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Resolving design conflicts and evaluating solidarity in distributed design
Baris Canbaz, Bernard Yannou, Pierre-Alain Yvars
Abstract

The resolution of complex design problems requareBstributed design system that considers thelnewoent of
various designers. Inconsistencies of design dlkgscand working procedures of distributed subsgstean cause
design conflicts due to couplings among their stdBlems. Another issue is the management of imgi@tiin
design systems caused by the lack of knowledgetatheufinal decision. In this paper, we define aftot
management model using the concept of set-basedndéSBD) in order to overcome these issues. Whzaiti
constraint satisfaction problem (CSP) techniques model agent attitudes in order to detect andfyudesign
conflicts of heterogeneous design agents. A noweelperative CSP (CoCSP) is defined for resolvingigtes
conflicts through compromising constraint restdaoti The conflict resolution system can be adoptiét different
strategies which take into account the solidarighdecture of design agents. The gains and cdstemralized,
decentralized and controlled conflict resolutiosteyn strategies are simulated with Monte Carlo ktimns where
design agent characters and their interactionsatel stochastic nature.

1 Introduction

Engineering design processes of complex produassarvices require the collaboration of multiplsiga experts
from different disciplines, and these can be logatedifferent places. Since there are physicalsitins between
design experts and/or disciplinary boundaries witthie multi-disciplinary design problem, a disttiéa design
approach can be adoptét]. In distributed design, while the global desigrmlpem is decomposed into sub-
problems, design responsibility is decentralized distributed to organizational subsystems compaseshe or
more design exper{]. Subsystems have limited control over the desagrables because of their limited expertise
and responsibility. The ultimate objective of cbbaative distributed design is to resolve sub-peotd
concurrently, so that the global multi-objectivesid@m problem converges to a global optimum. HoweasrLewis
and Mistree[3] point out, it is highly unlikely to obtain true mourrency in reality, because subsystems are not
independent. They are related to each other thr@ogiplings between their sub-problems. Inconsis¢snin the
design system can result in design conflicts thihoaguplings. Design conflicts arise during the desprocess
when designers are not able to satisfy their owsigtleobjectives. Inconsistencies can be found #t pooblem
level and process level. Problem level inconsisenconsist of non-uniform, in other words conitig;, local
design objectives of subsystems. Favoring the deslgective of a designer can be detrimental to dbsign
objectives of the other designers. Process levebrisistencies consist of conflicting working process of
subsystem$4]. For instance, a designer that influences thegdasiodel more frequently and restrictively can kloc
the other designers which are trying to satisfyrtbesn design objectives. Design conflicts areified when the
satisfaction levels of designers obtained fromgdlodal solution diverge, resulting in a situatioheve a designer is
very satisfied and the rest are not satisfied esatisfied. This divergence represents the intemdithe design
conflicts. Preventing, justifying and resolving @gs conflicts are indispensable concepts for olngirglobally
satisfactory design solutions where satisfactioelieof subsystems are in equilibrium.

Many propositions have been made for design cdnfésolution models. The most significant approachee
agent-based models. Klejd] proposes a heuristic-based computational modélpiealuces advice for resolving
conflicts between design agents. The model utilihesknowledge about conflict resolution strategieined from
empirical design expertise. Worig] proposes a method of cooperative knowledge-bagstéras that includes a
library of multi-agent design conflict resolutiotrategies. These strategies can be combined ippropriate order
for the situation, so that if one strategy faile gystem tries the next one. Koulinitch and Shetewm@] define a
constraint-based dynamic design system model tichides facilitator agents. They send messageslas some
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constraints until a consistent solution is obtairiecebt al.[8] propose an integration-based conflict resolutigstesm
that includes a hierarchical constraint networldébect design conflicts. A knowledge-based metlaodonstraint
relaxation method, and a negotiation method ard tseesolve various conflicts. Shin et g} propose a design
conflict resolution model that employs agent-basedotiation techniques for facilitating a goal-fation process
that generates fuzzy goals and modifies them bydioation between agents. The other significantflain
resolution approaches utilize mathematical optitioretechniques and fuzzy logic models. Yin ef#ab] propose a
combinatorial heuristic algorithm for design codiflnegotiation which is based on Fuzzy Matter Eleinfarticle
Swarm Optimization (FMEPSO). Jin et §.1] propose a design conflict resolution algorithmt thptimizes the
design problem by considering the fuzziness ofgiesariables and the additional cost of conflictalation. Li et
al. [12] propose a graph model for conflict resiat not only for design problems, but for all tgpef conflicting
decision making problems of multiple stakeholdénshis approach, the uncertainty of decision makeferences
is modeled, and four types of solution definiticare developed by modeling human behavior underlicanfhe
graph model is extended with fuzzy preferences &shar et al. [13].

Although these various efforts provide improvemenotshe design system, some important aspects &raging
design conflicts are overlooked. Mathematical ojtation models overlook the dynamic nature of thesign
problem that changes with the evolving intentiofisdesigners, reflecting designer reactions to theettainty.
Agent-based conflict resolution models considerdiigamic interactions of design agents. Howevegy ttho not
consider modeling design attitudes that define tr@ag and interactions of various design agentds Th an
important omission, because modeling design atguchn help to explore design conflicts. In additiwith the
exception of some models that represent desigrablas and decisions with fuzzy parameters, the eaigion
caused by the lack of information about design equences is largely overlooked. Imprecision is ieheto design
problems, as it represents the epistemic unceytainivhat the results from the emerging designratons might
be[14]. According to Malak et al15], this issue requires representing the uncertaiiity imprecise intervals/sets
and delaying uncertain decisions to later procesges where the information about the related aetis available.
Besides, the proposed conflict resolution methogie® do not discuss the adoption strategy of theflico
resolution system with regard to the solidarityhéecture of the system participants. Centralizexflect resolution
system strategies provoke or oblige solidarity leetw design agents to resolve design conflicts.oltrast, the
decentralized conflict resolution system strategiysiders an autonomous solidarity where agentéeedo decide
whether to help to resolve design conflicts. Thegtion of which strategy should be adopted remairanswered.

