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Abstract—In this paper, we propose a generic method to assess
the vulnerability to Differential Fault Analysis of generalized
Feistel networks (GFN). This method is based on an in-depth
analysis of the GFN properties. First the diffusion of faults is
studied, both at the block level and at the S-box level, in order
to have a fault which maximizes the number of S-boxes impacted
by a fault. Then the number of faults in an S-box required to
find the key is evaluated. By combining these results, a precise
assessment of the vulnerability to fault attacks of GFN can be
made. This method is then used on several examples of Feistel
ciphers.

Index Terms—Fault injections attack, differential fault analy-
sis, Generalized Feistel Networks

I. INTRODUCTION

Feistel and generalized Feistel networks are a family of
widespread block symmetric ciphers. Fault injection attacks
consist in disturbing the circuit behaviour in order to alter the
correct processing of the algorithm. Among those, the Differ-
ential Fault Analysis (DFA) is a cryptanalytic technique that
exploits erroneous results of fault injections. Since injecting
faults on a cryptographic circuit may irreversibly damage the
device, limiting the number of fault injections is often a critical
aspect of DFA. In this paper, a generic method is proposed to
evaluate the vulnerabilities of the block registers in generalized
Feistel networks. This method is based on the study of the
diffusion properties both of the function used inside the Feistel
network and of the Feistel network itself.

The fewer single-bit faults are required in a block to find the
key, the more vulnerable this block is. This knowledge allows
an attacker to choose the best target for its fault injection, but
it also enables the designer to focus countermeasures on the
vulnerable spots.

No fault attack is presented in this paper, we focus on the
diffusion properties to assess a “potential” vulnerability but do
not perform a complete fault attack since it is not our objective.

The paper is organised as follows. Section II gives the
context of generalized Feistel networks and fault attack in-
jections on them. Our approach is described in Section III.
Section IV presents our results on some examples of known
generalized Feistel networks. Finally, the conclusion is drawn
in Section V.

II. CONTEXT AND STATE OF THE ART

A. Feistel Networks

1) Definition: A Feistel network is an iterative construction
allowing to create a bijection from functions that need not be
bijective. It was invented at IBM by Horst Feistel in the 1970’s,
during the development of the Lucifer cipher, later known as
the Data Encryption Standard (DES) [18]. A Feistel network
divides the input into two blocks of equal size. One of these
two blocks goes into a subkey-dependent function, called the
Feistel function, and the result is xored to the other block, as
depicted on Fig. 1. This construction is then repeated several
times, switching the roles of the two blocks each time. The
main characteristics of this construction are:
• only half of the state is modified, using the Feistel

function.
• the construction is invertible, even if the Feistel function

itself is not.
• the inverse bijection follows the same construction up to

reversing the subkeys order.
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Fig. 1. A classical (two blocks) Feistel cipher.

Introduced at CRYPTO’89 by Zheng et al. [19], Generalized
Feistel Networks (GFNs) are a broader class of schemes taking
the main ideas of the Feistel network but dividing the internal
state into more than two blocks. As done in [2], one round of a
GFN is divided into two successive transformations: the non-
linear layer and the permutation layer. The non-linear layer is



made of one or more key-dependent Feistel functions F . They
have some of the blocks of the GFN internal state as input and
their output is xored to some other blocks. The permutation
layer consists in rearranging the different blocks of the internal
state. An example of GFN is given on Fig. 2.
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Fig. 2. Example of a generalized Feistel network with 8 blocks.

The blocks of a generalized Feistel network are denoted Bir
where i is the register/block index (ranging from 0 to b − 1
for b blocks ) and r is the current round (ranging from 0 to r
for r rounds).

2) The Feistel function: We suppose that the Feistel func-
tion F is made of three kinds of component.
• The Xor with the subkey. Since in a single round, more

than one block can go into an F function, we denote
the different subkey blocks Kλ

r with λ ∈ [[0,Λ − 1]] for
Λ subkey blocks. For example, the GFN on Fig. 2 has
Λ = 4 subkey blocks.

• The S-boxes. They are the non-linear part of the GFN
and provide Shannon’s confusion.

• The "mixing" functions. They are linear and provide
diffusion inside a block.

B. Examples of Feistel ciphers

1) DES: The Data Encryption Standard (DES) [18] was
developed by IBM and standardized by the NIST in 1977.
It is the most famous Feistel cipher and is depicted on
Fig. 3. Prior to the 16-round Feistel network itself, a bit-wise
permutation IP is applied to the 64-bit internal state. The
inverse permutation IP−1 finishes the encryption process. The
Feistel function F is illustrated on Fig. 4. It acts on 32 bits
and consists in 4 steps:
• Expansion E which maps 32 bits into 48 bits by dupli-

cating half of the bits.
• Xor with the 48-bit subkey Kr, r ∈ [[1, 16]].
• S-boxes Si, i ∈ [[1, 8]], which substitute a 6-bit input for

a 4-bit output.
• Bit-wise permutation P of 32 bits.
2) MIBS: MIBS is a cipher presented at CANS’09 [6] and

aimed at low-resource environments such as RFID tags or
sensor networks. It is made of 32 iterations of a classical
Feistel networks (see Fig. 1) acting on two blocks of 32 bits
each and accepts key of 64 or 80 bits.

