
HAL Id: hal-01814166
https://hal.science/hal-01814166v1

Submitted on 12 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preventing design conflicts in distributed design systems
composed of heterogeneous agents

Baris Canbaz, Bernard Yannou, Pierre-Alain Yvars

To cite this version:
Baris Canbaz, Bernard Yannou, Pierre-Alain Yvars. Preventing design conflicts in distributed design
systems composed of heterogeneous agents. Engineering Applications of Artificial Intelligence, 2014,
28, pp.142-154. �10.1016/j.engappai.2013.11.017�. �hal-01814166�

https://hal.science/hal-01814166v1
https://hal.archives-ouvertes.fr

1

Preventing design conflicts in distributed design systems composed of
heterogeneous agents

Baris Canbaz a, 1, Bernard Yannou a, Pierre-Alain Yvars b

a Ecole Centrale Paris, Laboratoire Genie Industriel, Grande Voie des Vignes, F-92 295, Châtenay-Malabry, France

b Institut Supérieur de Mécanique de Paris (SupMeca) – LISMMA, 3 rue Fernand Hainaut, 93407, Saint Ouen

Cedex, France

1 Corresponding author: baris.canbaz@ecp.fr 0033 (0) 6 36 59 89 63

Abstract

In distributed design systems, while designers are connected to each other through dimensioning couplings,

they have limited control over design and performance variables. Any inconsistency among design objectives and

working procedures of heterogeneous designers interacting in the design system can result in design conflicts due to

these couplings. Modeling design attitudes can help to understand inconsistencies and manage conflicts in design

processes. We extend the conventional bottom-up or design supervision approach through agent-based attitude

modeling techniques to a more powerful level. In our model, design agents can set requirements directly on their

wellbeing values that represent how their design targets are likely to be met at a given moment of the design

process. Some design conflicts can in this manner be prevented at an earlier phase of the design process. Set-based

design and constraint programming techniques are used to explore the overall performance of stochastic design

collaborations on a product modeled with uncertainties at a given moment of the design process. Monte Carlo

simulations are performed to evaluate the performance of our set-based thinking approach, providing a variety of

agent attitudes. The results show that the number of design conflicts occurring during the design process and the

intensity of design conflicts are both reduced through our collaborative design platform.

Keywords: Collaborative design; Distributed design; Set-based design; Conflict prevention; Constraint satisfaction

problem; Agent attitude model; Heterogeneous agents

1. Introduction

Design processes of complex products currently involve considerable effort and expertise from different

disciplines. Multiple designers from different disciplines are thus involved in performing collaborative design. The

design model converges to a solution through a series of collaborative activities performed during the design

process. Since the design problem has multidisciplinary boundaries, a distributed design approach can be adopted. In

distributed design systems, the system is decentralized; the global problem is decomposed into sub-problems and

distributed to subsystems consisting of one or several designers (Papalambros et al., 1997). Subsystems have limited

control over the design variables because of their limited expertise and responsibility. In a sub-problem there are

three main problem elements: design variables that can be controlled, design performances that are evaluated and

constraints that must be respected. The rest of the global problem excluding a specific sub-problem does not concern

the specific sub-system, but it can be only observed if it is shared and necessary. Distributed design tasks allocated

2

to sub-problems are executed concurrently by subsystems, the global problem converging to a global solution

(Zheng et al., 2011).

In the ideal case, true concurrency is expected from distributed design systems where designers can perform

their design activities independently. In reality, designers are related to each other through couplings between their

sub-problems. Couplings can result in conflicts among designers if some inconsistencies are presented in the design

system. Inconsistencies arise from design attitudes reflected by subsystems during the design process. The most

significant inconsistency occurs between design objectives of subsystems. Typically, a design problem contains

multiple conflicting objectives, so subsystems are forced to make trade-offs. Working procedures of designers

influence the performances of others, and inconsistencies present in these working procedures can negatively impact

the global solution (Zhao and Jin, 2003). For instance, a designer restricting the design model more rapidly or earlier

than others could influence the model more. Subsequent designers are forced to deal with a restricted model which

cannot satisfy their own design objectives. If the number of conflicts and intensity of the conflicts increase; the

performance of the design process decreases, because individual design objectives are not satisfied in equilibrium.

