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Abstract 

In new complex product development processes, the design problem is usually distributed to multiple 

actors from different disciplines. Each design actor has a limited responsibility in the design system. 

Therefore, each design actor has limited control over design variables and performance variables. 

However, design actors are not isolated since their design activities are coupled. This can generate 

design conflicts through inconsistencies among design objectives and working procedures. When the 

design convergence is not controlled, inconsistencies can distort the satisfaction equilibrium between 

design actors. This means that if a design actor aims at satisfying only his/her local design objective, 

other actors having conflicting objectives will be dissatisfied. Thus, individual satisfactions diverge. The 

intensity of conflicts is measured with the satisfaction divergence. In this paper we define wellbeing 

indicators in order to control the convergence of distributed set-based design (SBD) processes. Wellbeing 

indicators reflect design actors’ satisfaction degree of their process desires. We performed a constraint 

programming Monte Carlo simulation of our SBD framework with a complex design problem. We 

compared the results of wellbeing indicators with the results of the processes where design actors do not 

use wellbeing indicators. It is shown that when design actors have some means to control their 

convergence, the solution space converges to a solution in satisfaction equilibrium while epistemic 

uncertainty of the design model is reduced. Some conflicts are therefore prevented and the satisfaction 

divergence is reduced, leading thus to an improved design process performance. 

1 Introduction 

Collaborative design is the involvement of multiple design actors from different disciplines working 

together to provide necessary expertise for multi-disciplinary design problems. Distributed design can 

be performed for collaborative design problems, where design system is decentralized; the global 

problem is decomposed into sub-problems and distributed to subsystems [1]. Subsystems are composed 

of design actors or design teams which may be distributed to different geographical locations and even 

different time zones. Each subsystem has control over some design variables that define the allocated 

sub-problem and performs concurrent design activities in order to satisfy local design objectives. 

According to Sobieszczanski-Sobieski et al. [2] system decomposition generally happens in physical 

divisions between subsystems and/or disciplinary boundaries of the multi-disciplinary problem. There 

are important motivating factors of decomposition of the design problem and decentralization of the 

design system, such as complexity management, decreased development time, efficient use of 

disciplinary expertise and design facilities, and concurrency of design activities [3–5].  
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In the ideal case, design actors should be able to work asynchronously and generate solutions to sub-

problems independently. True concurrency is thus achieved, and satisfactions of subsystem objectives 

are maximized equally. However in reality, true concurrency is very difficult to achieve [6], because 

design actors are not isolated from the other actors’ activities. They are related to each other by 

couplings. Obtaining maximum efficiency out of the decomposition is a difficult task because of the 

presence of couplings among subsystems. Couplings are shared information and they can cause conflicts 

through inconsistencies. In a design system, inconsistencies arise at problem level and process level. At 

problem level, subsystems can have inconsistent perceptions to the same objects. Typically, design 

actors from different disciplines do not have consistent objectives, but they have conflicting objectives. 

At process level, design actors tend to have freedom in their working environments and to determine 

their design strategies for their favor. Thus, their working procedures are optimal in local for their 

particular sub-problems; however they may be inconsistent with other actors’ working procedures and 

may have negative impacts on the global system solution [7]. 

The divergence of local objective satisfactions of subsystems is the measure of how one subsystem is 

satisfied more than another. When design objectives of subsystems are not satisfied in equilibrium, such 

as one subsystem is satisfied causing dissatisfaction to the other, design conflicts arise among 

subsystems. The divergence represents thus the intensity of design conflicts. In the ideal case where all 

subsystems are fully satisfied, divergence is equal to zero. Divergent objective satisfaction solutions 

show that certain participants suffered during the design process, because of not being able to perform 

their jobs effectively. This represents a low process performance of the design system, because it cannot 

be a globally satisfactory solution. According to Chanron and Lewis [8], couplings also generate a 

challenge for allocating design variables to subsystems. If some design variables influence design 

performance variables of several subsystems, the allocation technique of design variables is critical, 

because it can influence the design quality as shown by Kim et al. [9] and design process performance as 

shown by Park et al. [10]. In order to obtain a better performance from the design process, objective 

satisfaction states should converge in equilibrium. However, obtaining satisfaction equilibrium implies a 

challenge, because design actors do not have means to efficiently control their dissatisfaction from 

solutions. 

Figure 1 shows a coupling pattern where the design variables (a, b) are related by a constraint but the 

design actors have limited control. Design actors measure performance variables (X, Y and Z). 

Normalized satisfactions of the local subsystem objectives are ��, �� and ��. The objectives of Actor 1 

and Actor 2 are conflicting. When Actor 1 minimizes a, Z decreases; Actor 3 is dissatisfied. When Actor 3 

maximizes b, X increases; Actor 1 is dissatisfied. The objective of Actor 2 generates uncertainty, because 

the design variables can be both maximized or minimized as far as the objective of Y is satisfied. Set-

based design (SBD) can overcome the design uncertainty issue by representing uncertain variables with 

intervals and reducing intervals while collecting design information [11]. As represented in Fig.1, the 

intervals shrink with specifications shown with dashed arrows, and converge to a point solution ��: ���� , ���, ���
. As seen with this example, if design actors can only control design variables, they 

cannot control their satisfaction and dissatisfaction. This can end with the satisfaction domination of a 

design actor on another: one objective is satisfied the other is dissatisfied when ��
��� or ������. 
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Conflicts become therefore more intense represented with the increasing divergence of actors’ 

individual satisfaction solutions. If the convergence of SBD can be controlled efficiently, this issue can be 

resolved. With an efficiently controlled design process, a collaborative compromise can be obtained. 