As depicted on Fig. 5, MIBS Feistel function operates on
32 bits divided into 8 4-bit words (nibbles) and is made of
three consecutives steps:
• Xor with the subkey.

IP Permutation Initiale (64 bits)
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IP−1 Permutation Finale (64 bits)

Fig. 3. Overview of Data Encryption Standard.
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Fig. 4. Feistel function F of DES.

• a layer of 8 parallel 4× 4 S-boxes.
• a linear mixing layer MC acting at nibble level.
3) TWINE: TWINE is a 64-bit block cipher presented at

SAC ’12 [16] aiming at a reduced circuit area while avoiding
non-software-friendly operations (such as bit permutations) to
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Fig. 5. Structure of the MIBS Feistel function.

maintain decent performances when implemented in software.
It is a GFN with 16 blocks, 4 bits each, that can accept
either 80-bits or 128-bits keys. The permutation layer that
rearranges the blocks at the end of each round was chosen
to maximise diffusion between blocks, according to a result
of [15]. Compared to the cyclic shift, this permutation requires
twice less rounds for an input difference to influence all the
blocks. One round of TWINE is depicted on Fig. 6. The whole
encryption process consists in 36 rounds of this scheme for
both key lengths. The Feistel functions is used 8 times per
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Fig. 6. One round of TWINE.

round and is consecutively made of:
• a 4-bit Xor with a subkey block.
• a single 4× 4 S-box.
4) CLEFIA: CLEFIA is a 128-bit block cipher presented at

FSE ’07 [14] with key sizes 128, 192 or 256 bits. It is a GFN
with 4 blocks, 32 bits each, as depicted on Fig. 7. At each
round, it uses 2 slightly different Feistel functions F0 and F1.
Function F0 is given on Fig. 8. They are both made of three
consecutive steps:
• Xor with the subkey,
• 4 parallel 8 × 8 S-boxes. Both functions F0 et F1 uses

the two same S-boxes S0 and S1 but in different orders.
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Fig. 7. Overview of CLEFIA.

• two linear diffusion layers, MC0 for F0, MC1 for F1

based on finite field operations (much like AES Mix-
Columns).
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Fig. 8. The Feistel function F0 of CLEFIA.

C. Attacks using Fault Injections

1) Fault Injections: Fault injection attacks consist in dis-
turbing the circuit behaviour in order to alter the correct
processing of the algorithm. Unfortunately, in fault injection
attacks the circuit can be damaged. Sakiyama et al. in [12]
emphasize the importance of limiting the number of fault
injections. So, our analysis is conducted with this goal in mind.

By design, algorithms are made secure against classical
attacks. For example, in the case of the classical Feistel cipher,
Luby and Rackoff demonstrated in [9] the following result:
no efficient algorithm exists to distinguish a 4-round Feistel
cipher with pseudo-random Feistel functions from a random
permutation with only the observation of (plaintext, ciphertext)
pairs.

Despite this security, an algorithm may be vulnerable to
physical attacks. There are two families of physical cryptanal-
ysis : SCA (Side Channels Analysis) attacks; and FI (Fault
Injection) attacks. In this paper we will only focus on fault



injections attacks. One of the first fault attack was proposed
against a Feistel cipher (the DES) by Biham and Shamir in [4]
in order to recover the cipher-key.

In our approach, the fault attack changes one single-bit of a
block Bir. The single-bit fault model is a common one which
account for an attack where a low stress injection method is
used.

2) DFA on a Generalized Feistel Network: The Differential
Fault Analysis (DFA) is a powerful cryptanalytic technique
that exploits differences between the correct ciphertext and
erroneous results due to fault injections. The attack path for
DFA on a Feistel cipher is classically done on the last round
as in [4] for DES [18]. The attack path is shown on Fig. 9 and
is repeated for each subkey block Kλ

r . From now on, variables
with a superscript * (star) denote the faulted version of a data
and the letter ∆ is used to denote the difference between the
correct value and the faulted one. E.g. Bi∗r−1 denotes the faulted
version of Bir−1, and ∆Bi

r−1
= Bi∗r−1 ⊕Bir−1. Thus, if F has
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Fig. 9. Attack path of a fault injection on a Feistel cipher.

block Bir−1 as input and has its output xored with Bjr−1 to
produce Bor , we have the following relation:

∆Bo
r

= Bor ⊕Bo∗r
= F

(
Bir−1,K

λ
r
)
⊕F

(
Bi∗r−1,K

λ
r
)
⊕∆Bj

r−1

(1)

However it is possible for the subkey to be xored at the end
of the Feistel function. In this case, we have:

∆Bo
r

= F
(
Bir−1

)
⊕Kλ

r ⊕F
(
Bi∗r−1

)
⊕Kλ

r ⊕∆Bj
r−1

= F
(
Bir−1

)
⊕F

(
Bi∗r−1

)
⊕∆Bj

r−1

This equation does not depend on the subkey, so another attack
path must be used instead. This case happens for example
in the ciphers SIMON [1] or Piccolo [13]. Another case to
deal with is when blocks Bir−1 and Bi∗r−1 are masked by a
whitening key that is xored between the last round of the
Feistel construction and the ciphertext as in Piccolo [13] for
example. These two particular cases are not taken into account
in this study but are not mandatory for fault injections on
GFNs to work, see e.g. [7] for a successful attack on Piccolo.

