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Abstract

Cardiovascular diseases remain the major cause of mortality
worldwide. Pathologies of the vasculature such as atheroscle-
rosis are often related to biochemical and genetic factors as
well as mechanical effects that strongly change the function
and shape of arteries. The present work is part of a general
research project which aims to better understand the mechan-
ical mechanisms responsible for atherosclerotic plaque forma-
tion and rupture. The chosen approach is to use numerical fluid
structure interaction (FSI) methods to study the relative influ-
ence of hemodynamic parameters on the structural stresses gen-
erated on plaques. To this aim, a numerical study of a simplified
straight vessel exposed to lumen pressure was investigated un-
der quiescent and steady flow conditions. As the internal pres-
sure or the steady velocity increases, the vessel buckles lead-
ing to a non-linear large deformation behaviour. The results
have been validated using theoretical predictions for the buck-
ling thresholds. Further studies on idealised cardiovascular con-
ditions such as stenosis (i.e., lumen constriction) or aneurysm
like (i.e., arterial wall expansion) formation have also been per-
formed.

Introduction

Atherosclerosis occurs due to the build-up and infiltration of
lipid streaks in artery walls, leading to plaques. It is an inflam-
matory disease characterized by a succession of biochemical
and biomechanical complex processes [3, 12]. In plaques, the
lipid core is separated from the circulating blood by a fibrous
cap of variable thickness. As plaques develop, they induce a
remodelling of the arteries [15]. Plaques can be divided into
two distinct types: those that rupture (vulnerable) and those that
are less likely to rupture (stable), a characteristic that is associ-
ated in some papers to the respective aneurysm-like and stenotic
shapes [5]. While it is accepted that plaque vulnerability is in-
fluenced by fibrous cap thickness and the size of the lipid core
[1], it also depends on artery remodelling, the loads applied on
the solid and the forces induced by the fluid for which no gen-
eral agreement has been found.

The complexity of the present problem comes from the coupling
of biological, chemical and mechanical effects. In the follow-
ing, the literature review will be restricted to the influence of
mechanical effects on plaque rupture. Most of the numerical
studies in real arteries performed until now focus on the cal-
culation of the flow around plaques, considering the arteries as
rigid walls [2, 6]. These papers indicate that the high wall shear
stress (WSS) found on plaques could be responsible for plaque
rupture; however, Sadat et al. [13] showed recently that struc-
tural stresses are thought to play a more important role, being
several orders of magnitude higher than the WSS induced by
blood flow. To calculate the structural stresses, a complex FSI
approach taking into account large deformations is required. A
three-dimensional (3D) fluid structure interaction model has re-

vealed an association between regions of high plaque critical
stress and fibrous cap disruption in human carotid [16]. Further-
more, maximum principal stresses were identified on shoulder
regions of the fibrous caps of carotid plaques according to 2D
FSI simulations [9]. An histology based finite element analysis
was used to investigate the peak circumferential stresses in aor-
tic and brachiocephalic plaques of ApoE -/- mice [19]. Their
results showed the aortic plaque stresses only slightly depend
on the cap thickness whereas for the brachiocephalic artery le-
sions, it is shown that there is an exponential growth of peak
cap stress with decreasing cap thickness. Altogether, these re-
cent papers underline the multiplicity of the origins of plaque
rupture and the complexity of finding a general agreement of
the main parameters that engender this event. In addition, very
few computational studies have considered the elastic proper-
ties of arteries or have investigated the hemodynamic parame-
ters and mechanical forces induced in realistic vessel geometry
by a blood flow past plaque. Therefore, developing simplified
FSI models under those requirements is a starting point towards
further understanding of atherosclerotic development.

The complexity of the task comes from the large number of
influential parameters involved in the mechanical model (geo-
metrical parameters, transmural pressure (external internal pres-
sure), oscillating flow rate, variable elasticity and density prop-
erties of the tissues, non-Newtonian effects). In the present
work, the geometries considered are restricted to straight ves-
sels and straight vessels with stenosis (stable shape). In addition
to the physical parameters, a large number of numerical param-
eters must be checked in order to insure the convergence of the
numerical methods as large deformations are involved. Indeed,
in the physiological range of parameters, it has been shown [7]
that straight vessels buckle when a critical transmural pressure
is reached. In addition, whilst the general dynamics of fluid-
conveying systems have been already studied for “rigid” ma-
terials [11], in the present study, materials with weak Young’s
modulus are considered, as well as the coupling of flow and
high transmural pressure, effects which together have implica-
tions on the mechanical stability of the system. Hence, within
physiological range, vessels are readily prone to large deforma-
tion.

In the following, after the presentation of the model, the numer-
ical approach will be described and compared to linear theory.
In addition, a description of the method used to extract the elas-
tic properties from the experiments will be presented. Some key
results will be presented at the end of the article.