In our earlier researci16], we defined a novel bottom-up design approach éhgtloys the concept of Set-based
Design (SBD) for managing imprecision in design.siDe agent attitudes were modeled for exploringigies
conflicts. It was demonstrated through Monte Caifoulations that our agent-based SBD approach ptewviesign
conflicts that arise from heterogeneous design@uaes. In this paper, we extend this approach iateyrate a
conflict management model. In Section 2, we dist¢hesability of SBD and constraint satisfaction lgeon (CSP)
techniques to manage imprecision in design. Ouflicomanagement model is introduced in Sectioraidd the
CSP simulation process of this model is presente@ection 4. Monte Carlo simulations of differemnfict
resolution systems and the non-cooperative desigters are performed on a design problem of a roliteh
system that involves variable agent charactersSdation 5, we present the simulation problem dedins and
simulation results. Different system strategiescampared with regard to their gains and costs.

2. SBD and CSP Techniques

Variables of coupled and conflicting design prolbderannot be crisply defined due to the lack of imfation about
the consequences of design decisida$, [18]. The epistemic uncertainty due to this imprecisgowery significant
especially in preliminary design processes. Deteistic design methods cannot overcome this isseequse they
require the restriction of the design problem hyitatting crisp values to problem variables so tiaalical decisions
are performed before the information about decwsi certain. Set-based design (SBD) is propose@nas
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alternative concept which considers the design gg®@s an ongoing evolution of non-crisp concurdessign
decisiong19], [20]. Design problem variables are represented as oiggr@#alues in their domains (intervals for real
variables), so epistemic uncertainty can be projealgand evaluated. Design decisions related taiodriformation
are performed as constraints on variable domamshe epistemic uncertainty is reduced. If designigions are
related to uncertain information, they can be dedayo later process stages where more details atheut
information is gathered due to the reduction ofsephic uncertainty through previous decisions. Tdesign
approach provides flexibility of modifications amdgher adaptability to changd21], as well as robustness to
design[22]. Repetitive design activities and loopbacks anmesequently avoided by disclaiming a trial and error
approach, so design process time is reduced.

Although SBD originated as a management philosdphgoncurrent engineering tasks, recent reseasshshown
that SBD can be adopted at a technical solutioel l@wth constraint satisfaction problem (CSP) tegbaes e.g.
[23]-[26]. A CSP is defined with three groups of sets (V,D,C) whereV is the set of variable®) is the set of
domains that contain the allowable values of vdembandC is the set of constraints that restrict the probj27].
A multidimensional space is defined by the Carresimoduct of variable domains. It contains the ipat
solutions that respect the problem constraints.edigh sub-problem is defined by three main probé&ements:
design variables that can be controlled by the iipesubsystem, design performances that are eteduby the
subsystem, and constraints that must be respeateddking design decisions. Some of these consirédnm the
relation between variables and performances. Tloesgher, constraints can also form couplings betwvariables
and between performances of other sub-problemsodrdposed design problem can be defined with thpaees
through CSP definitions: the design space defineddsign variables, the performance space defiryedelsign
performance variables, and the solution spacedbuatiains both design and performance spaces. Ddsiggions
are represented as constraints restricting thetignfuspace. When the epistemic uncertainty is geduthrough
design decisions, the remaining solution spaceoofptex problems can be determined precisely witmala
reduction/filtering algorithms of constraint prograing (CP) techniqueR8]. For exampleX andY are integer
variables, andZ = X X Y. Their domains ar€X) = [20,30] and D(Y) = [15,25]; so the domain of is
synthesized aB(Z) = [300,750]. If a constraint is defined &< Y, then the inconsistent solutions are filtered,
so the domains are reduced. The reduced domain3(afe = [20,24] andD(Y) = [21,25]. Domain reduction
due to a constraint leads to domain reduction lated parameters, §5(Z) = [420,600]. Domain reduction can
function with a bottom-up architecture where caaistis can be defined directly on value occurrenEesinstance,
if Z <480, the domains of the variables are reduce® @) = [20,22] andD(Y) = [21,24]. This is a very
effective way of representing preferences in desigstems, because it enables decision constrairite defined
directly on design performances and on indicat@svdd from design performances. Yannou and Hafg]l
demonstrate that CP techniques can compete withoatmkrform probabilistic and fuzzy methods on ngamg
imprecision in design.

Some derivatives of CSP are made in order to déhlwarious artificial intelligence platforms thamnploy a multi-
agent system (MAS). Dynamic CSP (DynCSP) allowsstraints to be added to or removed from the problem
model[29]. The problem evolves over time with some ageribastwhich are related to the constraints performed
through a process. The solution space is restrisifdthe addition of a constraint, or relaxed hg removal of a
constraint. The problem at time stage Pis= (Pt~1, A) whereP*~! is the problem defined at the previous stage and
A: Pt~ - Pt is a function that maps the previous problem toftoblem at stage DynCSP is adequate for MASs
that require dynamic negotiation and conflict reioh of interacting agents. Distributed CSP (Dif¢ proposed