Physical attacks are based on a divide-and-conquer strategy:
the targeted subkey block Kλ

r is cut into L pieces. That is,
the whole subkey is then cut into Λ blocks Kλ

r , each block
being cut into L pieces Kλ,l

r . How this second division is done

depends on the S-box layer: one piece of subkey per S-box.
An hypothesis on Kλ,l

r is denoted k and k̂ denotes the correct
value.

III. DESCRIPTION OF THE GENERIC APPROACH

In this section a generic method is proposed to assess the
vulnerability of a particular block in a GFN. In particular the
most vulnerable block Ber , the best suited for injecting single-
bit faults, is searched (e is the block index and r is the round
number). A block is the most vulnerable when injecting single-
bit faults at this location minimizes the total number of faults
required to find the key. We wish to have a good diffusion of
the fault as to attack as many subkey bits as possible for each
fault injection. A priori, this depends on two things: the overall
structure of the Feistel network but also the Feistel function
used.

A. At the Feistel network level

At the Feistel network level, the diffusion of faults in the
blocks are studied which allows to predict the propagation of
faults in the blocks.

1) Full diffusion delay: We define here the notion of (block-
wise) diffusion in a generalized Feistel network, as given
in [2]. A block Bi0 influences block Bjr if Bi0 effectively
appears when expressing Bjr as a function of B0

0 , · · · , Bb−1
0 .

A block Bi0 has diffused at round r if Bi0 influences all the Bjr
for j ∈ [[0,b− 1]]. If all the blocks Bi0 have diffused at round
r, the Feistel network is said to have reach full diffusion, i.e.
each output block Bjr depends on all input blocks Bi0. The
minimum number of rounds required to reach full diffusion is
called full diffusion delay, and denoted d. By definition of the
full diffusion delay, it is unnecessary to inject the fault before
the d latest rounds as doing so will not further propagate the
fault but may complexify the analysis. We then focus on the
blocks Ber with e ∈ [[0,b− 1]], r ∈ [[r− (d+ 1), r− 1]] where
e indicates the block index where the single-bit fault has been
injected.

2) Matrix Representation of Feistel Networks: At SAC ’13,
Berger et al. [2] presented a general framework to represent
generalized Feistel networks using matrices. The matrix rep-
resentation of a GFN is the adjacency matrix of the graph
representing influence relations in the GFN: when block Bir+1

is influenced by Bjr , a non zero coefficient at position (i, j)
in the matrix is written. The non zero coefficients of this
matrix can either be 1 or F depending on whether the
influence is direct or through a Feistel function F . They then
compute powers of that (adjacency) matrix to determine the
full diffusion delay. Technically, the computation is done over
the coefficient ring of polynomials Z[F ]. In this paper, we
reuse this representation but in a slightly improved way.

Let D be N ∪ {−∞} endowed with the two internal laws
max and +, defined over the integers N and extended to D in
the obvious way: ∀a ∈ D, max(a,−∞) = max(−∞, a) = a
and (−∞) + a = a+ (−∞) = −∞. Then D is an idempotent
commutative semiring, also known as commutative dioid. A
semiring is an algebraic structure very similar to a ring except



that the first law (max in our case) forms only a commutative
monoid instead of a commutative group, i.e. the requirement
to have a first-law inverse for every element is discarded. A
semiring is said idempotent when ∀a ∈ D,max(a, a) = a,
and commutative when the second law (+ in our case) is
commutative. A dioid is simply an idempotent semiring.

This object represents degrees of polynomials with the
convention that the degree of the zero polynomial is −∞.
In our case, a polynomial in the Feistel function F is studied.
We then define the dioidic matrix representationM of a GFN
to be the matrix with coefficients in D such that coefficient at
position (i, j) can either be:
• 0, when block Bir+1 is influenced by Bjr directly.
• 1, when block Bir+1 is influenced by Bjr via the Feistel

function F .
• −∞, otherwise, i.e. not influenced.

For example, the matrix M of the GFN on Fig. 2 is given on
Fig. 10.

M =

1 0 −∞ −∞ −∞ −∞ −∞ −∞
−∞ −∞ 0 −∞ −∞ −∞ −∞ −∞
−∞ −∞ 1 0 −∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞ 0 −∞ −∞ −∞
−∞ −∞ −∞ −∞ 1 0 −∞ −∞
−∞ −∞ −∞ −∞ −∞ −∞ 0 −∞
−∞ −∞ −∞ −∞ −∞ −∞ 1 0

0 −∞ −∞ −∞ −∞ −∞ −∞ −∞


Fig. 10. Matrix of the GFN given on Fig. 2.

The link with the matrix representation introduced in [2] is
as follows. The coefficients in our matrix represent the degree
of the coefficient at the same position in the matrix of [2].
That is, we are interested in how many Feistel functions are
passed through to go from an input block to an output block,
which is represented by the degrees in the polynomials in the
Feistel function F .

3) Using the Matrix Representation for Fault Injections:
For a subkey block Kλ

r to be attacked using fault injections,
the block Bir−1 at the input of the λ-th Feistel function F
must be faulted. Thus the block where the fault is done must
influence that block Bir−1. We recall that due to the structure of
a (generalized) Feistel network, the input of a Feistel function
at round r−1 must be outputted as a ciphertext block to have
an invertible construction.