Model

Geometry

The model used in the present study follows the work of Young
and Tsai [21] who developed an axisymmetric model to repre-
sent the stenosis:
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wherer(z) represents the radius of the vessel,Ds the stenosis di-
ameter at the maximum constriction location (z= 0), Zs half of
the stenosis length andδs the stenosis heightδs = (D−Ds)/2.
This geometry is represented figure 1. Most of the paper will
concern straight vessel for whichδs = 0.
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Figure 1: Model geometry of an idealised axisymmetric stenotic
vessel.

Model equations

The fluid and solid behaviour are described by the following
coupled equations:

ρ f

(

∂U
∂t

+(U ·∇)U
)

= ∇ ·
¯̄σ f , (2)

∇ ·U = 0, (3)

ρs(Dttη− fs) = ∇ ·
¯̄σs, (4)

whereρ f is the fluid density,U the 3D velocity field and̄̄σ f the
fluid stress tensor:

¯̄σ f =−P¯̄I +µ
(

∇U+∇UT
)

, (5)

with ¯̄I the unit tensor,P the pressure andµ the dynamic viscosity
of the fluid. In the solid equation,ρs represents the material den-
sity, Dt the material derivative,η the 3D structure displacement,
fs the body force and̄̄σs the structural stress tensor. Concern-
ing the boundary conditions: a Poiseuille velocity profile is im-
posed at the inlet when flow is considered whereas∂P/∂z= 0 at
the outlet. At the fluid solid interface, the boundary conditions
are:

¯̄σ f ·n f = −
¯̄σs ·ns, (6)

U = ∂tη. (7)

In addition, a contant atmospheric pressure is applied along the
external surface of the solid. The remaining term to be deter-
mined is ¯̄σs which depends on the material properties of the
solid and on the strain (ε). The calculation of this term will
be detailed in the next section. For the numerical calculation,
the dynamic viscosity, fluid and solid densities remain constant
with µ= 4.10−3Pa.s [18], ρ f = ρs= 1060kg/m3 [4]. As a con-
sequence, the fluid is considered Newtonian, a reasonable as-
sumption provided the shear rate is greater than 150s−1 [20],
which is the case in the range of parameters considered for
the present study. The density of the solid has been consid-
ered equal to the fluid in order to prevent the influence of the
gravity effects. This approximation is acceptable considering
that in a recent study [14], Shinohara et al. showed that the
density parameter range for the plaque and the artery walls is
1010−1080kg/m3.

Stuctural stress tensor and theoretical divergence model

Structural stress tensor

The arterial walls are hyperelastic material for which the elas-
ticity properties, the Young’s modulus, depends non-linearly on

the load applied on the vessel; however, in the present study,
only orthotropic (linear) material will be considered in order to
validate our FSI model. The method described in the following
indicates how to extract the constant axial and circumferencial
Young’s modulus from experiments.

Following the work of Liu and Han [10], free inflation test has
been performed. The method consists of imposing an internal
pressure, the vessel being plugged at one extremity (figure 2).
The expansion of the vessel in the axial and longitudinal di-
rections is recorded by a camera on the top. The pressure is in-
creased to measure its influence on the deformation of the vessel
(stretch). From the obtained stretch versus pressure curves, the
structural stressesσs can be calculated using Lame’s equations.
As the Young’s modulusE is a function of the strainε, the rela-
tion between stress and strain isσs = E(ε)ε. Figure 3 indicates
the stress as a function of the strain for a rat carotid. A constant
Young’s modulus is then extracted by calculating the slope of
the lines indicated on figure 3. Thoses lines are obtained by
imposing the following equality using energy arguments.

∫ εp

0
σsdε = Ē(εp)

[

1
2

ε2
]εp

0
, (8)

whereεp is chosen accordingto a pressure of interest.

Figure 2: View of the experimental inflation test in rat carotid.
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Figure 3: Stress-strain relation obtained from the stretch-
pressure curves in [10] using the method described in the
present section. The blue curve corresponds to axial stress and
the red curve to the circumferencial stress. The lines correpond
to the linear approximation defined equation 8.

Further information on the procedure can be found in [8]. The
other parameter, the Poisson ratio, necessary to describe the
elastic properties of the tissue, is fixed toν = 0.49 (nearly in-
compressible material).



Theoretical buckling model

To validate the numerical results, a comparison with the theory
has been performed. In [11], the author indicates that the dy-
namics of buckling of cylindrical structures can be modeledin
first approximation by the following one dimensional equation:

EI
∂4w

∂x4 +
{

MU2
− T̄ + p̄A(1−2νδ)

} ∂2w

∂x2

+2MU
∂2w
∂x∂t

+(M+m)
∂2w

∂t2 = 0, (9)

whereE corresponds to the Young’s modulus in the axial di-
rection (Ez), I to the area moment of inertia,w to the lateral
deflection,T̄ to the externally applied tensions, ¯p to the mean
pressure,ν to the Poisson ratio andδ depends on boundary con-
dition (in our case, closed pressure vesselδ = 0). In addition,
M is the mass of the fluid flow per unit length andm the mass
of the pipe per unit length.