to divide the CSP inta sub-CSPs shared toautomated agent: P = (PAi + -+ PAn) [30]. Agents resolve their
own sub-CSPs concurrently, and then their solutemesunified. In DisCSP, an agent shares informatioly for
loose couplings. This reduces the cost of knowledgesfer and avoids privacy/security problems agnagents
that may be caused by sharing all the informaiR#j. This can be an advantage for large but not vensdly
coupled problems. However, as Salido and BafB2} highlight, DisCSP is not suitable when the problam
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densely coupled or the number of variables is \egh. Dense couplings among design agents can caugkcts
in the problem solving stage which require a largember of message and information transfers. Hsige renders
DisCSP non-effective for conflicting distributed silgn problems. Cooperative CSP (CoCSP) is the pnobl
technique defined by Yvar83], [34] for obtaining cooperative solutions in MASs. INn@RP, if a design agent
cannot perform its design activities, the otherndgecan help this agent by compromising their cairsis. The
CoCSP definition is suitable for dealing with cactfhg distributed design problems, because it Esabegotiations
and conflict resolutions among design agents dyocaliyiduring the design process. CoCSP algorithmngeyed in
the literature minimize the number of decision ¢maisets rejected at any stage of the design proddss approach
considers only the number of decision constralmi$,jit does not take into account the amount ofréisériction and
the satisfaction obtained by constraints. When giesionflicts emerge from the interactions of hegerceous
designer characters, this approach is inadequatee 8lesign agents are heterogeneous, they dedteeolgeneous
constraints, so that one constraint of a particatgmt can be more restricting than two constraihtsother agent.
Thus, the conflict resolution objective of hetemgeus MAS should not compromise the quantity ofst@ints; it
should instead compromise the restriction of camsts. In order to satisfy these requirements, afend our model
as an agent-based SBD model that explores desigtitedes for detecting and justifying design cuts$l. A novel
CoCSP model is developed for resolving design adafthrough compromising the restriction of coastts.

3. Conflict Management M odel

In SBD, design variables are represented with icipee domains/intervals. The analysis of the desigace
emerging from allowable design variable solutiotimsglates design agents to react so as to satisfy tesign
objectives. Design agents react through definingsiten constraints in the design model. The reaatibagents to
uncertainties of complex dynamic domains is defingégent attitude85]. The most widely deployed architecture
of an agent is the Belief-Desire-Intention (BDI)r@digm developed by Bratman et f6]. The character of an
agent is the combination of its various autonomatigudes, and different strategies can be develdheough
exploring agent characters in order to obtain oatimteractions between heterogeneous agents {8ZJuse CSP
definitions and the BDI paradigm to manage designflicts of autonomous agents. Fig. 1 shows ouptadi@n of
the BDI mechanism for a design agent.

Analysis Dynamic Design - Synthesis
<: Model ™
(Design Space) ‘
g Accept
N
Conflict Conflict )
Resolution: Hy, K Jsustification N~ Feasible?
o Refuse:
\/ Stimuli Potential Conflict Reactions
Beliefs: Desires: Intentions:
Performance Space Preferences Decision Constraints

* Worst Cases
* Best Cases

About
« Performances: Pry,

« Satisfaction: T},

How?
* Frequently: F,

« Restrictive: M,

Fig. 1. BDI Mechanism of Design Agents
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We define an agemt, 4,, as an entity with five different attitudes; (Pry, Ty, Fi,, My, H,). Analysis of the design
space stimulates the design agent, and this tsg¢gemBDI mechanism. The design space is transfortheough
CSP definitions into the performance space whesigdeagents define their design objectives. Uppel lawer
bounds of the design performance intervals reptebenpossible worst cases and the possible besscd@hese
cases reflect the beliefs of the design agent atbeutonvergence of its design performance varsatdesards its
design objectives. The converging intervals of gmesvorst and possible best cases propagate sooestainty for
the design agent. Reactions of design agents amediibrough couplings, because the solution spaskdred. If an
agent modifies the design model for its own besgfitcan decrease the best case of another agiérd wonflicting
objective. Thus, the performance intervals of aanaglepend on the unpredictable reactions of theradesign
agents. In order to adopt design performance valthes design agent defines preferences about isgyme
performances and the emerging satisfaction valioes these performances. Preferences reflect that’agiesires
towards its uncertain design performand@s. is the set of preferences of the agent on theopednce values. It
reflects the agent’s attitudes for satisfactionaot®#d from alternative solutions. In a coupled giessystem, it is
highly unlikely to fully satisfy all the design agts. Therefore, design agents are forced to comipeat a certain
level on their satisfaction intervdly is the compromise threshold value of the agemegdtesents the preference of
the agent on the satisfaction values for compromise

Beliefs and desires lead the design agent to stegations for increasing its satisfaction from thgamic design
model. The design agent reacts by defining decismmstraints that restrict the solution space, \lita aim of
improving its worst cases. Intentions are reflestitth how frequently and how restrictively the dgon constraints
are defined.F, is the average frequency attitude of the agentdffining constraints in the modeV,, is the
coefficient of restriction of constraints defineg¢ the agent. It reflects the restrictiveness atttwof decision
constraints defined by the agent. When a decisomstcaint is defined, the design model’s feasipilit evaluated
through testing the consistency of the decisiorsttaint with CP techniques. After the definitiontb& constraint,
the design model is feasible if there is at leas solution remaining in the solution space. Thaeefthe decision
constraint emerging from the agent’s BDI mechanismaccepted, and a new design space is syntheisiziw
dynamic process. The decision constraint is rejeifti yields an empty solution space. When a sieai constraint
is rejected, it means the design agent could ndoge its modifications, so a potential design dimhfis detected.
The conflict is justified only if the rejection af decision constraint means an under-satisfiedgdesjent caused
potentially by over-satisfaction of another desigent or design agents. This justification procesggsires CoCSP
definitions where all the information about the atgéstates and their decision constraints areeshamong design
agents. If a conflict is justified, the other desiggents can help this agent to incorporate itstcaimt into the
design modelH, is the helping attitude of. If A, needs help, the other design agents’ helpingud#@gH,,
determine the approval of the conflict resolutiongess. Conflict justification and resolution madate defined in
the following sub-sections.