Some significant attempts have been made to coordinate and resolve existing conflicts in distributed systems. Zheng

et al. (2011) propose to resolve conflicts by integrating resultant models of conflicting Boolean decisions in

individual sub-problems of distributed computer-aided design. Kwon and Lee (2002) define a multi-agent based

model that integrates a coordination mechanism. This can manage conflicting agents in a decentralized enterprise in

order to resolve interdepartmental conflicts. Koulinitch and Sheremetov (1998) define a constraint-based dynamic

design system model that includes facilitator agents which are responsible for coordination and conflict resolution

during the design process. When a conflict occurs amongst design agents, facilitator agents send messages to relax

some constraints until a consistent solution is obtained. Huang et al. (2006) develop a fuzzy interactive multi-

objective optimization model for engineering design. The collaborative relationships among the objectives are

improved with adjusting the threshold of satisfaction degree and weighting coefficients of objectives. The least

conflicting solution is therefore selected among the generated set of Pareto optimal results. The selected solution

gives the maximum satisfaction degree and the minimum divergence of the individual satisfactions of local

objectives. Yvars (2009) proposes a collaborative design system where decisions of distributed designer agents are

represented with constraints added to the model dynamically. Constraints restricting the design model restrict also

the degree of freedom of agents, so that they cannot add anymore constraints to the design model. This results in

conflicts that are represented as unfeasible models. Design conflicts are resolved by detecting a compromise solution

that maximizes the number of accepted constraints by removing some constraints from the model. While these

approaches focus on resolving conflicts that have already occurred, they overlook the idea of preventing and

avoiding potential conflicts that have not yet occurred in the process. They interrogate the issue at a late phase of the

problem, because the avoidance of a conflicting problem is usually more efficient and less time-consuming than the

resolution of a conflicting problem. The approaches outlined above also fail to take into account attitude models of

heterogeneous agents. Modeling design attitudes can help understand the design inconsistencies resulting in design

conflicts, and as a result certain collaboration strategies can be defined with attitude models.

3

The technique chosen for modeling the design process significantly affects the collaborative solution emerging

from different sub-problems. Devendorf and Lewis (2011) show that the stability of a distributed design system

depends on how the process architecture is formed. Two main approaches can be adopted for global design process

modeling. These are the top-down design approach and the bottom-up design approach (Fathianathan and Panchal,

2009). In the top-down design approach, decisions are made for parameterization of design variables in order to find

detailed solutions that satisfy designer objectives. This approach is considered as a transition from an abstract level

to a detailed level: in complex design problems, the effect of any parameter on the solution is usually abstract until

the parameter is tested and a detailed solution is obtained. In contrast, the bottom-up design approach consists in

defining detailed solutions to identify values of the design variables. With this bottom-up design approach, designers

can make decisions on their design performances. The top-down design approach requires detailed decomposition of

the problem where all the relations between variables are explicit. However, this may not be possible when the

complexity of the design problem is very high and the problem contains too many couplings. Therefore, the effect of

the decisions about design variables on design performances is highly uncertain, especially in early design phases.

Engineering project failures can increase when it is not possible to predict the effect of the modifications because of

the presence of intense couplings in complex design problems. Chanron and Lewis (2005) highlight the difficulty of

allocating design variables to subsystems in a coupled problem where the same design variables influence the design

performances of several subsystems. The allocation technique is critical, because it can influence the design quality

(Kim et al., 2003) or the design process performance (Park et al., 2001). Fathianathan and Panchal (2009) propose

the adoption of a bottom-up design approach when these limitations arise from a top-down design approach.

Figure 1. Comparison of process approaches

In this paper we extend the bottom-up design approach with agent-based attitude modeling techniques. A

wellbeing indicator is presented that shows how the preference objectives of various designers are satisfied. Figure 1

shows the comparison of our extended bottom-up design approach with the traditional bottom-up approach and the

top-down approach. In the top-down design approach, alternatives are generated first by making decisions on the

design variables, and emerging solutions are subsequently evaluated considering design performances. In the

bottom-up approach, solutions are generated by making decisions on design performance values and the parameters

emerging from these values are evaluated to see if they are feasible or if they violate the problem constraints. Thus,

Decisions Evaluate
Parameters

Decisions Evaluate
Parameters

Decisions

1: Top-down 2: Bottom-up 3: Expanded Bottom-up

Transition

Transition
Evaluate
Solutions

D
e

si
gn

 V
a

ria
bl

es

D
e

si
gn

 P
e

rf
or

m
a

nc
e

s

W
el

lb
e

in
g

In
di

ca
to

rs

Transition Transition

2

3

1

4

trade-offs are made on design performance values. Traditionally, the bottom-up design approach is modeled at the

design problem level: it starts at the lowest level of the physical problem. However it does not include modeling the

preferences of designers emerging from their design attitudes. We think that modeling design attitudes and including

them at the bottom of the design approach will enable better control of collaborative convergence, because trade-offs

can be made directly on satisfaction values of designer preferences. Therefore, the design conflicts can be reduced.

