This phenomenon is shown in Fig. 6b, with an interpenetration of the rods between adjacent 

layers and of non-perfect bonding between rods. The use of local tomography allows the 

observation of these types of defects due to fabrication processes (Fig. 5a and 6b) even if the 

overall structure seems to be regular (Fig. 2a). Local tomography also shows the artificial 

defects having a size between 35 and 84 µm. After shrinkage, the expected artificial defects’ 

size range is 39-87 µm due to the PMMA beads’ size range (45-100 µm). The robocast 

samples are often observed by microscopy, which does not provide a complete 

characterization [17, 19]. This study shows the importance of a 3D characterization of the 

scaffolds, especially with local tomography.   

 

Mechanical behavior in compression 

The stress/strain curve of the sample in uniaxial compression is characterized by a first elastic 

domain followed by a stress plateau. Non-linearity is observed in the elastic part of the 

loading curves with an increase of the axial stiffness (Fig. 9b) as the applied stress increases. 

This has already been observed during compression tests of porous ceramics [46] or rocks 

[47]. The increase of stiffness with increasing load has been attributed to a progressive closure 

of microcracks favorably oriented relative to the loading direction. High-resolution images 

show the presence of such defects, such as imperfect bonding between the layers (Fig. 5a and 

6b). The non-linearity can also be explained by the removal of the samples after each loading 

cycle for scanning. Crack re-opening possibly occurs during sample handling between scans. 
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Additionally, the two faces in contact with the compression platens were embedded with 

paraffin wax to avoid local brittle fracture near the faces. Therefore, the increase of stiffness 

can also be due to a first compression of the wax before the "real" compression of the 

specimen. Then, at the onset of unloading, the stress/strain curve is linear: no mechanism 

associated with non-linearity is active. The axial stiffness slowly decreases during unloading, 

possibly due to the opening of the closed cracks and/or sliding of the closed cracks’ faces [46, 

47]. This axial stiffening of the unloading curve can explain the higher value obtained for the 

effective Young's modulus calculated during unloading as compared to loading (Table 1). 

Finally, the increase of the stiffness at the onset of the unloading curves with the 

loading/unloading cycle number (Fig. 10) can be linked to an increased crack closure at 

higher applied strains. At high applied strains, the elastic domain is followed by a stress 

plateau: it usually corresponds to the damageable behavior commonly observed for highly 

porous ceramics with a stochastic microstructure. In this latter case, it is characterized by the 

propagation of multiple small cracks in the solid phase of stochastic porous ceramics [48]. In 

this study, although the robocast sample has a total volume fraction of pores of 0.64, a 

behavior characteristic of dense brittle ceramic is observed with the propagation of a main 

crack parallel to the loading direction. The rupture is not perfectly brittle because the ex situ 

compression test shows that the crack propagates step by step along the sample. This specific 

behavior has already been observed by Miranda et al. [24]
 
with robocast HA scaffolds.  

Because of the high volume fraction of pores, we could have expected a damageable behavior 

with the propagation of multiple small cracks. It seems that the observed brittle-like behavior 

is rather explained by the volume fraction of macropores (0.4) significantly lower than the 

total porous volume. A transition from a brittle-like to a cellular-like behavior with the 

increase of volume fraction of pores has been observed by Meille et al. [49] for a 

macroporous alumina with a stochastic microstructure. In this latter study, the transition 

between the two behaviors occurred at a volume fraction of pores of around 0.5. It seems 

therefore than the brittle or damageable character in uniaxial compression is mainly controlled 

by the macroporous volume fraction. It confirms observations made in our previous study 

about a macroporous β-TCP sample [26]. This sample having a volume fraction of 

macropores of 0.5 exhibited a damageable behavior. 

 

 

Specific use of two-scale X-ray tomography in the study of cellular ceramics 

Local tomography allows to have a new insight on the rods’ structure and the sample’s 

mechanical behavior. They allowed observing the artificial defects in the rods which have an 

influence on the crack initiation. In addition to the artificial defects, other defects (e.g., 

imperfect bonding between layers) are detected. The presence of defects in structures made by 

AM and their influence on the mechanical behavior have already been noticed in metallic 

samples [50]. This means that crack initiation and propagation could be delayed if the defects 

due to the fabrication process could be removed. Therefore, further work is needed to improve 

the robocasting process and obtain defect-free specimens.  

The high-resolution images were also processed to be used as an input for FE modeling. In 

this paper, an original two-scale method was developed to take into account the details of the 

microstructure revealed by local tomography in a model of the material at a lower resolution. 

This avoided the use of very large images and long calculation times. Our approach allowed 

having a lightweight mesh of the macrostructure including information about a finer scale. 

The calculated local stress distribution is modified by the presence of the artificial defects (see 

Fig. 13d and e). A high stress concentration is present around the two main defects where the 

crack initiates during the experimental test (Fig. 13e). However, another stress concentration 

is visible below a macropore where no artificial defect is present (see the bottom part in Fig. 
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13e) and no crack initiation occurs at this location. This stress concentration may be related to 

the imperfect bonding between adjacent layers which can be distinguished in the tomographic 

slice (see the bottom part of Fig. 13c). This means that the link between the stress 

distributions predicted by FE models and the crack path is not obvious. To perform 

calculations within a reasonable time, we meshed the 3D images with tetrahedra with an 

average edge size of 69 µm. This resulted in a relatively coarse mesh with some 

approximations in the geometrical description of the sample, especially around the artificial 

defects. A refinement of the mesh or the use of higher resolution images could bring more 

accurate results. The simple elastic simulation presented here could also be completed by 

calculations with a more realistic behavior (for instance, damageable behavior) for the 

ceramic material. 

 

5. Conclusions 
 

This paper focuses on the analysis of the fracture behavior in compression of a robocast 

biphasic calcium phosphate scaffold. This sample consist of different layers of parallel rods, 

the rods of one layer being perpendicular to the rods of the adjacent layer. They contain three 

types of pores: a macroporosity of hundreds of μm between the layers defining the 

architecture of the specimens, artificial defects with a size 30-80 μm intentionally added in the 

rods, and residual pores due to incomplete sintering with a size of a few microns.  

The ex situ compression test reveals a brittle-like behavior. A crack propagates along the 

loading direction (i.e., perpendicular to the tensile stress created by Poisson's effect inside the 

sample) and cuts the sample through its height. Over the same time, it propagates along the 

specimen width and finally opens the sample in two parts. The spherical artificial defects 

intentionally added are shown to have an influence on the crack initiation, despite the 

presence of stress concentration zone at the interconnection between rods. The residual 

microporosity in the rods could not be observed with local tomography. Therefore, their role 

in the mechanical behavior is not known. 

X-ray tomography was used to characterize the sample at two scales. The macrostructure was 

imaged with a low-resolution volume whereas local tomography provided high-resolution 

images of the rods and especially the artificial defects. These latter images were processed to 

build a FE modeling having a moderate number of elements and including the presence of the 

artificial defects. They were included as a "second phase" different from the ceramic with a 

specific behavior. The maximal principal stresses obtained by this FE modeling confirm the 

influence of the artificial defects with an associated important stress concentration. However, 

other calculations implementing a more complex material behavior or with a finer mesh size 

would be necessary to understand better the respective role of the microstructure and the 

macrostructure on the scaffold’s properties.  
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