Thus, satisfaction equilibrium is obtained where individual sub-problem objectives are satisfied as much 

as possible while their divergence is kept minimal. For the example in Fig. 1, a collaborative compromise 

solution ��: ���� � 0.5,  ��� � 0.5, ��� � 0.5
 can be achieved with � � 3 and � � 15. Individual 

satisfactions are equal, so this solution has a zero divergence. 

 

 

 

 

 

 

 

 

Figure 1. Coupled design pattern 

In this paper we develop control indicators for SBD, called wellbeing indicators, to provide an alternative 

to controlling only local variables. Wellbeing indicators are derived from performance variables with 

product preferences and design actors’ process preferences. They allow a bottom-up design process 

which involves utilizing solutions to identify the values for design parameters while reducing design 

uncertainty [12]. They evaluate suffering of design actors during the design process, and provide a 

controlled convergence in SBD. The objective of this paper is to simulate the design process 

performance of wellbeing indicators over conventional top-down and bottom-up design approaches. In 

Sec. 2 the uncertainty management of SBD and Constraint Satisfaction Problem (CSP) techniques are 

discussed. Our distributed SBD framework is introduced in Sec. 3 and the CSP simulation process of this 

framework is presented in Sec. 4. Monte Carlo simulations of our approach are performed on a design 

problem. Problem definitions and simulation results are presented in Sec. 5. The results from Sec. 6 are 

discussed and further works are identified in Sec. 7. 

2 Collaborative Design Approaches and SBD 

Uncertainty representation and propagation are important issues for design quality in preliminary 

design [13]. This is the epistemic uncertainty of what the problem variable values of the final solution 

emerging from the convergent design process might be. Deterministic design methods can be 

considered as point-based optimization approaches, because solutions are usually represented with 

crisp values, and trade-offs are made on point solutions. In order to achieve an optimum design, these 
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approaches must simplify and restrict the problem so that important uncertainty aspects are 

overlooked. According to Parsons et al. [14], point-based optimization approaches usually do not reflect 

a practical use for the early stage design of complex products, because of the lack of uncertainty 

propagation ability. Set-Based Design (SBD) is an alternative approach where solutions are represented 

with feasible regions/intervals of variables [15,16]. Variable intervals of a sub-problem define its 

individual solution space. Design activities are executed concurrently and the global solution space is 

defined by overlapping individual solution spaces of each actor. At the beginning of the design process 

the solution space is rather large. It is reduced by specifications defined into the model. A convergent 

solution is therefore obtained at the end of the process where the solution space is reduced at 

maximum level. Design actors do not know this solution at the initial state but they can only determine 

it at the end of the process. While the epistemic uncertainty is very high at the preliminary design phase, 

the convergence of the solution space reduces the epistemic uncertainty and provides adequate 

information for further design decisions. This is shown in Fig. 2 where the outer curves represent the 

solution space, the inner curves represent the specifications defined at the process stage considering 

the design information emerging from the previous stage, and dashed lines represent the convergence.  

At early stages of the design process where the epistemic uncertainty is very high, making direct 

decisions and searching a single solution can be difficult and inefficient. The uncertainty reduction 

paradigm of SBD is more efficient in concurrent engineering than point-based approaches. In SBD, 

instead of negotiating over single solutions, design actors work on a set of alternative solutions. This 

provides variability of design alternatives and flexibility of modifications in the design process. SBD 

allows gathering design information before making decisions. If there is not reliable trade-off 

information concerning a design decision, the decision can be delayed to subsequent process stages 

where epistemic uncertainty is reduced and more reliable design information is obtained. McKenney et 

al. [17] and Wang and Terpenny [18] show that delaying certain decisions under high epistemic 

uncertainty can result in higher adaptability to changes at later stages of the design process. Parsons et 

al. [14] show also that SBD process provides robustness to design errors. If there is a mistake or a faulty 

decision in the process, when it is corrected, the solution space can be still wide enough to converge to 

a solution. Thus, in SBD less time is consumed due to a decrease of repetitive design processes and 

backtrackings [16]. 

 

 

 

 

 

Figure 2. Progressive convergence in SBD 

SBD originated as a management philosophy for concurrent engineering operations. However, 

Constraint Satisfaction Problem (CSP) techniques can be used to adopt SBD for technical solutions of 
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concurrent engineering problems [19–22]. CSP is a concept that is often employed in artificial 

intelligence, operational research and logic programming [23]. It can be applied in every domain where 

we look for certain solutions while taking account of many constraints, such as Conceptual Design and 

Production Planning. CSP is defined by three sets (V, D, C) [24]: 

5 � 67�, … , 79: is the set of variables. 