In our BDI adaptation, beliefs and intentions ayeainic, while desires are static. Preferences demange during
the design process, because we assume that thdgfared at the initial process stage. With thedasing number
of decision constraints introduced to the probléhe sub-problem of an agent is dynamic through dbsign
process stage§he aggregated sub-problems propagate the dyndesign model that converges to a narrower
space continuously. Therefore, beliefs evolve whhe design uncertainty is reduced progressivelyrther
decisions are made when more detailed design irsfiiomis available. Consequently, intentions chashgigng the
design process. Since design agents are relataagtihicouplings, their interactions are dynamic. tbesistency of

a decision constraint defined by an agent dependblesolution space which is also restricted leydther agents.

A potential design conflict caused by an inconsisteonstraint, either resolved or unresolved, ilier the
intentions of agents at subsequent process stages.
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3.1 Conflict Justification

In order to justify conflicts, we evaluate desiggeats’ states during the design process with cbiridicators
called wellbeing indicators. The wellbeing indiaatare derived from the desires and the beliefh@fgents. First
we model design performances with satisfaction tione defined by piecewise constraints. Satisfacfimctions
are scaled between 0 and 1. For example, one nlgexftagenk is to maximize a performanceThe agent is fully
satisfied by a performance value above or equ&| and fully dissatisfied by a performance value bety equal
to P,. It is assumed that there is a linear transitietwieen these two preference valugg.is the satisfaction value
of the agenk obtained by the performancey; is the performance value of the performancehen the piecewise
constraints are as follows:

|f17i2P1,Ski:1 (1)
|fUL'SP2,Ski=O (2)
|fP1>Ui> P2'1>Ski>0 (3)

SBD process is an ongoing evaluation of intervatsthe design process is divided into stages wiesign agents
make reactions. At process stag@erformance is defined with an intervalx! ,yf], wherex! is the minimum
value, andy; is the maximum value. An interval for the satisifae of agentk is obtained from performandeat
staget: sy; = [mins}; , maxsk;] whereminst; is the minimum satisfaction amdaxst; is the maximum satisfaction
obtained within the intervdle} ,yf]. Fig. 2 demonstrates an example with the pieceaisstraints given above.

Minimum satisfaction is obtained at point B, andximaum satisfaction is obtained betweehand point A.

Ski
A

maxsp,; 1

minsg; {---------

Fig. 2. Intervals of satisfaction function

A design agent may evaluate several design perfocesa The most widely employed decision making rhode
MAS for evaluating multiple performances is the tiplé attribute utility theory (MAUT). In order telicit the
aggregate utility, weights of multiple attribute® a&stimated methodologically [38], [39]. The weiglfor design
performances can be estimated if the sub-problerth@fagent is scalable. Otherwise, the sub-prokdbould
further be decomposed. In this paper, we assunahéalesign problem is correctly decomposed, abah agent
is able to assign weights to its design performarimecomparing their relative importance for itb.ja; is the
weight assigned to the performandey the design actde | is the total number of the performances considesed
design actok. General satisfaction of an agéris an intervak, = [minsi ,maxst]. Its bounds are calculated with
the following equations:

I

minsf = Z Wy X minst; 4)

i=1
I

maxsy = Z Wy X Mmaxsg; (5)
=1
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mlnszl mins; mmsg
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Fig. 3. Bilateral convergence

Design agents define decision constraints in otdeémprove their minimum satisfaction values duripigpcess
stages. However, the convergence of their satisfamtervals is bilateral because of conflictimuplings. Fig. 3
shows an example where the constraints of Agent tepresented with dashed arrows, and the comistrafi Agent
2 are represented with solid arrows. When a canstimdefined by an agent, it increases the mimmsatisfaction
value of this agent. However, this decreases thgiman satisfaction of the other agent with a catitig
objective. Therefore, at the end of the design gsec satisfaction intervals converge to a compresnigoint
solution where minimum and maximum satisfactionueal are approximately equal. This solution is uader
during the design process until it is obtained.i@esgents can reflect an attitude of desiringtesfsation value in
which they may compromise. The preference of ageftout this satisfaction value is called comprontiseshold
T,. This is the compromise attitude of ag&niThe objective of a design agent is to guarartatits satisfaction
interval will converge to a value at least as gasdts compromise threshold value. If the minimwatisgaction of
an agent reaches iy value or passes beyond, then the agent passke tmmpromise state. In the compromise
state, the agent stops adding decision constraritee model, so this leaves space to the othertsge the solution
space. The larger tlig value, the more restrictive ageqis. T), is defined empirically by considering both teclahic
and arbitrary factors: solution space, uncertaiatyd the other agents’ design freedom. It shouledted that, if
agentk is very egoistic, it will not consider the othegreats’ design freedom. It can thus define a |dgealue.

Satisfaction values are normalized by dividing tHenthe compromise threshold value, and this pes/igellbeing
states Eq. (7, 8). Wellbeing is defined for eactnal with an intervaib,, = [minwb}, , maxwbt] where minimum
value is the minimum wellbeing indicator, and maximvalue is the maximum wellbeing indicator at sthgAs

described in our earlier work [16], these indicatoepresent how agents’ design targets are lileelyet met at a
given moment of the design process. Global statekesign agents are thus observed. This is theneaty the
“wellbeing” term is chosen to name these indicat&@isce the convergence is bilateral, the likelthdo meet the
design targets of an agent can be different thathan one. Minimum wellbeing indicators of agents eompared
to justify a potential conflict. If an agent suffebecause of design conflicts, it will thus be detd immediately.
Agent k defines decision constraints when it is not in ¢benpromise state. The decision constraint of agasat
rejected if it does not provide any consistent Boiu This represents a potential design conflicthere is at least
one agenk’ in a better wellbeing state with a higheinwb}, then the design conflict is justified. This is hase it
is considered that the shared solution space igastticted in equilibrium. At least one agent hestricted the
solution space for its benefits more than the siufeagent that cannot get its decision constragdepted. The
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suffering agent can therefore ask help to the atigents in better wellbeing states in order tolvesthe justified
design conflict. If the conflict is not justifiethen the agent does not deserve the conflict réenlurhis agent must
reduce itV value in order to define a less restrictive caistrat the following design process stage.