A common design issue, regardless of the design process approach used, is the presence of epistemic

uncertainty due to the imprecision caused by the lack of knowledge about the final decision (Parry, 1996).

According to Malak et al. (2009) this issue requires representing the uncertainty with imprecise intervals/sets and

delaying uncertain decisions to later process stages when the information about the related decision becomes

available. In this paper, we use the set-based design (SBD) concept to simulate the process performance of the

extended bottom-up design approach modeled with agent attitudes. In section 2 we discuss the ability of SBD and

constraint satisfaction problem (CSP) techniques to manage imprecision in design. In section 3 the attitudes of

design agents in multi-agent systems and egoistic and altruistic agent characters emerging from dynamic attitudes

are considered. Our agent-based SBD model is introduced in section 4 and the CSP simulation process of this model

is presented in section 5. Monte Carlo simulations of our approach are performed on a design problem which

involves variable agent characters composed of variable design attitudes that define how design agents react during

the design process. The sequence of the agent reactions is stochastic. Problem definitions and simulation results are

presented in section 6.

2. SBD and CSP techniques

In coupled and conflicting design problems, especially in preliminary design processes, variables cannot be

crisply defined due to the lack of information about the decision consequences (Antonsson and Otto, 1995; Yannou,

2004). Even so, in deterministic design methods, crisp values are attributed to variables, so trade-offs are made on

design point solutions. Hence, deterministic methods simplify and restrict the design problem in order to optimize it.

However, this requires making radical decisions before the information about the decision becomes certain.

Therefore, important uncertainty aspects are overlooked. Alternatively, SBD concept considers the design process as

an ongoing evolution of non-crisp concurrent decisions (Sobek et al., 1999; Ward et al., 1994). Variables are

represented with imprecise values in domains (intervals for real variables), so epistemic uncertainty can be

propagated and evaluated. This concept allows information to be gathered before making decisions on the design

model, and decisions to be delayed when the information is not certain. The delayed decisions are reconsidered at

later process stages where more information has been gathered due the reduction of epistemic uncertainty through

earlier decisions. This approach provides flexibility of modifications and higher adaptability to changes as shown by

Wang and Terpenny (2003), as well as robustness to design errors as shown by Parsons et al. (1999). Process time is

consequently reduced due to a decrease of repetitive design activities and loopbacks.

If SBD has been principally adopted at a managerial level, it is only recently that this concept has been adapted

using CSP definitions at a technical solution level e.g. (Meyer and Yvars, 2012; Panchal et al., 2007; Yannou and

Harmel, 2006). A CSP is defined with sets of variables, sets of domains that contain the allowable values of

5

variables and sets of constraints that restrict the problem (Montanari, 1974). The Cartesian product of the variable

intervals defines a multidimensional space that contains the consistent values which respect the constraints. A

decomposed design problem can be defined with three spaces: the design space defined by design variables, the

performance space defined by design performance variables, and the solution space that contains both design and

performance spaces. Design decisions are represented with constraints restricting the solutions space, so the

epistemic uncertainty is reduced and the remaining solution space is precisely determined with domain

reduction/filtering algorithms of constraint programming (CP) techniques. Yannou and Harmel (2004) show how CP

techniques can compete with and outperform probabilistic and fuzzy methods on managing imprecision in design.

CP techniques allow the bottom-up design approach with enabling constraint definitions on value occurrences. For

instance X and Y are integer variables with domains ���� � �15 , 25� and ��� � �10 , 20� and � � � � is a

value occurrence. If a constraint is defined on Z, its consistency is evaluated and the inconsistent values of X and Y

are extracted from their domains. If � � 200 the domains of the variables are reduced to ���� � �15 , 20� and

��� � �10 , 13�. Current CSP definitions are able to support a bottom-up SBD, but we are not aware of any CSP

platform that includes collaboration indicators derived from design attitudes.