; � 6<�, … , <9: is the set of variable domains. 

= � 6>�, … , >?: is the set of constraints. 

Domains (D) contain the feasible values of corresponding variables (V) that do not violate constraints 

(C). Constraints are either equalities or inequalities that relate variables to some values or to each other. 

They are conditional if the restriction requires some conditions to be fulfilled. A complete assignment of 

the values to the variables, which satisfies all the constraints in the CSP, is called consistent solution. The 

set of consistent solutions is called solution space. CP techniques perform constraint propagations, 

interval analysis and branch-and-prune algorithms in order to determine the solution space very quickly 

for any modification of the design model. CP can handle discrete variables as shown by Montanari [24] 

and Mackworth [25] or continuous variables as shown by Faltings [26]. Dynamic CSP allows adding or 

removing constraints to the problem model when the problem is not static [27]. The problem is altered 

with the evolving set of constraints. The problem at time stage t is @A � B@AC�, ∆E where @AC� is the 

problem defined at the previous stage and ∆: @AC� F @A is the function of added constraints that maps 

the previous problem to the problem at stage t. Overviews of the different CSP solving techniques and 

its application on design problems can be found in works [19,28–30]. 

In SBD, domains are represented with intervals, either finite sets or real intervals. The solution space is a 

subset of the Cartesian product of the intervals since some elements of the Cartesian product can be 

infeasible considering constraints. In the preliminary design phase where uncertainty is significant, the 

domains are very large. Through the progress of the design process constraints representing decisions 

are defined into the model. At any stage of the process designers can benefit from precise and 

consistent representations of the remaining design space detected by domain reduction/filtering of the 

CP [23]. The initial domains of the example shown in Fig. 1 are: ;���  �  +1 , G∞�, ;���  �  +1 , G∞�, ;���  �  +5 , G∞�, ;�'�  �  +0.8 , G∞� and ;�4�  �  +5 , G∞�. If a constraint is defined � � 10, then 

the inconsistent solutions are filtered, so the domains are reduced: ;���  �  +10 , G∞�. The domain 

reduction due to the constraint leads to the domain reduction of related parameters: ;���  �  +2 , G∞�, ;���  �  +10, G∞�, ;�'�  �  +0.8 , G∞� and ;�4�  �  +50 , G∞�. Domain reduction can function with a 

bottom-up architecture where constraints can be defined directly on value occurrences. For instance, if � � 20 is added to the problem, the domains are reduced to: ;���  �  +2 , 4,, ;���  �  +10 , 20,, ;���  �  +5 , 20,, ;�'�  �  +0.8 , 1.6, and ;�4�  �  +50 , 100,. This is a very effective way of 

representing product specifications in design systems, because it can enable design actors to define 

constraints directly on their design performance variables and indicators derived from the design 

performance variables. With its domain reduction ability CP allows modeling and propagating 

uncertainty on variables and reducing the uncertainty during the design progress. Yannou and Harmel 
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[28] demonstrate that CP techniques can compete with and outperform fuzzy methods and probabilistic 

methods on managing uncertainty in design. When designing under uncertainty with CP techniques, the 

final size of the reduced solution space relative to its initial size shows the relative degrees of freedom of 

the design [31], a measure that we further use for defining our wellbeing indicators. In collaborative 

design, degrees of freedom of design actors are bounded because of the couplings in the design system. 

Current CP approaches contribute towards SBD and include collaborative engineering. They concentrate 

on the identification of the consistent solutions, but generally they lack control mechanisms which could 

identify, prevent and resolve design conflicts. 

3 Controlling Convergence of Distributed SBD 

We define a distributed SBD framework where design actors can control their convergence while 

observing their wellbeing indicators. This framework is derived from our earlier studies in works [32,33]. 

First we define the dynamic sub-problem of a design actor and the dynamic design process in a 

distributed SBD system. Next satisfaction functions and wellbeing indicators are introduced. 

3.1 Dynamic Sub-Problem and SBD Process 

The design responsibility of a design actor is limited by its sub-problem. Figure 3 shows the dynamic sub-

problem of the design actor k in a distributed SBD system where the domains of problem variables at 

process stage t are represented with ;A� �. 5J represents the set of local design variables over which the 

actor k has control. 5JK is the set of design variables that are out of the actor’s responsibility. Thus, the 

actor k can modify 5J , while 5JK can only be observed. Since sub-problems are coupled, some design 

variables can be shared and modifiable by several design actors. Design performance variables evaluate 

the designed product considering design objectives. The design objectives derived from the product 

preferences coming from the market specifications. @J represents the set of local performance variables 

related directly to the responsibility of actor k , and corresponds to the local objectives. They are a 

function of 5J. Global performance variable �@L� which is a function of 5J and 5JK , evaluates the global 

system solution, and corresponds to the global objective shared by all design actors. Design 

performance variables can be derived from design variables (e.g. weight of an object) as well as a design 

variable can be directly a design performance variable (e.g. length of an object). The design actor makes 

decisions on the design model considering the design information about how the design objectives are 

satisfied by the design performance variables.  