ot
mins
minwb} = k (7
Tk
¢
maxs
maxwbf = k (8)
Tk

3.2 Conflict Resolution

Design agents intend to improve their minimum waililg states. Intentions are represented with hequiently and
how restrictively their constraints are defindg. is the average frequency of agdato define its decision
constraints in the modePRh, is the phase of the decision frequencyAgf In internationally distributed design
systems, agents are available in different timeegpso phases of frequencies can be different fenagent to
another. Agenk defines decision constraints at each process stagere(t — Phy,) value is an integer multiple of
1/F,. We consider that/F, is an integer number, because process stagesmesented with integer valuég, is
the coefficient of restriction for the constraiatsfined by agerk in order to improve its wellbeing state. SBD is an
on-going restriction of the solution space, so wsume that agents restrict their wellbeing interdat defining
increasingly restrictive constraints. The constraefined by agenk at process stageis Ci: wby, = minwbf x
(1+ M) whereminwbf value andM, value are larger than 0. We assume fhats a fixed value during the
process, because it represents the average. Howkvealue can change during the process dependingoen h
restrictively the agent intends to define its coaist at the process stage.

Both F, and M, define the working procedures of agdntSince design agents are autonomous, their design
attitudes reflected during the design process eahdberogeneous. Inconsistencies can arise amaegpdeneous
working procedures through design couplings. Welarpdesign agents’ working procedures to resolesigh
conflicts. When a decision constraint of an adeistaccepted, it is put on a list of accepted qan#sL,. When a
constraint defined by an agent is not consistdren tthe constraint is refused, because it causamfaasible
solution space. Other agents can help to enaldecthistraint by removing some of their constrairam their list
of accepted constraints. In our CoCSP, we assumteotily one agent can offer to cooperate at anytone:
multiple agents do not cooperate. Our conflict hesmn model can detect which agent can help, awdihcan help
optimally. The model is composed of three phasée. first phase is the negotiation phase where wectall the
help possibilities. The second phase is the tegtimgse where the feasibilities of different helsgbilities are
tested with CP techniques, and the optimal helpranbe feasible help solutions is detected. Thel fhhase is the
approval phase where we detect if the help is aggoter not by the helping agent.

3.2.1. Negotiation Phase

When agents are asked to help, they negotiateethdts of the help through comparing their statesrder to

decide whether they are able to help or not. Warasshat agents that are asked to help would veekéep their
wellbeing states at least as good as the othett dgginneeds help after the help is performechéfwellbeing state
of the agent which is asked to help were to gowédhe wellbeing state of the agent that needs liegm the help is
refused. This refusal is reasonable, because ogethe wellbeing state of the helping agent wdagldome inferior
after the help, thus generating another conflieg. B shows an example representing this phenomeldere,

agents’ constraints defined during process stages20and their wellbeing states emerging from ¢hesnstraints
are shown. While all the constraints defined by g Agent 3, Agent 4, and Agent 5 are acceptea constraint
C2Z of Agent 1 defined at process stage 2 is incomsisso it is refused. Agent 1 needs help in otdeanable its
constraint. The dashed line compares agents’ statgst 5 is not able to help, because even withemioving any
constraint, its wellbeing state would be inferiorthe wellbeing state of Agent 1. Agent 2 is nokeaio help,
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because in the case of help, it would rem6%eand its wellbeing state would go below the weligestate of Agent
1. Agent 3 is able to help through removifgor bothC: andCZ without making its wellbeing state inferior to the
wellbeing state of Agent 1. Agent 4 is able to hblpugh removing onl¢?. All the help possibilities are detected
through the negotiation phase following this praged

(%]
[NN]
|_
<t
% 2
: ;
= ) 3 C3 Ci
= A S = Q... 3G......
=
.
Agent 1 Agent 2 Agent 3 Agent 4

Fig. 4. Negotiation phase of design agents

3.2.2. Testing Phase

If help is possible, its feasibility is tested. Has$ feasible if it enables the constraint of tiger#t that asks for help.
This test is performed with CP techniques. The efgasible if the solution space contains attleag consistent
solution after the definition of the conflictingmstraint and the removal of the constraint or aaists of the agent
that is able to help. Fig. 5 shows a humerical glawhere there are three design agents with fggesous design
attitudes: Agent (T, = 09,F, =0.5,M, =0.5,H, = 0,75), Agent 2T, =0,9,F, =1,M, = 0.2,H, = 0.7),
and Agent 3{T; = 0.8, F; = 0.5, M; = 0.4, H; = 0.8). Agent 2 and Agent 3 start at stage O, wRitg = 1. The
constraints defined by agents at process stageselaas agents’ minimum wellbeing values emerdimmgn these
constraints are shown. At stage 5, minimum wellgeaialues of Agent 1 and Agent 2 are both equal.tdhkse
agents compromise, so they will not define a canstiduring subsequent process stages.