Let Ber be the block where the fault is injected and V the
e-th standard basis vector (which has then −∞ coefficients on
every coordinates except the e-th one which is 0). The vector
VF defined by the vector matrix product given on equation (2)
allows to know for each block at the output of the penultimate
round whether the fault injected in Ber has influenced that
particular block and how many Feistel functions F has been
crossed doing so.

VF =Mr−(r+1) · V (2)

If at the index i, corresponding to block Bir−1, we observe:

• −∞: the block is not faulted.
• 0 : the block contains the single-bit fault.
• x ∈ N : the block is faulted and the fault has been through
x Feistel functions.

Hence for each fault, the number nλ of subkeys blocks
attacked after r rounds can be computed.

B. At the Feistel function level

Recall that a subkey block is split into L pieces (one
per S-box). In the Feistel function, a non-linear layer is
necessary. This layer is composed of one or several (L) S-
boxes. This division has an impact on the propagation of
the fault inside the Feistel function. Since an S-box must be
faulted for the attacker to be able to gain knowledge on the
corresponding subkey piece, knowing into which S-boxes the
fault is propagated is of the utmost importance.

Studying the Feistel function allows to identify how many
pieces of the subkey blocks are attacked by each fault injec-
tion. This number is denoted nl.

One should also be able to find all the possible differentials
∆Bj

r−1
. Indeed, as Bjr−1 might be faulted, knowing the dif-

ferent values of ∆Bj
r−1

is necessary in order to be able to use
equation (1) to retrieve the key. The rest of this section deals
with the diffusion properties of the Feistel function.

1) Number of pieces of subkey attacked: The first thing to
determine from the Feistel function is the number of pieces
of the subkey which are attacked, i.e. the number of faulted
S-boxes. Looking at the Feistel function, it is possible to know
what output bits can be faulted with a single-bit fault at the
input. And, since we know what S-boxes depend on which
input bits of the Feistel function, it is possible to deduce which
S-boxes will be faulted in the next Feistel function.

So from the diffusion of the bits in the Feistel function it
is possible to compute the number nl of pieces of the subkey
block attacked by a fault injection, depending on the number
of Feistel functions crossed which is VF (i), the i-coordinate of
vector VF . Care should be taken not to forget the case where
the fault has not been through any function. For example in
DES, a single-bit fault can impact up to 2 S-boxes because of
Expansion E.

2) Search for the values of ∆Bj
r−1

: If the fault is not

propagated to Bjr−1, the value of ∆Bj
r−1

in equation (1) is
equal to 0. In the other case, the value of ∆Bj

r−1
is unknown.

VF (j), the j-th coordinate of vector VF , indicates if Bjr−1
has been faulted and how many times the fault passed through
the Feistel function.

Simply put, the study of the diffusion of bits in the Feistel
function allows to evaluate how many bits are potentially
faulted in Bjr−1 when the number of times the injected fault
crossed the Feistel function is known. For example, if the fault
do not cross any Feistel function, the fault being single-bit,
there are as many possible differentials as bits in Bjr−1. As a
consequence, it is possible to evaluate the information brought
by the fault since we can evaluate the incertitude on ∆Bj

r−1
.



But this approach can be improved by studying the actual
values of the possible differentials. For that purpose, the single
faulted bit in Ber is searched. Several hypotheses are often
possible.

In order to find it the diffusion result on the next round is
used, i.e. the value:

WF =M · VF

The minimal but finite value (i.e. in N) in the vector WF
corresponds to the faulted block where the fault crossed the
Feistel function a minimum number of times.

If this value is equal to 0, the single-bit fault can be observed
in the ciphertext on the corresponding block.

If the value is equal to 1, the differential of the corre-
sponding block ∆

B
min(WF )
r

is computed. For all single-bit
faults, it is often possible to compute exhaustively all possible
differentials at the output of a Feistel function F . As a
consequence, knowing ∆

B
min(WF )
r

restricts the set of possible
single-bit faults that have been injected.

If the minimal value in WF is greater or equal to 2, the
above method might be still possible. However, since for
each intermediate difference tuple (i.e difference after the first,
second,. . . , penultimate function), all the output differences
(after the last function) must be computed, the complexity
of such an algorithm grows exponentially fast in the size of
one block and in the value of min(WF ) and quickly becomes
infeasible. Besides, due to Feistel function being designed for
maximazing diffusion inside a block, it is likely that this will
not help restricting the possible single-bit faults injected any
longer.

If ∆
B

min(WF )
r

allows to restrict the set of fault candidates,
each one of these candidates is propagated to obtain a reduced
set of potential differentials ∆Bj

r−1
. The union of all possible

differentials (for all fault candidates) indicates the number of
possible differentials ∆Bj

r−1
. Yet this approach is not perfect

since two differentials can be xored in the datapath. This
problem has no consequences for us since we only try to
evaluate the number of faults required to find the key and
we do not construct a fault attack. But a cryptanalyst would
have to take it into account to conceive a fault attack.

C. At the S-box level

In this section the information on the key brought by a
fault crossing an S-box is evaluated. The value n, the number
of faults in an S-box to find the corresponding subkey piece,
is computed. The attack path is reduced to the S-box level,
considering that what happens in the Feistel function F before
the Xor with the subkey is known and that the S-boxes are
the only non-linear part of the function. This case is summed
up by equation (3), where x the input of the S-box, x∗ the
faulted input and ∆y the output differential are known.