A set of initial constraints �=M� is defined at the initial state of the design model in order to ensure the 

feasibility of the product. A set of decision constraints �=N� is introduced by actor k during the design 

process to make decisions in order to satisfy design objectives while reducing the epistemic uncertainty. 

If the information for making a decision is uncertain because of the dense couplings among sub-

problems, the decision is delayed to a process stage where the epistemic uncertainty is reduced by 

preceding decisions of the same design actor or the other actors. This is a progressive process where a 

decision constraint generates adequate information that allows making further decisions. Thus, =N 

evolves through subsequent process stages. Domains of the sub-problem �;A� are therefore restricted 

progressively at each process stage t. The sub-problem of actor k is restricted progressively also by an 
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evolving set of decision constraints =NK  introduced by actors with couplings. With the increasing number 

of decision constraints introduced to the problem, the sub-problem is dynamic through the design 

process stages. The aggregated sub-problems propagate the dynamic design model that converges to a 

narrower solution space continuously. 

 

 

 

 

 

 

 

Figure 3. Dynamic sub-problem 

The dynamic design process is shown in Fig. 4. In a design process stage, there are three decisions made: 

D1, D2 and D3. D1 and D3 are Boolean decisions and D2 is a “how” decision. D1 determines whether the 

actor compromises or defines constraints. Design actors compromise when their design objectives are 

sufficiently satisfied. Otherwise, they define decision constraints to satisfy their objectives until they 

compromise. D2 determines how restrictive decision constraints are defined. After the definition of new 

constraints the feasibility of the design model is tested. D3 determines whether the model accepts the 

modification or refuses it. The model modified with a decision constraint is accepted if there is at least 

one feasible solution. If there is not any feasible solution after the definition of a decision constraint, 

then the constraint is rejected. This can lead to a potential conflict between design actors, because the 

rejection of the constraint can yield to unsatisfied objectives. This conflicting situation is highlighted 

with the dashed line in Fig. 4. Variable intervals shrink with the accepted modifications. Updated 

variable intervals and the acceptance or the rejection of the constraint of a design actor are emerging 

design information of the process stage. Design uncertainty is reduced with this information. At the 

subsequent design stage, actors make decisions considering the design information emerged from 

previous design stages. At a process stage, D1, D2 and D3 therefore depend on previous decisions. 

Decisions performed at the design stage also depend on the attitudes of design actors. D1 and D2 are 

individual decisions and depend on how restrictive the design attitude of the processing design actor is. 

Design actors with more restrictive attitudes compromise at a higher satisfaction level and define more 

restrictive decision constraints. D3 is a collaborative attitude that depends on how the design model is 

restricted by all design actors at previous stages and how D2 is performed by the processing actor. If the 

model is restricted too much at previous stages, constraints can be rejected even if D2 is not very 

restrictive. If D2 is very restrictive, constraints can be rejected even if the model is not restricted too 

much at previous stages. D1, D2 and D3 are explained in subsequent sections. 
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Figure 4. Dynamic SBD process 

3.2 Wellbeing Indicators 

Design objectives are defined as a function of product preferences of the market. A performance 

variable is evaluated by preference statements to determine how its design objective is satisfied. We 

combine soft and hard feasibility preference functions of physical programming defined by Messac [34]. 

Hard feasibility preference statements are as follows: 

S1: fully satisfied by a performance variable above a certain value. 

S2: fully satisfied by a performance variable below a certain value. 

S3: fully satisfied by a performance variable equal to a certain value. 

S4: fully satisfied by a performance variable between certain values. 

S5: fully dissatisfied by a performance variable above a certain value. 

S6: fully dissatisfied by a performance variable below a certain value. 

S7: fully dissatisfied by a performance variable equal to a certain value. 

S8: fully dissatisfied by a performance variable between certain values. 
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Figure 5. Satisfaction functions 

Satisfaction values of design objectives reflect product satisfactions of related design actors. With 

preference statements segmented satisfaction functions are defined. �JM � �O�7M� where �JM is the 

satisfaction value of the design actor k by the performance variable i and 7M  is the value of the design 

performance variable i. Hard feasibility preferences are: �JM � 1 if the objective is fully satisfied, and �JM � 0 if the objective is fully dissatisfied. Soft feasibility preferences are the transitions between fully 

satisfied and fully dissatisfied states: 1 P �JM P  0 . In this paper we assume that transitions are linear 

functions, however nonlinear transitions can be applied with the same definitions. Figure 5 represents 

all the different satisfaction functions derived from the preference statements listed above. We 

integrate piecewise constraints reflecting design performance variable preferences into the model in 

order to determine satisfaction states of the design actors. These piecewise constraints define 

additional information into the model without eliminating any part of the solution space. For example 

an objective of a design actor k is minimizing a performance variable i; the design actor is fully satisfied 

by a performance variable value below or equal to QR��1JM and fully dissatisfied by a performance 

variable value above or equal to QR��2JM. Then the piecewise constraints integrated into the model are: 

If 7M � QR��1JM  , �JM � 1 (1) 