All the constraints defined by agents till stagaré accepted, sby: (Cf,C3, C?), L,: (€2, €3, C2,C3,C4,C3) and

Ls: (C2,C2,C3). However, the constraint defined by Agent 3 ageté is refused because it is inconsistent, so it
returns an unfeasible solution space. The desigfiicts justified, because at stage 5, the weélligestates of Agent

1 and Agent 2 are better than the wellbeing sthtigent 3. In order to resolve this justified caaf] we detect all
the help possibilities that can be provided froneAigl and Agent 2. Agent 1 can remove afjfty and Agent 2 can
remove onlyCy or bothCy} andC3. However, Agent 1 refuses to remove constraintlinations that include the
(C3,C?) set, and Agent 2 refuses to remove constraint auatibns that include théc3, €4, C3) set, because the
emerging wellbeing states would fall below the Weihg state of Agent 3. Next, feasibilities of dde possible
helps are tested. If the removal of a constraimimoation enables the acceptancerdf then its help is feasible.
Conflict resolution process is unfruitful if thei® no feasible help solution. Then, Agent 3 redudgsn order to
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define a less restrictive constraint at the follogviprocess stage. If there is more than one feabiblp, then we
detect the optimal help. We choose the feasiblg thelt gives the maxim3X_, minwbf value after the removal of
the constraint or constraints.

Agent 1 Agent 2 Agent 3
. ) _ , _ . _ 0,31 .
Initial minwb; = 0.31 minwb, = 0.34 minwb; = 0.17 Initial 0,34 B minwb1
0,17
1 ’ E minwb2
t=0 CO:wh, > 041  CY:whs > 0.24 0 ;0'30141
0,24 O minwb3
0,47
t=1 Ci:wb, =047 C}:wb, =049 t=1 0,49
0,24

0,47
t=2 C%:wb, =059 C2:wh; = 0.33 t=2 ;I 0,59
0,33
0,70
0,33

1 ‘ 0,70
t=4 C3:wby =085  C5:wbs > 47 t=4 . = 0.85
_ — 1
t=5 Cl:wb, > 1 CS:wh, > 1 t=5 —— 1
t=6
- C5:wbs 2 0.65 [ 0,65

Fig. 5. Numerical example of conflict management
3.2.3. Approval Phase

When the optimal help is detected, our model sendgessage to the agent that needs help about whioeta. It
sends another message to the agent that can halp eactly how the agent can help. If the conftiegolution
system is decentralized, then helping is underrésponsibility of agents. Design agents are auta@usmwhen
deciding whether to cooperate by approving the ,hetpnot cooperate by rejecting the help. This éfireed by
agents’ helping attitud#,. H, is the probability of agerk to approve help. For the example defined in Fighs,
probability of Agent 1 to approve help is 0.75, @hd probability of Agent 2 to approve help is Ufthe help is
approved and performed, then the compromised ainttrof the helping agent are removed from thégdemodel
and from its list of accepted constraiiits The helping agent returns to its wellbeing vadunel M, value of the
process stage where the remaining most restrictrestraint is defined after the constraint removiahelp is
approved by an agent that is in the compromise,sthen the agent leaves the compromise statethenelp is
performed, because its minimum wellbeing value dodew 1. If the help is not approved, the conftiesolution
process is unfruitful. Then the agdathat asked for help reduces Mg value in order to define a less restrictive
constraint at the following process stage.

When the conflict resolution system is decentraljzmgents can seek revenge. For instance, supgestkaneeds
help, and agert’ does not approve the help. If at a following precetage agerit’ needs help, and agektan
help, then agerit seeks revenge by not approving the help to agerggardless of it$f,. In addition, different
control strategies can be defined to encouragedesients to approve the help, or penalize degignta that do
not approve the help. Alternatively, a completantralized conflict resolution system can be adibpteere design
agents are obliged to approve the help regardfebeiv helping attitudes.

10
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4, CSP Simulation Process

In this section, we present an automatic constrainpagating simulation where the solution spaceetiiced
iteratively considering design agents’ BDI mechami$he objective of our simulation is to evaluaééng and costs
of our cooperative conflict resolution model whetttge conflict resolution system is centralizeddecentralized.
Four different system strategies are defined cemsid the extent of promotion of solidarity.

Strategy 1: Non-cooperative design system. Agewotsnat share information about their wellbeing staéad
constraints, so the design system does not indlueleconflict management system. If a design canéiicses, it
remains unresolved.

Strategy 2: Decentralized conflict resolution sgstédgents share all the information. If a desigmftict arises,
agents are free to decide whether to cooperateppyoging the help, or not cooperate by rejecting trelp.
Therefore, agents can seek revenge if the helptiapproved.

Strategy 3: Controlled conflict resolution systehgents share all the information. If a design ciebfirises, agents
are free to decide whether to cooperate by appgavie help, or not cooperate by rejecting the hetpvever, if an
agent does not approve the help, it is penalized lepntrol agent. A penalized agent cannot defireasion
constraint at the next process stage where itafladble to define a constraint. After the penalipedcess stage, it
can continue to define decision constraints. Agelatsnot intend to seek revenge, because uncooperagjents
have already been penalized.

Strategy 4: Centralized conflict resolution. If estyn conflict arises, agents are obliged to caatpdny approving
the help.

t=0 NO YES
20
minwb? > 0 Vk M, < PVk @
M, > 0 vk

v \ 4 T YES
< t++
Choose unprocessed -
agent with M, > P NO All agents

>

@ NO X

NO

<
<
l \ processed? 4

M, =0 Accept Reject constraint
constraint My = M, /2

YES

Define decision Conflict

Resolved?

Feasible

constraint Solution?

Fig. 6. Simulation algorithm
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For the simulation, we consider process stagestemations. In the CSP simulation process, we usspla
mechanism similar to the round-robin strategy tbaps on all the variables at process iteraftf}. The objective
of this mechanism is to obtain upper and lower eslwhich are as close as possible for each intewellbeing
intervals are restricted until a good degree ofigien is obtained. The simulation algorithm iswhadn Fig. 6. We
make the following assumptions when defining tmewation process:

» The attitudes of agents are defined at the instiale of the procesBry, Ty, andF,, attitudes do not change
during the simulation process, becaBsg andT), represent fixed desires wherdgsrepresents an average
value. However,M, attitude value can change during the process digpgnon the restrictiveness
intentions.