S(x⊕ k̂)⊕ S(x∗ ⊕ k̂) = ∆y (3)

A method inspired by classical differential cryptanalysis is
used. Differential cryptanalysis is a chosen plaintext attack

introduced by Biham and Shamir in 1991 [3]. It consists in
considering plaintexts pairs having a fixed difference and in
studying how this difference propagates throughout encryp-
tion.

If we write e = x⊕ x∗ in equation (3), we have:

S(x⊕ k̂)⊕ S(x⊕ e⊕ k̂) = ∆y (4)

Each time another fault is injected, values of x, e and ∆y

change while k̂ stays the same.
We are then interested in the minimal number n of expe-

riences (fault injections) such that being given x0, · · · , xn−1,
e0, · · · , en−1 and ∆y0 , · · · ,∆yn−1 , there is only one key for
which the n equations (4) simultaneously hold. The S-box S is
supposed to be a vectorial boolean function from Fu2 into Fv2 .
Let a ∈ Fu2 and b ∈ Fv2 , Sa,b denotes the set of all inputs z such
that if an input difference a is applied, an output difference b
is observed. Said otherwise:

Sa,b = {z ∈ Fu2 | S(z)⊕ S(z ⊕ a) = b}.

By symmetry of this equation, #Sa,b is even. Let δ denotes
the base-2 logarithm of the maximum size of the sets Sa,b
taken over all a 6= 0 and b, that is:

2δ = max
a 6=0, b

#Sa,b

Since the Sa,b’s are of even size and not all empty, it follows
that δ ≥ 1. More generally, δ ≥ u− v. Indeed, let a be a non-
zero fixed input difference, then

∑
b∈Fv

2
#Sa,b = 2u. Hence

there exists a b so that #Sa,b ≥ 2u/2v and thus δ ≥ u − v.
Finally, if x is drawn uniformely at random in Fu2 then

Pr [x ∈ Sa,b] =
#Sa,b

2u
≤ 2δ−u.

A key k is then a solution of equation (4) if and only if
x⊕ k ∈ Se,∆y . So the number of solutions of equation (4) is
#Se,∆y

. The set of z such that z ⊕ x ∈ Se,∆y is denoted by
x ⊕ Se,∆y

. Then k is solution of equation (4) if and only if
k ∈ x ⊕ Se,∆y

. For n fault injections, we are then interested
in the probability

Pr

[
k ∈

n−1⋂
s=0

(xs ⊕ Ses,∆ys
)

]
.

The faults es are independent from each others. The ∆ys

and xs are independent and identically distributed. That is,
they are random variables with the same probability law and
are mutually independent. Thus we can write:

Pr

[
k ∈

n−1⋂
s=0

(
xs ⊕ Ses,∆ys

)]
=

n−1∏
s=0

Pr
[
k ∈ (xs ⊕ Ses,∆ys

)
]
≤ 2n(δ−u)

Besides, this probability is lower bounded by 2−u since
there exists a solution. Hence the number of faults n searched,



the number of faults on the S-box required to find the corre-
sponding subkey piece, is such that 2n(δ−u) ≤ 2−u, which
leads to

n ≥
⌈

u

u− δ

⌉
(5)

In practice, there are mainly two cases possible:
• u×u bijective S-boxes, with δ as small as possible to best

resist differential attacks and essentially u = 4 or u = 8.
We know that δ ≥ 1. However, at present time, the only
known example of S-boxes that reach this bound are for
odd u or u = 6. Still, there are countless examples of
S-boxes with δ = 2. The case u = 4 is very well studied,
see e.g. the classifications of 4 × 4 S-boxes of Leander
and Poschamann [8] or of Saarinen [11] and it is now
very easy to find a 4 × 4 S-box with minimum δ. The
other standard case is u = 8. If there is no known global
classifications of 8× 8 S-boxes at present day, there are
many examples in the literature, the most famous being
the S-box of the AES. In both cases (u = 4 and u = 8),
n = 2 is obtained.

• 6×4 S-boxes as in DES. In general, a 6×4 S-box verifies
δ ≥ 6 − 4 = 2 and hence n = 2. However, because of
their structure the DES S-boxes do not reach this bound
but verify δ = 4 instead, hence n = 3 for DES.

Anyway, since the value of δ is also required to assess the
security of the cipher against differential cryptanalysis, it is,
by design of the cipher, always possible to compute it in
reasonnable time.

Now what happens when there is incertitude on the ∆y

value is studied. We have the following equation:

S(x⊕ k̂)⊕ S(x⊕ e⊕ k̂) = ∆y1 or · · · or ∆yJ , (6)

where J denotes the number of possible ∆y . Since for a
fixed input difference a, the sets Sa,bt are pair-wise disjoints,
we have :

Pr

[
z ∈

J⋃
t=1

Sa,bt

]
=

J∑
t=1

Pr [z ∈ Sa,bt ]

As in the case where there is only one ∆y , k is solution of
equation (6) if and only if

k ∈ x ⊕
J⋃
t=1

Se,∆yt

Notice that the union of subkey hypotheses
⋃
t(x⊕Se,∆yt)

is interesting only when it is different from the set of all the
hypotheses.