If 7M � QR��2JM  , �JM � 0 (2) 
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In SBD framework we obtain an interval value for performance variables because design variables are 

defined with intervals. The intervals are reduced through the decision constraints defined during 

process stages. At process stage t, performance variable i has a minimum value �MA and a maximum value TMA, the interval of the performance variable i at process stage t is: U�MA  , TMAV. Since the performance 

variable is defined with an interval we obtain an interval for the satisfaction of the design actor k by the 

performance variable i at stage t: �JM � UW�
�JMA  , W���JMA V where W�
�JMA  is the minimum satisfaction 

and W���JMA  is the maximum satisfaction obtained within the interval U�MA  , TMAV. Figure 6 represents an 

example. Piecewise constraints are same as above. The minimum satisfaction is obtained at point A and 

the maximum satisfaction is obtained between point B and QR��1JM. During the progress while 

uncertainty is reduced design actors can observe the potential maximum and minimum satisfaction 

values from design performance variables.  

 

 

 

 

 

Figure 6. Intervals on the satisfaction function 

Design actors can assign weights to their satisfaction values obtained from individual performance 

variables, regarding the importance of the design performance variables for their job. This can be 

performed if the sub-problem is scalable. Otherwise the sub-problem should be decomposed and 

distributed to another design actor. In order to observe general satisfaction states of design actors, 

individual performance objective satisfaction values are aggregated. General satisfaction of the design 

actor k from the whole design model at stage t is the sum of the design actor’s weighted satisfactions 

from all performance variables i at stage t. It is defined as an interval �J � +W�
�JA  , W���JA ,. XJM is the 

weight assigned to the performance variable i by the design actor k. I is the total number of the 

performance variables considered by design actor k. Thus satisfaction indicators (Minimum and 

Maximum Satisfaction) of a design actor are calculated as following equations: 
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Figure 7. Bilateral convergence of satisfaction interval 

The satisfaction interval of an actor converges with the progress of the model during the design process 

stages where more decision constraints are added into the model. Convergence is usually bilateral, 

because design activities are coupled and conflicting. The minimum bound of the satisfaction interval is 

increased by the design activities of its design actor however the maximum bound of the interval is 

reduced by coupled and conflicting design activities of other design actors. Thus design actors’ degree of 

freedom is bounded. At the final stage of the design process satisfaction interval converges to a solution 

where Minimum and Maximum Satisfaction Indicators are approximately equal. Figure 7 explains the 

bilateral convergence. =? and =9 are the sets of constraints added to the problem by actor k increasing W�
�J. =?K  and =9K  are the sets of constraints added to the problem by the other design actors with 

conflicting objectives decreasing W���J. 

In a coupled design system, it is typically impossible to fully satisfy all design objectives, because the 

convergence is bilateral. Design actors are forced to compromise at a certain satisfaction level in the 

design process. A design actor can define a preference about his/her satisfaction value in which he/she 

may compromise. This is defined by considering solution space, design uncertainty and also the other 

actors’ degree of freedom. This preference is the compromise threshold value � Ĵ�. Ĵ represents the 

satisfaction value that design actor k wants to guarantee in the �J interval. If W�
�JA S Ĵ , then the 

design actor defines decision constraints in order to improve �J considering Ĵ. If the minimum 

satisfaction of a design actor by the model reaches Ĵ  value or passes beyond, then the design actor 

passes to the compromise state. In the compromise state design actors stop adding decision constraints 

to the model. This leaves space to the other design actors, because maximum values of their satisfaction 

intervals are not restricted by actors in compromise state. Ĵ value defines the design attitude that 

determines D2 in Fig. 4. 

Ĵ is a process preference of the design actor, different than product preferences. While product 

preferences define satisfaction functions that evaluate the feasibility satisfaction of the product, Ĵ 

values are actors’ compromise desires that evaluate process satisfactions of design actors. In order to 

make a distinction from the design objective satisfaction ��J�, we call the process satisfaction as 

“wellbeing” of design actor. As shown in Eq. (7), �J is normalized by Ĵ , and this provides the wellbeing 

indicator of actor k �X�J�. Figure 8 shows how X�J is derived by using the example explained with Eqs. 

+W�
�J9, W���J9, 

W�
�J9 _ W���J9 

UW�
�J̀  ,                                                W���J̀ V
+W�
�J? ,                    W���J?, =? =?K  

=9 =9K  
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(1-3) and considering that 7M is the only performance variable measured by actor k. Wellbeing is 

represented with an interval X�J � +W�
X�JA  , W��X�JA , where the minimum value is the minimum 

wellbeing indicator and the maximum value is the maximum wellbeing Indicator. Wellbeing interval 

converges through the progress of the design process. If the convergent wellbeing value is larger than or 

equal to 1 then the design actor is in a perfect wellbeing state. The worst wellbeing state is when the 

value is equal to 0. The convergent X�J is shown in Eq. (8) where <7JC is the underachievement 

deviation variable, and <7J& is the overachievement deviation variable. The process objective of actor k 

is to minimize <7JC. Wellbeing states reveal if a design actor suffers because of not being able to 

approach to the compromise state, or if a design actor could have the freedom to perform modifications 

to the model and could have approached to the compromise state.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Derivation of wellbeing indicator 