3. Attitudes of design agents in MAS

Through agent-based modeling, many complex phenomena can be considered as systems of autonomous agents

that follow simple rules of repetitive, cooperative and competitive interactions. Thus multi-agent system (MAS)

simulation is considered as an appropriate approach to investigate complex emergent systems. For instance, MASs

have been used for social simulation (Caballero et al., 2011), for modeling bounded rational agents (Lin et al.,

2008), and for organization of societies (Rodriguez et al., 2011). Agents are sub-systems that are situated in an

environment, and in order to satisfy their design objectives they perform autonomous actions (Wooldridge and

Jennings, 1995). In the environment they are social, so they can communicate and interact; they are reactive, so they

can perceive the environment and respond to the change in the environment; and they are pro-active, so they can

take initiatives by their goal-directed attitudes. In MAS, agents can reflect different attitudes that represent the

reactions of agents to uncertainties of complex dynamic domains (Goyal, 2005). The widely deployed architecture

of an agent, the belief-desire-intention (BDI) paradigm, is developed by Bratman et al. (1988). BDI views the

system as it is emerging from agents with different mental attitudes. The emergent mental attitudes construct the

system behavior and are important for the optimal performance of the system. Beliefs correspond to the information

emerging from the analysis of the model. Desires correspond to the objectives of the agent and the tasks allocated to

it. In a complex emergent system, agents are not able to satisfy all their desires at the same time, so they are forced

to make trade-offs and compromise. Intentions correspond to the choices of the agent for some desires when

compromise is necessary. Actions of choosing desires are intentions: an agent makes intentions until the desire is

satisfied or until the agent believes that the intention is no longer feasible (Cohen and Levesque, 1990). Agents

perceive their environment through sensors and act upon that environment through effectors. The system between

perception and action consists of their attitudes. An agent is stimulated by the analysis of the model and through its

belief, desire and intention architecture its attitudes are defined, so the agent performs actions (Fig. 2). Finally the

new form of the model is synthesized following the actions.

6

Figure 2. BDI paradigm

A distributed design system is an emergent system and it can be simulated as an MAS. In a distributed design

system, the stimuli are sent to agents by the dynamic design model and agents react through defining decision

constraints in the dynamic design model. Design attitudes are bounded and design agents need to interact and

collaborate. Attitudes of design agents determine when and how their decision constraints are defined during the

progress of the design process. This shapes the decision making process and collaborative convergence. The most

widely employed decision making model in MAS is the multiple attribute utility theory (MAUT) which evaluates

multiple performances. The decision maker agent attempts to maximize the utility function which aggregates all the

performances. The utility is used to evaluate solutions while the analysis of trade-offs between alternatives is

represented as weighted formulae. Decision makers can also rank alternatives and define preferences on one

alternative over another. Preferences reflect agents’ objectives and can be prioritized with constraints. Thus,

constraints are used to make decisions either statically or dynamically. Therefore, a joint solution is generated by

modifying the design model iteratively.

The design system is composed of different people each with different characters. The character of an agent is

the combination of its attitudes, and it can be used to establish strategies in order to achieve optimal interactions

between various agents (Castelfranchi et al., 1998). However, the attitudes of different agents can result in

conflicting activities. This problem usually requires coordination and cooperation of agents’ attitudes. MAS can

simulate the coordination of different agents composed of different attitudes. The emergent behavior of the system

consists of different compositions of altruistic and egoistic behaviors of every agent in the system (Pita and Lima

Neto, 2007). Egoistic behaviors are actions that are motivated by self-interested gains, while altruistic behaviors are

motivated by the gain of others, such as the pleasure obtained from others’ pleasure. Altruism can also be viewed as

sacrificing one’s own good for the benefit of the group that one belongs to. While egoistic actions can cause harm to

the other agents, altruistic actions help the others. A mutual defection may be the rational solution of the agents, but

it is neither the most beneficial one for the global benefit nor even for individual benefits. Bazzan et al. (2002)

simulate the effects of altruism among agents playing the Iterated Prisoner’s Dilemma. They conclude that egoistic

agents maximize their benefits only in the short term, but they compromise their performances in the long term.