If one does this experiment n times, we have:

Pr

[
k ∈

n−1⋂
s=0

(
xs ⊕

J⋃
t=1

Ses,∆ys,t

)]
=

n−1∏
s=1

Pr

[
k ∈ xs ⊕

J⋃
t=1

Ses,∆ys,t

]
(7)

Therefore the minimum number of faults nJ , where J is the
incertitude (the number of possible ∆y), to retrieve the key is

the smallest n such that the term on equation (7) becomes
smaller than 2−u, i.e. small enough to eliminate all the keys
but the right one.

IV. ALGORITHM AND RESULTS

A. Algorithm to find vulnerable locations for a fault injection

In this section, a method is given in order to find good
locations to inject a single-bit fault into a generalized Feistel
network. Algorithm 1 describes this procedure. Its inputs are
the Feistel function F and the GFN matrixM. For every block
Ber with e ∈ [[0,b − 1]] and r ∈ [[r − (d + 1), r − 1]] where
the fault can be injected, the algorithm returns the number of
subkey blocks and, for each of them, the number of pieces of
subkey and the number of differentials to take into account.

Using the Feistel network, for each block candidate for a
fault injection, the number nλ of subkey blocks attacked is
first computed. Then for each of the subkey blocks Kλ

r , the
algorithm computes the number of pieces attacked (worst case
and best case). Then if VF (j) 6= −∞, i.e. if the block xored at
the Feistel function output is faulted, giving a first estimation
of the number of possibles differentials. The algorithm reuses
then the Feistel network to find the least influenced ciphertext
block (but influenced still) by the fault, to further reduce the
number of possible differentials. If that number does not allow
to eliminate some subkey candidates, we consider that the
subkey piece Kλ

r cannot be attacked using this fault. Finally,
we compute the number nJ of faults required to retrieve
the remaining candidates from the average number of ∆y

involved.
This algorithm gives a first insight on where to inject the

fault. Yet its genericity does not rule out that a better fault
attack exists on a particular GFN. Moreover, it is quite possible
to imagine an attack that injects faults in more than one block
or with a different fault model.

B. Results on some Feistel ciphers

We have tested our approach on several Feistel ciphers. The
exposed results focus essentially on three parameters. First, the
number nλ of subkey blocks attacked and for each of them the
number nl of pieces attacked, which together are a measure
of the fault efficiency: the higher these numbers, the better
the fault. And second the number of differences ∆Bj

r−1
on the

output block (for each of the nλ blocks attacked) which is a
measure of the fault inefficiency: the more ∆Bj

r−1
there are,

the more faults will be required to find the subkey, the worst
case being that the subkey cannot be found. A good attacker
will then have to find where to inject the fault to balance
those parameters that tend to grow together but have opposite
results.

In this section, the matrices have coefficients in the dioid D,
assuming matrix vector product. The value −∞ are replaced
by ’.’ (dot) for readability.

1) DES: Our algorithm is tested on DES since it was the
most well known 2-block Feistel cipher.

In the following, details of our analysis are given:
• Number of rounds: r = 16.



Algorithm 1 Finding the block where the least fault injections
are required to attack the cipher.
Require: the Feistel function F , the GFN matrix M
Ensure: all the Ber (e ∈ [[0,b−1]] and r ∈ [[r−(d+1), r−1]])

with the corresponding nλ, nl, J and nJ values.

Compute the full diffusion delay d using M.
Deduce the number of S-boxes L from the Feistel function
F .
for 0 to d, number of times the fault crossed F do

Compute the associated number of pieces attacked nl
Compute the number J of output differences possible and
the number of faults nJ required to retrieve a subkey
piece

end for
for ∀Ber with e ∈ [[0,b− 1]], r ∈ [[r− (d+ 1), r− 1]] do

Create the e-th basis vector V
VF ←Mr−(r+1) · V
WF ←M · VF
Deduce the number of blocks that can be attacked nλ
for All the subkey blocks Kλ

r attacked do
Identify the input block Bir−1 and the block xored at
the output of the Feistel function Bjr−1

Find the corresponding nl from VF (i)
if VF (j) 6= −∞ then

if VF (j) ≥ 2 then
Remove Kλ

r from the list of blocks that can be
attacked

else
Compute the number of possible ∆Bj

r−1

if the smallest coefficient 6= −∞ of WF is less
or equal to 1 then

Reduce the number of possible ∆Bj
r−1

end if
Deduce the corresponding J
if J ≥ #{k} then

Remove Kλ
r from the list of blocks that can be

attacked
end if

end if
end if
Compute the number nJ of faults required to attack
that subkey block

end for
end for

• Number de blocks: b = 2.
• Full diffusion delay: d = 2.
• The GFN M:

M =

(
. 0
0 1

)
.

• Number of subkey blocks: Λ = 1. One has to remark that
Bir−1 = R15 and ∆Bj

r−1
= ∆L15

.
• Number of pieces in subkey blocks (number of S-boxes):
L = 8.

• Number of faults required to retrieve a piece of subkey
using equations of the form (3): n = 3.

Then the Feistel function is studied :

• Because of Expansion E, a single bit input difference can
impact 2 S-boxes.

• A property of DES S-boxes is that a single bit difference
at the input of an S-box ensures at least a two-bit
difference at the output.