» If (t—Phy) X F, € Z andminwbt < 1, each agenk can define a decision constraint only once at any
iteration, and constraints are defined sequentidflyminwb} > 1, then the compromising agent is
extracted from the splitting loop witi,, = 0. If all the agents are processed in iterationn tte process
passes to the next iteration: t++.

+ Initial worst cases are larger thanminwb? > 0 Vk. Decision constraints are defined for improving th
worst case scenarios with a coefficient of resoicM, > 0 Vk. The constraint defined at process sthge
by agenk is Ct: why, = minwbf X (1 + M,). We assume that design agents do not restrict weibeing
intervals so that minimum wellbeing value surpastedf minwbi x (1+ M,) > 1, then1+ M, =
1/minwb}.

» If a constraint is rejected and the conflict is mesolved, its related coefficient of restrictioalwe is
reduced by halfM,, = M, x 0.5. Thus a less restrictive constraint can be defatdtie next iteration. If the
coefficient of restriction value of an agent reacheprecision valueP}, then the splitting is stopped for this
agent, because the upper and lower bounds of Itbeirey variable are as close as possible consigetie
precision value. If all the coefficient of restiant values reacR, then the simulation process stops.

« If help is approved, the helping agent returnshe M, value of the process iteration where the most
restrictive constraint is defined after the coriatreemoval.

The simulation process evaluates the strategigbrieg process performances: number of iteratiatal, tvellbeing
and divergence of individual solutions. A smallember of iterations means a faster convergencetefvals and a
rapid design process. In addition, the global dbjecof the design system is to maximize the wétigesalues of
agents while minimizing their divergence. This dgence is defined as the difference between agernds/idual
wellbeing states. It represents the degree of sitlerf the unresolved design conflicts. In thealdease, agents
should obtain the same wellbeing values and eaehshould be equal to 1. Absolute differences ofvieibeing
values of each two element combination represevector D(d,, ..., d,). The Euclidian distance of this vector
solution to the ideal case solution gives the djeace of the individual solutions:

Divergence=\/(d1)2+...+(dn)2. More divergent solutions lead to more intense flads, because the
divergence is caused by agents with a relativelywellbeing value. However, the divergence canreoebaluated
alone. It should be evaluated with the total wetigevalue because a zero divergence is not desitdlbtal
wellbeing is zero.
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5. Monte Carlo Simulation

Design agents can reflect different characters gimgrfrom their BDI mechanism, and this definesuarcertain
design system composed of either heterogeneousmodeneous design agents. Agents’ characters calassed
in two extreme groups, namely egoistic charactacs atruistic characterfl1]. Egoistic agents are motivated by
self-interested gains, while altruistic agentsramivated by the benefit of the group that it begeto. According to
our BDI definition, a design agedi, (Pr, Ty, F, My, H) is relatively egoistic if itdy, F,, andM, attitude values
are relatively larger, because it desires to comge at a higher wellbeing state and it intendsléine more
restrictive constraints more frequently. Hg attitude value is also smaller, because it doé$ntend to help easily.
In contrast, an altruistic agent has relatively bend,, F;,, M,, attitude values and a largg}, value. The stochastic
nature of the system is considered with a MontddCsimulation approach. Three different agent ctizra are
defined as shown in Table 1: Egoistic, Moderatel Altruistic. We consider that there are no phatferénces of
frequencies. Each of the four system strategiespeated 1000 times with randomly generated ademtacters.
The same series of random seed numbers is utfiimeshch strategy, so the simulation results of &itategies are
comparable. Also design agents are randomly predess iterations, so the process sequence is coshple
independent from agent characters. The precisituevia defined as 0.01. This means that if therisleof wb,,
does not contaiminwbt x 1.01, it is extracted from the loop at iteratienCSP is defined in C++ computer
language and a CP solver library called IBM ILOG CP.6 [42] is used to detect consistent solutions precisely
through its domain reduction and constraint propagaalgorithms. The solve function of IBM ILOG CiB
performed to examine the feasibility of the model.

Table 1. Definitions of random characters

Egoistic Moderate Altruistic

T.: (0.6, 0.65, 0.7, (0.45,0.5, 0.55) (0.1, 0.15, 0.2, 0.25,
0.75, 0.8, 0.85, 0.3,0.35,0.4)
0.9,0.95,1)

F:  (0.5,1) (1/3,0.5, 1) (1/3,0.5)

M,: (5,6,7,8,9) (3,4,5,6,7) (1,2,3,4,5)

H, 02 0.5 0.8

The simulation problem is derived from the exansgtledied in worl{43]. As shown in Fig. 7 it is a design problem
of a multi-clutch system that connects a weighétifvith an engine, followed by a gearbox. Thia isomplex and a
realistic design problem which contains 81 varialded 64 initial constraints. The problem nomenciais given
in Table 2. The problem is distributed to four desiagents. The design objectives are shown in TablEhe
piecewise constraints representing the preferentékse design agents are shown in Table 4. Alltthasitions
between the preferences are considered linearcagnsim Fig. 2. Agent 4 evaluates four design perfances, the
same weight being attributed to these performanges:Y;_,(s,; x 0.25).

Table 2. Problem nomenclature

Meqq Weight of mass to be lifted, kg.

mg Weight of whole system (clutch + engine), kg.
T Final temperature of the clutch, °C.