 

X�J � �J Ĵ (7) 

X�J G <7JC ! <7J& � 1 (8) 

<7JC , <7J& � 0  
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4 CP Simulation Process 

U�M̀  ,                                                                                 TM̀ V 7M: 

�J � �O�7M�: 

X�J � �ĴJ a 

�J � 1 �J � 0 1 P �J P 0 

X�J � 0 X�J P 1 1 P X�J P 0 

X�J � 1 

Ĵ 

QR��1JM QR��2JM 
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We present a CSP simulation of our SBD framework. The objective is to simulate the process 

performance of a wellbeing controlled design scenario compared to some scenarios that represent 

general design practices of top-down and bottom-up design. In top-down design practice, design actors 

usually modify only their design variables while evaluating their performance variables. The process can 

be performed with modifying one design variable of an actor after one design variable of another actor 

or with an all-at-once approach where modifications are performed on all the design variables of an 

actor after all the design variables of another actor. Alternatively, with CSP techniques a bottom-up 

design approach can be adopted. Design actors can modify their performance variables or wellbeing 

indicators derived from the performance variables. We define four simulation cases which represent 

these scenarios. Case 1 and Case 2 represent conventional top-down design processes while Case 3 is a 

conventional bottom-up process and Case 4 is wellbeing controlled bottom-up design process. 

Case 1: Players define decision constraints on their normalized local design variables. Each player can 

define maximum one constraint per iteration. 

Case 2: Players define decision constraints on their normalized local design variables with an all-at-once 

approach. 

Case 3: Players define decision constraints on their normalized performance variables. 

Case 4: Players define constraints on their wellbeing indicators. 

The simulation algorithm is shown in Fig. 9. For the simulation we call design actors as players and 

process stages as iterations. In the simulation process we used a split mechanism similar to the round-

robin strategy that loops on all the variables at process iteration [35]. The objective is to ensure a global 

system convergence where the upper value and the lower value are as close as possible for each 

variable interval. Intervals are reduced until a good degree of precision is obtained. We make some 

assumptions for players defining decision constraints: 

• If W�
�JA S Ĵ , each player k can define (a) decision constraint(s) only once at any iteration and 

constraints are defined sequentially. If all the players are processed in iteration then the process 

passes to the next iteration: t++. 

• Decision constraints are defined for improving the worst case scenarios with a coefficient of 

restriction �J P 0 or �JM P 0 or �Jb P 0  \], �, c. This coefficient is the design attitude of player k 

that determines how the decision constraint is defined. This is the D3 shown in Fig. 4. Initial worst 

cases are larger than 0: W�
5
b̀ P 0 \c, W�
@
M̀ P 0 \�, W�
X�J̀ P 0 \]. If W�
�JA � Ĵ then 

the compromising player is extracted from the splitting loop (Cases 1 and 2: �Jb � 0 \c , Case 3: �JM � 0 \� , Case 4: �J � 0). 

o Cases 1 and 2:  5
b � W�
5
bA # �1 G �Jb
 where 5
b is the normalized design variable j, W�
5
bA is its minimum value at iteration t and �Jb is the coefficient of restriction for 5
b 

defined by player k. 
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o Case 3:  @
M � W�
@
MA # �1 G �JM� where @
M is the normalized performance variable i, W�
@
MA is its minimum value at iteration t and �JM is the coefficient of restriction for @
M 
defined by player k. 

o Case 4:  X�J � W�
X�JA # �1 G �J�. 

• If a constraint is unfeasible, it is rejected. Then, its related coefficient of restriction value is 

reduced by half. If the coefficient of restriction value of a variable reaches a precision value (P), 

then the splitting is stopped for this variable, because the upper and lower bounds of its interval 

are as close as possible considering P. If all the coefficient of restriction values reach P, then the 

simulation process stops. 

• Ĵ and �J are the attitudes of players and defined before the process starts. �JM and �Jb values 

are equal to �J at the initial state. Product preferences and Ĵ values do not change during the 

design process, because they represent static desires. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Simulation algorithm 
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The simulation process is evaluated by four process performance criteria: number of iterations, number 

of failures, global objective satisfaction and satisfaction divergence of individual solutions. Four 

simulation cases are compared regarding these criteria. 

Number of iterations and number of failures 

A smaller number of iterations represents a faster convergence and a rapid design process. The process 

rapidity should be evaluated with the number of failures. When a decision constraint is rejected, it is a 

process failure. Each failure is a potential conflict among players, because the rejection of a decision 

may be caused by earlier decisions of a player with a conflicting objective. Therefore, less failures means 

a less conflicting design convergence. The total number of failures represents the number of conflicts 

occurring in a design process. When there are fewer failures, the coefficient of restriction is split at later 

iteration, which leads to the number of iterations increasing. 