• the bit-permutation P is made such that the 4 output bits
of an S-box are sent to 4 different S-boxes at the input
of the next round.

Thus even when the fault does not go through a Feistel
function, up to 2 S-boxes can still be attacked. If the fault goes
through exactly one Feistel function, there are between 2 and 8
faulted output bits. After passing through the Feistel function,
2 to 8 bits are faulted at the output, leading to 32∗(256−1−8)
possible differentials.

Conversely, assuming a single-bit input differential, observ-
ing the output of the Feistel function is characteristic enough
to reduce the number possible input differentials from 32 to
only 2.

In the case of the DES, the fault injection on L15 is
eliminated since it does not allow to attack the key. Results of
our analysis are summed up in Table I where nl is the number
of pieces of subkey blocks attacked and ∆ is the number of
guesses on ∆L15

. The number nλ of subkey blocks attacked
is of course nλ = 1 since there is only one Feistel function
per round.

TABLE I
RESULTS OF OUR ANALYSIS ON THE DES

Blocks B VF WF nl ∆
R15 or L14 (., 0) (1, 0) 1 ≤ nl ≤ 2 1
R14 or L13 (0, 1) (2, 1) 2 ≤ nl ≤ 8 2

R13 (1, 2) (3, 2) 2 ≤ nl ≤ 8 32 ∗ 247

Our method shows that it is more judicious to inject faults
in R14 for the DES. Yet Biham and Shamir have shown in [4]
that, for the DES, a fault in R13 leads to a more efficient
attack. To find this result, they have studied the round function
in depth, while our approach is generic.

Moreover, the study by Rivain in [10] showed that injecting
faults before, in rounds 9, 10, 11, 12 (beyond the full diffusion
delay), requires a bigger number of faults to find the key.



2) MIBS: This cipher is chosen because, as DES, it is
a classical Feistel network and thus it is mainly the Feistel
function that matters for our study. Moreover, contrarily to
DES, the S-boxes are bijective, which is more common among
block ciphers.

In the following, details of our analysis are given:
• Number of rounds: r = 32.
• Number of blocks: b = 2.
• Full diffusion delay: d = 2,
• The GFN M:

M =

(
1 0
0 .

)
.

• Number of subkey blocks: Λ = 1. One has to remark that
Bir−1 = L31 and ∆Bj

r−1
= ∆R31

.
• Number of pieces in subkey blocks (number of S-boxes):
L = 8.

• Number of faults required to retrieve a piece of subkey
using equations of the form (3): n = 2.

The diffusion function following the S-boxes strictly pre-
serves the partition into 4-bit blocks defined by the S-boxes.
Hence the study of MIBS Feistel function is as follows:
• Each input bit faults exactly one S-box. S-boxes are

bijective, so modifying one bit in input means modifying
at least one bit in output, so 1 to 4 output bits can be
faulted.

• If the fault has been through exactly one Feistel function,
there are 5 or 6 pieces of subkey blocks that can be
simultaneously attacked.

• If one observe a faulted output (assuming single-bit
faulted input), one can deduce which S-box is faulted
and thus the input fault is reduces to 4 possibilities.

• If the fault has been through more than one Feistel
function, then all the S-boxes are faulted.

Results of our analysis are summed up in Table II where
nl is the number of pieces of subkey blocks attacked and ∆
is the number of guesses on ∆R31 . As for DES, the number
nλ of subkey blocks attacked is nλ = 1.

TABLE II
RESULTS OF OUR ANALYSIS ON MIBS

Blocks B VF WF nl ∆
L31 or R30 (0, .) (0, 1) 1 1
L30 or R29 (1, 0) (1, 2) 5 ≤ nl ≤ 6 4

L29 (2, 1) (2, 3) 8 112

Results indicate that it seems best to attack on block L30.
This way though, not all the subkeys pieces can be attacked
at the same time. On the contrary, injecting on L29 allows
to attack the whole subkey, but the number of differences on
∆R31

becomes greater. A more in-depth study of the L29 case
may be possible, but may not be trivial to perform.

3) TWINE: TWINE was chosen because it is the exact
opposite of DES and MIBS: the Feistel function is very simple,
it is a single S-box. The whole study will be on the Feistel
networks itself.

In the following, details of our analysis are given:
• Number of rounds: r = 36.
• Number de blocks: b = 16.
• Full diffusion delay: d = 8.
• The GFN M:

1 0 . . . . . . . . . . . . . .
. . 0 . . . . . . . . . . . . .
. . . . . . . . . . 1 0 . . . .
. . . . . . 0 . . . . . . . . .
. . 1 0 . . . . . . . . . . . .
0 . . . . . . . . . . . . . . .
. . . . . . . . 1 0 . . . . . .
. . . . 0 . . . . . . . . . . .
. . . . . . 1 0 . . . . . . . .
. . . . . . . . . . 0 . . . . .
. . . . . . . . . . . . 1 0 . .
. . . . . . . . . . . . . . 0 .
. . . . 1 0 . . . . . . . . . .
. . . . . . . . 0 . . . . . . .
. . . . . . . . . . . . . . 1 0
. . . . . . . . . . . . 0 . . .



.

• Number of subkey blocks: Λ = 8.
• Number of pieces in subkey blocks (number of S-boxes

by Feistel function): L = 1.
• Number of faults required to retrieve a piece of subkey

using equations of the form (3): n = 2.