As divergence is a static rather than a dynamic form of insta-
bility, one needs to consider only the time-independent terms of
equation [11] to analyse the dynamics of the system. Hence, the
critical buckling pressure can be obtained following a procedure
similar to [17] and is given by:
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]

, (10)

whereLk represents the buckling length, which depends on the
length of the vessel, and on the boundary conditions (in the
present caseLk = L/2).

Numerical approach and validation

The software codes used to solve the equation are Ansys CFX
for the fluid and Ansys Mechanical APDL for the structure.
ANSYS CFX is an element-based finite-volume method with
second-order accurate discretization schemes in space andtime.
Ansys Mechanical APDL uses a finite element based structural
solver. In this study, hexahedral quadratic elements are used for
the spatial discretisation of both fluid and solid domains. The
coupling between the fluid and the structural solver is achieved
using Ansys Multi-field solver capabilities for which field vari-
ables (displacement and forces) are exchanged between both
solvers through the fluid-structure interface in an iterative pro-
cess. For the mesh, attention has been paid to define the charac-
teristic size of the grid cells in the fluid near the interface. This
size must be compatible with the capture of the boundary layer
(the first computational cell is located within the viscous sub-
layer) but it must prevent the folding of the mesh due to large
deformations(large cells). A compromise has been found to ful-
fill these two requirements (figure 4) and to optimize the radial
mesh distribution. The method used to define the mesh in the
fluid part is an O-grid method.

A numerical parameter sensitivity study, not presented here, has
been performed on the vessel studied by [10]. ForL = 45mm,
D = 3.38mmandh= 1mm, the optimal mesh distribution is 36
nodes in the circumferential direction and 100 in the axial one.
The time step is 0.005s. The pressure is increased linearly in
time to reach 100mmHg (physiological pressure). The Young’s
modulus calculated from [10] and used for the present calcula-
tion areEz = 45.5KPa andEr = 308.6KPa. The code has been
validated comparing the buckling critical pressure in straight
vessels to the theory by settingU = T̄ = 0 in equation 10. The
numerical buckling critical pressure is defined as the transition
between the axisymetric expansion and the sinusoidal shapeob-
servation. The mean variation between theoretical prediction

and numerical approach is around 5% when the length and the
thickness of the vessels are varied. The post buckling behaviour
will be discussed in the next section.

Figure 4: Typical mesh slice representing the fluid domain (in-
ner disk - light grey filling) and the solid domain (outer disk-
dark grey filling).The monitor points represented by crosses are
used to track the system evolution.

Results

In this paragraph, few results will be presented and discussed.
Figure 5 shows a comparison between experimental and numer-
ical results for an internal pressure of 95mmHg (post-buckling
regime). A good qualitative agreement is obtained between the
experimental and numerical approach, the deformation being of
the same order as the internal pressure increased from 0 to 95
mmHg. Additional improvements are needed to obtain a quanti-
tative matching, including taking into account the hyper-elastic
properties of the vessel wall. A steady flow state with a flow

Figure 5: Comparison between experimental (upper frame) and
numerical (lower frame) buckled mode shape at a lumen pres-
sure of 95mmHg.

rate of 160ml/min [10] has been added to the previous configu-
ration. Its destabilising effect induces a reduction in thecritical
buckling pressure. Again, the results have been compared to
the linear theory and an acceptable mean error of 6% has been
obtained. For the model vessel whose dimensions have been de-
scribed in the previous section, the numerical critical pressure
is 24.8mmHg compared to 25.303 in theory.

Finally, numerical simulations were conducted on stenoticand
aneurysm-like vessels. Results are only presented here fora
stenotic configuration. Figure 6 shows the Von Mises stresses
for a vessel with 60% stenosis (percentage of fluid domain nar-
rowing) for an internal pressure of 60mmHg. The maximal
stress on the plaque is located along the fluid solid interface (the
fibrous cap ), location at which the stenosis is the most stretched
and compressed by the buckling phenomenon. A close exami-
nation of figure reveals that local maxima are observed on the
inner side of the buckling at the shoulder of the stenosis (bound-
ary between the stenosis and the healthy wall), a result com-
patible with the 2D simulation of [9]. In addition, it has been
found that the maximum of the structural stress increases when
the pressure increases (not presented here [8]), a result inagree-



ment with the fact that people with hypertension (higher internal
pressure) suffer more cardivascular conditions.

Figure 6: Von Mises stresses in a buckled axisymmetric stenosis
at 60mmHg.

Conclusion and discussion

An FSI model has been developed for simplified axisymmetric
geometries. Characteristic vessel dimensions found in theliter-
ature [10] as well as experimental samples of rat carotid aortas
were used to calculate realistic Young’s modulus and to validate
an FSI approach. The FSI model was able to predict the buck-
ling threshold within a range of physiological parameters under
both quiescent and steady state flow. Furthermore idealisedcar-
diovascular conditions were modelled by axisymmetric steno-
sis. The stability analysis permitted to highlight zones under
traction or compression and the resulting stresses acting on the
vessel wall. The results showed that the maximum structural
stresses were located near the thin cap, a condition favorable
for plaque rupture.
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