Global Satisfaction and Satisfaction Divergence 

Players’ local objective is to minimize <7JC in Eq. (8). In the ideal case, players should obtain the same �J 

value and each X�J value should be larger than 1. The satisfaction divergence is derived from the 

absolute differences of players’ �J values. All <M  values calculated by Eq. (9) represent a vector ;�<�, … , <9�. In the ideal case, all the elements of this vector is 0. The Euclidian distance of a vector 

solution to the ideal case solution gives the satisfaction divergence calculated by Eq. (10). The 

satisfaction divergence is a measure of conflict intensity. More divergent solutions represent more 

intense conflicts, because the divergence is caused by conflicting decisions. However, the satisfaction 

divergence cannot be evaluated alone. It is evaluated with the global objective satisfaction. The system 

objective is to maximize the global objective satisfaction while minimizing players’ satisfaction 

divergence. A solution with 0 divergence is not desirable if the global objective satisfaction is 0. 

<M � |�J ! �Je | , \], ]K $ %&, ]K P ] (9) 

;�7�Rf�
>� � gY�<M��9
M[�  (10) 

5 Monte Carlo Simulations 

We performed a Monte Carlo simulation with the design problem of a multi-clutch system derived from 

the example studied in [36]. Three different player characters are defined with combinations of Ĵ and �J design attitudes as shown in Table 1. A player with a higher Ĵ value compromises at a larger �J 

level. A player that starts the design process with a higher �J value intends to define more restrictive 

decision constraints. Thus, the restrictiveness of a player is higher if Ĵ and �J values are larger. Each of 

the four cases is repeated 1000 times with randomly generated player characters. The same series of 

random seed numbers is utilized for each case, so the simulation results of four strategies are 

comparable. Also design agents are randomly processed in iterations, so the process sequence is 

completely independent from player characters. The precision value (P) is defined as 0.001. Thus, if the 
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interval of any variable � � +W�
�A , W���A, does not contain W�
�A # 1.001, it is extracted from the 

loop at iteration t. Dynamic CSP is defined in C++ computer language and a CP solver library (IBM ILOG 

CP [37]) is used to find solutions through its domain reduction and constraint propagation algorithms. 

The solve function of IBM ILOG CP is used to examine the feasibility of the model, so the D3 in Fig. 4 is 

determined. If the solution of a propagated constraint returns 1, it means that the restricted model has 

at least one consistent solution and it is feasible. If it returns 0, it means that the model is unfeasible or 

the solution space is empty. 

Table 1 Definitions of random characters 

Restrictiveness High Moderate Low Ĵ: (0.6, 0.65, 0.7, 
0.75, 0.8, 0.85, 
0.9, 0.95, 1) 

(0.45, 0.5, 0.55) (0.1, 0.15, 0.2, 0.25, 
0.3, 0.35, 0.4) 

�J: (5, 6, 7, 8, 9) (3, 4, 5, 6, 7) (1, 2, 3, 4, 5) 

5.1 Simulation Problem 

The simulation problem is a design problem of a multi-clutch system that connects a weight lifter with 

an engine, followed by a gearbox (Fig. 10). This is a complex design problem which contains 81 variables 

and 64 initial constraints. Problem nomenclature and constant values are given in Table 2. There are 

four designers associated to the problem. Their sub-problems are given in Table 3. The piecewise 

constraints representing product preferences are shown in Table 4. Transitions are considered linear as 

in Fig. 5. These define local objectives of the subsystems Player4 evaluates four design performance 

variable, the same weight is attributed to these performance variables: �h � ∑ ��hM # 0.25�hM[� . The 

global objective is defined as: ������ G �� G �� G �h�. 

 

Figure 10. Multi-clutch system  
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Table 2 Clutch problem nomenclature & constants 

>� Space between chassis and shaft, 10 mm >� Thickness of chassis plate, 30 mm �� Thickness �� Width of shaft shoulder �j Length of shaft, 300 mm <� Diameter of bearing in shaft <� Inner diameter of driven disc <� Inner diameter of driving disc <h Outer diameter of driven disc <j Outer diameter of driving disc <k Outer Diameter of chassis <? Medium diameter of friction surface Q� Density of chassis and shaft material Q� Density of disc material WlmnN Weight of mass to be lifted, kg WO Weight of whole system (clutch + engine), kg Wo Weight of engine, kg � Friction value between driving and driven discs 
 Number of revolutions  of engine d Thermal conductivity of chassis and shaft material � Amount of friction pairs ^ Final temperature of the clutch, °C p Stiffness of chassis and shaft material @? Maximum allowed pressure on clutch discs ��� Safety against stress at position 1 ��� Safety against stress at position 2 ��� Safety against stress at position 3 ��q Safety of discs material against pressure �J Satisfaction of player k �hM Satisfaction of Player4 from performance variable i X�J Wellbeing of player k  

Table 3 Clutch sub-problems 

 Player1 Player2 Player3 Player4 

Performanc

e Variable 

Objectives 

����WlmnN� ��
�WO� ��
�^� �������, ���, ���, ��q� 

Design 

Variable 

Objectives 

����WlmnN� ��
�Wo, Q�, Q�, <�, <h, <j, <k, �, ��, ��� ����<�, <�� 

��
��, <? , 
, d, �� ����<k, ��, ��, �� 

����p, @?� 
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Table 4 Clutch preferences 