Si Safety against stress at position 1

S, Safety against stress at position 2

Sa Safety against stress at position 3

Sy Safety of discs material against pressure

Sk Satisfaction of aerk

Sy Satisfaction of Agent 4 from performanice
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Fig. 7. Multi-clutch system

Table 3. Problem objectives

Agent1 Agent2 Agent3 Agent 4

Objectives

Table 4. Clutch preferences

If then
If then
If then
If then

If then

If then
If then

If then

If then
If then

If then

If then
If then

If then

If then
If then

If then

If then

If then

If then

If then
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Iterations Resolved Conflicts
Strategy 4 _ | 49,82 Strategy 4 | 2,254
Strategy 3 | | 42,23 Strategy3 ] 0,882
Strategy 2 | | 39,26 Strategy 2 _:l 0,907
Strategy 1 _:l 22,43 Strategy 1 _ 0

Total wb Divergence
Strategy 4 | | 3,29 Strategy 4 | | 0,55
Strategy 3 _ | 3,27 Strategy 3 _ | 0,60
Strategy 2 | | 3,26 Strategy 2 | | 0,62
Strategy 1 _: 3,25 Strategy 1 _ | 0,68

Fig. 8. Simulation Results

The average results of the Monte Carlo simulatiensdown in Fig. 8. In order to analyze the statisignificance
of the results, we performed two tailed t-testsdach pair of strategies. The resulting p-valuesshown in Table
5. If the significance level is considered as 0tBg, results of the strategies are significantffedent (very low p-
values), except Strategies 2 and 3 (p-values lahger 0.05).

Table 5. p-values

Strategies 1-4  Strategies 2-4  Strategies 3-4 €gfied 1-3  Strategies 2-3  Strategies 1-2

lterations 1.15E-15 0.000855 0.026087 4.08E-17 aras 5.21E-17
Eﬁﬁﬁ!‘éfsd 5.59E-40 4.06E-18 7.29E-18 3.75E-87 0.488849 1BE-9
Total wh 1.74E-06 0.000391 0.036001 0.001059 0.1938 0.0491
Divergence  6.25E-38 4.15E-15 2.96E-10 2.24E-16 @18 1E-12

In the ideal case, all four agents would obtaimalfwellbeing value which is equal to 1. The totalllbeing would
be equal to 4, and the divergence would be equ@l Tis ideal solution represents that all thérdeof agents are
fulfilled. However, this is a utopia solution, besa the convergence of the wellbeing is typicallgtéral. Since the
desires of design agents reflect customer prefesgrapproaching the ideal solution along both oa wellbeing
and divergence axes will improve the designed pebdrhis will increase the overall utility of theqauct while
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providing more balance between the satisfactiordiftdrent design objectives. Thus, the design pssaesults in a
balanced and optimal solution that best meetsedditive customer preferences. As seen in Fig. &,cinflict

resolution systems, regardless of their adoptioatey, result in a larger total wellbeing valued aan smaller
divergence than the non-cooperative design sysiédns. shows that the conflict resolution systemsrapgh the
ideal solution more closely than the non-coopeeatiesign system. However, this is obtained at & afonger

process time. The most rapid system strategy imtirecooperative design system strategy, becawse th no

conflict resolution that can cause loopbacks tohbkping agents. In contrast, the centralized octnfesolution

system resolves more design conflicts than therdattrategies. This causes more loopbacks, whictamgwhy

this strategy generates the longest process time.

The results prove that the divergence is reduced,the total wellbeing is increased with the numblkedesign
conflicts resolved or prevented. The least divecgeand the greatest total wellbeing values areirddaby the
centralized conflict resolution system. These tss(ibtal wb = 3.29 and divergence = 0.55) aredbsest to the
ideal solution (total wb = 4 and divergence = OlthAugh the average results of Strategy 3 (total~wk.27 and
divergence = 0.60) are slightly better than Strat2dtotal wb = 3.26 and divergence = 0.62), ihdd statistically
significant that the controlled conflict resolutiepstem outperforms the decentralized conflict Iggm system.

6. Conclusions

In this paper, we explored design conflicts witBal model and CSP definitions, so that design dotsflcan be
justified. We defined a CoCSP which is able to nggneonflicts by allowing design agents to help atht@rough
compromising the restrictiveness of their decistmmstraints. The degree of this helping attituderesents the
solidarity of agents. We defined three differenbftiot resolution system strategies by considetting solidarity
architecture of the agents. We compared theseegtest with the non-cooperative design system tloas chot
include any conflict resolution. Monte Carlo sintida results show that, regardless of the conflegolution
system strategy adopted, our conflict managemerdemcepresents a significant improvement over tbe-n
cooperative design system. The divergence of iddali wellbeing solutions is lowered and the totallleing is
increased. Thus, through our conflict managemertahohe design solution tends towards the idealtism where
design agents are completely and equally satigfiegjuilibrium. However, this gain is obtained la¢ tcost of the
increase of design process time, because corglciution causes loopbacks. In addition, it shdadldhoted that the
proposed conflict management model can be appliedbrdy measurable design systems where all thegalesi
aspects can be quantified. Another limitation iattthe feasibility of the conflict resolution is tnguaranteed.
During a design process, the model may not detefgaaible help although design agents would helgs T
feasibility behavior depends on the previous a@mkpbnstraints.

Other conclusions are deduced by comparing diffeesloption strategies of the conflict resolutiorsteyn. A

centralized conflict resolution system strategy baradopted if the process time is not an impoitsute, and if the
main objective is the highest possible degree aflimb resolution. With the lowest divergence ahé highest total
wellbeing, this system converges to the ideal smutloser than any other system. This system tiraduces a
better final product which has a higher overallitytiand a balanced satisfaction among differettitattes. In

addition, it is shown that the penalization of umgerative agents do not significantly improve tloéuton in a

conflict resolution system where the solidarityaitonomous. We conclude that the centralizatiothefconflict

resolution system (solidarity obligation) is moreifful and should be preferred to the decentréibra(autonomous
solidarity). Consequently, informing design ageotsheir respective situation in terms of their elng — the

information transparency value — and encouragin@ming them to help each other — the solidarajue — are two
values we believe efficient for the quality of tfesulting design, albeit sometimes to the detrinoéilesign process
time.
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