Since the Feistel function is essentially a single S-box (i.e.
nl = 1), if the fault on block Bjr−1, that is xored to the ouput
of the targetted function, has been through exactly one Feistel
function in the previous rounds, then this fault can take ∆ =
14 of the 24 − 1 = 15 possible values, restricted to ∆ = 7
if the input fault is known. Hence, there are three favorable
cases:
• Bjr−1 is not faulted: ∆ = 1.
• Bjr−1 contains exactly the value of the fault: ∆ = 1 if the

value of the fault is known, ∆ = 4 else.
• Bjr−1 has been through exactly one function: ∆ = 7 if

the value of the fault is known, ∆ = 14 else.
The best place for a fault injection on TWINE will then be
the register where the fault reaches the most Feistel functions
with the condition that their respective outputs must fall in
the above three cases. It appears that the best case achievable
is to inject a fault at round 31, on any Bi31 at the input of
a function. This way it is possible to attack simultaneously
nλ = 5 functions on the last round of TWINE, four of them
with a non faulted Bjr−1, i.e. with ∆ = 1, and a fifth one with
∆ = 7. Injecting the fault earlier in the algorithm (round 30
and before) only allows to attack at most 4 functions, which
is not as interesting as the previous case. Finally, if the fault
is injected at round 32 or after, then only up to 3 functions
can be attacked.

4) CLEFIA: CLEFIA was chosen as an intermediate case
between DES and TWINE: it has more than two blocks and



the Feistel function is more than a single S-box. Thus, both
the Feistel function and the Feistel network have to be studied
and then mixed together.

In the following, details of our analysis are given:
• Number of rounds r = 18, 22 or 26 depending on the

key size (resp. 128, 192 or 256 bits).
• Number of blocks b = 4.
• Full diffusion delay d = 4.
• The GFN M:

M =


1 0 . .
. . 0 .
. . 1 0
0 . . .

 .

• Number of subkey blocks: Λ = 2.
• Number of pieces in subkey blocks (number of S-boxes

by Feistel function): L = 4.
• Number of faults required to retrieve a piece of subkey

using equations of the form (3): n = 2.

The study of the CLEFIA Feistel function is as follows:
• Each input bit faults exactly one S-box. S-boxes are

bijective, so modifying one bit in input means modifying
at least one bit in output, so 1 to 4 output bits can be
faulted.

• Because of the diffusion properties of matrices MC0

and MC1 of CLEFIA, if the fault has been through one
Feistel function, then all the S-boxes are faulted.

• If one observe a faulted output (assuming single-bit
faulted input), one can deduce which S-box is faulted
and thus the input fault is reduced to 4 possibilities.

• By symmetry in the network, one can restrict the analysis
to the case where the fault is injected on block B0

r .
Results of our analysis are summed up in Table III, assum-

ing a 128-bit key, i.e. there are 18 rounds. For each possible
location of the fault, the number nλ ∈ [[1, 2]] of subkey
blocks attacked, as well as for each of the two functions, the
number nl ∈ [[0, 4]]2 of pieces of subkey attacked and the
corresponding number ∆ of differences on the output block
are given.

TABLE III
RESULTS OF OUR ANALYSIS ON CLEFIA

Blocks B VF WF nλ nl ∆
B0

17 (0, ., ., .) (0, 1, ., .) 1 (1, 0) (1,−)
B0

16 (1, ., ., 0) (1, 2, ., 0) 1 (4, 0) (1,−)
B0

15 (2, ., 0, 1) (2, 3, 0, 1) 2 (4, 1) (1, ≤ 127)
B0

14 (3, 0, 1, 2) (3, 4, 1, 2) 2 (4, 4) (4, huge)
B0

13 (4, 1, 2, 3) (4, 5, 2, 3) 2 (4, 4) (946, huge)

Results indicate that injecting on B0
17 is not optimal since if

the injection is made one round earlier on B0
16, it is possible

for the same cost, to fault the whole function F0 instead of a
single S-box. The attack by Chen et al. [5] with 18 faults (for
CLEFIA-128) falls in that case.

If one wishes to fault both functions, then the second one
will have a non trivial ∆. The case B0

15 is still manageable,

but only one S-box of the second function is attacked. Fault
injections on B15 were used by Takahashi and Fukunaga [17]
to successfully attack CLEFIA-128 requiring only 2 faults.
Even if they make an in-depth study of CLEFIA Feistel func-
tions to reduce the number of faults to its minimum, this result
corroborates our analysis: it is best to inject the fault on B15.

It might be possible to manage the case where the fault is
done on B0

14. This would allow to attack all 8 S-boxes at once
but it would require very deep study of the Feistel functions
to tackle the problem of ∆ on the second function.

V. CONCLUSION

In this paper, it has been shown that some blocks are more
vulnerable than others in generalized Feistel networks. Fewer
faults are needed to find the key in the most vulnerable blocks,
which make them targets of choice for fault attacks. A method
has been proposed to identify these blocks allowing designers
to deal with them accordingly. The genericness of the proposed
method implies that the vulnerability evaluation is not optimal
but a method to assess the vulnerabilities automatically has
been proposed.

Further work will include finding a refined version of
this study that can go deeper into the analysis of the Feistel
functions while maintaining genericity.
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