If WlmnN � 3500 , �� � 1  

If WlmnN � 2000 , �� � 0  

If 2000 S WlmnN S 3500 , 0 P �� P 1  

If WO � 150 , �� � 1  

If WO � 500 , �� � 0  

If 150 S WO S 500 , 1 P �� P 0  

If � 20 , �� � 1  

If � 150 , �� � 0  

If 20 S ^ S 150 , 1 P �� P 0  

If ��� � 190 , �h� � 1  

If ��� � 25 , �h� � 0  

If 25 S ��1 S 190 , 0 P �h� P 1  

If ��� � 90 , �h� � 1  

If ��� � 12 , �h� � 0  

If 12 S ��2 S 90 , 0 P �h� P 1  

If ��� � 60 , �h� � 1  

If ��� � 8 , �h� � 0  

If 8 S ��3 S 60 , 0 P �h� P 1  

If ��q � 10 , �hh � 1  

If ��q � 2 , �hh � 0  

If 2 S ��Q S 10 , 0 P �hh P 1  

 

5.2 Simulation Results 

The average results of 1000 Monte Carlo simulations of each multi-clutch problem case are shown in Fig. 

11. In order to analyze the statistical significance of the results, we performed two tailed t-tests for each 

pair of cases. If the significance level is considered as 0.01, all the results are statistically significant �Q ! 7� s� _ 0� except the iteration results of Case 2 and Case 4 �Q ! 7� s� � 0.109�. The number of 

iterations and the number of failures are significantly larger when players define constraints on 

normalized design variables one by one (Case 1). This scenario results in the longest process time and 

the largest number of design conflicts. When normalized design variables are processed with the all-at-

once approach (Case2), the process time and the number of conflicts decrease. However, Case 2 

generates significantly more conflicts than Case 3 and Case 4. There are obvious satisfaction 

dominations on some players in Case1, Case2 and Case3. Here, the satisfaction domination is not 

character domination. It means that the design process has allowed a player to satisfy his/her local 

design objective significantly more, causing dissatisfaction to another player with a conflicting local 

objective. In Case 4, there is not an obvious domination, because players obtained closer average 

satisfaction values. Thus, Case 4 generates the least satisfaction divergence and the largest global 

satisfaction. Case 4 outperforms Case 1, Case 2 and Case 3 on all process performance criteria except 

Case 2 and Case 3 on the number of iterations. 
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Figure 11. Average results of multi-clutch simulations  

6 Conclusions 

In this paper, we proposed wellbeing indicators in a CSP processing that clearly bring significant 

advantages to concurrent designers when they take them into account for improving their local 

objective satisfactions. We performed CSP simulations of the wellbeing indicators in order to evaluate 

their contribution to the design process performance. The simulations are generated with Monte Carlo 

method where player attitudes and decision sequences are random. We compared the simulation 

results of a wellbeing controlled design (Case4) with three other cases: with Case1 where design actors 

modify only their local design variables one by one, with Case2 where design actors modify only their 

local design variables all-at-once and with Case3 where they modify only their performance variables. 
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In conventional design approaches, design actors perform a “blind design process” where they usually 

modify their local design variables with fuzzy intentions. They cannot evaluate precisely the contribution 

of their modifications to their performance variables, because the epistemic uncertainty is very high. 

Our simulation results show that this approach generates longer process time, more conflicts and 

satisfaction domination of one player on another player. With the CSP approach, a bottom-up design 

can be adopted where design actors can modify their performance variables directly. This is a simpler 

approach, because it avoids allocating design variables that are shared in coupled objectives of different 

design actors. However this approach results in an uncontrolled convergence of the solution space 

where individual satisfaction solutions are divergent and satisfaction domination of a player on another 

one is unavoidable. 

When wellbeing indicators provide design information at any stage of the design process, and they are 

used to define design decisions, what is considered to be better or improved under epistemic 

uncertainty is precisely represented. Hence, design actors can improve their states in wellbeing 

equilibrium while reducing epistemic uncertainty with consistent decision constraints on the solution 

space. Consequently, design process performances are improved compared to other approaches: some 

design conflicts are prevented, the satisfaction domination is largely avoided and the intensity of 

conflicts is reduced. However, this approach can be applied on only measurable design systems where 

all the design aspects can be quantified. With this approach there is still some satisfaction divergence 

even if there is not any obvious satisfaction domination. This is because the design actor that obtains 

the best satisfaction and the design actor that obtains the worst satisfaction alternate with different 

combinations of attitudes of the design actors. Thus average satisfaction values are similar but the 

results of an individual case can be divergent. This means that the results are only influenced by 

designer attitudes and not by the design process. However, with modifying only design variables or 

performance variables the results are influenced by the design process itself, because even if the 

designer attitudes alternate there is obvious satisfaction domination. 

In future works, more definitions will be provided on modeling design attitudes and simulating different 

characters of design actors; such as egoistic, altruistic. Our framework is capable of determining and 

preventing some design conflicts but it is not capable of resolving conflicts. Further, the process strategy 

will be improved to enable negotiating over constraints that are already accepted and compromising 

accepted constraints for resolving conflicts. This requires the detection of the source of conflicts that 

result in divergence. 
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