Xianjia and Weibing (2009) propose a method to investigate the evolutionary outcome of the behaviors of players

with egoistic or altruistic preference in an iterated prisoner’s dilemma. Their results show that egoism can cause

defection, and altruism can increase the performance of cooperation. Jennings and Campos (Jennings and Campos,

1997) conclude that the overall performance of the system can be increased if agents are sometimes allowed to work

Stimuli

Analysis

Agent

Sensors Effectors

Actions

Synthesis

Belief

Desire

Intention

7

for the benefit of others. Since agents are autonomous and have different knowledge and resources, cooperation

attitudes are conditional to the environment and are dynamic through the allocation of time and resources. Agents

are therefore heterogeneous, and it is almost impossible to define optimal agent attitudes. To maintain cooperation

among heterogeneous agents, social norms and collaborative strategies should be adopted upstream in the system.

4. Agent-based SBD model

We define the extended bottom-up design approach as an agent-based SBD model that considers the design

attitudes of interacting agents. We first define the design process before presenting the design attitudes and the

control indicators that derive from these attitudes.

4.1. Design process of agents

In the preliminary design phase, the solution space is very large. While the solution that designers find at the

end of the design process is presented in the initial solution space, this solution is not known at the initial state. This

implies a very high epistemic uncertainty. CSP definitions can be used to model designer actions. Designer actions

are considered as decision constraints defined on the solution space iteratively. The design model is therefore

dynamic, evolving with the actions representing decisions. Hence, a collaborative point solution emerges from the

converging solution space while the epistemic uncertainty is reduced iteratively during the design process stages.

We model an agent-based design process in order to understand both how the epistemic uncertainty is reduced, and

how the solution space converges collaboratively. The design process model is shown in Fig. 3. Design agents make

three decisions during the process: these are shown as D1, D2, and D3. D1 and D3 are Boolean decisions and D2 is

a “how” decision.

D1: Define a decision constraint or not.

D2: How the decision constraint is defined.

D3: Accept the decision constraint or not.

Figure 3. Design process of agents

Wait
Design Agents

Accept

Define Decision
Constraints

Refuse

Dynamic
Design
Model

Feasible

Unfeasible

D1 D3 D2

8

During a process stage, agents evaluate the solution space to decide whether they will define a decision

constraint, or wait. If they decide to define a decision constraint, next they decide how the constraint is defined.

When the constraint is defined in the dynamic design model, the model’s feasibility is tested. After the definition of

the constraint, if there is at least one solution remaining in the solution space, the constraint is consistent for the

model and it is accepted collaboratively. If the solution space is empty, then it is refused and rejected. The

consistency of the constraint depends on the previously accepted constraints that have been defined by the process

stage agent and other agents. In addition, the consistency of the constraint depends on how it is restrictively defined,

and the nature of the initial problem. If the constraint is very restrictive, it is probably refused whether there is a

previously accepted constraint or not. Therefore, D3 is a collaborative decision which has emerged from the

collaborative behavior of the design system. In contrast, D1 and D2 are individual decisions defined by the

individual design attitudes of the agents. When a constraint is refused, it is considered as a potential conflict because

the agent’s desires may not be sufficiently satisfied. The degree of the conflict can be evaluated by the divergence of

the agents’ individual solutions. The solution space is shared and design objectives are typically conflicting. If an

agent can satisfy its desires, it results in dissatisfaction of another agent with conflicting objectives. When their

satisfaction solutions diverge - for instance the solution of an agent with a very low satisfaction and the solution of

another agent with a very high satisfaction - the conflicts increase in intensity. The conflict is reasonable if only the

agent’s desires are not sufficiently satisfied. Our proposition is to evaluate design attitudes with a BDI model and

evaluate agents’ states with control indicators called wellbeing indicators. Wellbeing indicators are derived from the

desires of the agents reflected on the beliefs of the agents. They enable a bottom-up design process where

convergence is controlled, with defining decision constraints impacting directly on the wellbeing intervals instead of

on design variable intervals.

4.2. Attitudes of agents and control indicators

Design space emerges from the intervals of design variables modified dynamically during the design process.

This represents the dynamic design model. Analysis of the dynamic design model stimulates design agents and

triggers their BDI mechanism. Figure 4 shows design agents’ BDI mechanism. Beliefs of design agents are reflected

with the intervals of the design performances emerging from the dynamic design model. The bounds of the intervals

of the design performances represent the worst possible cases and the best possible cases for the corresponding

design performances. Since actions of the design agents are bound through couplings, the intervals propagate some

uncertainty. The worst possible cases and the best possible cases depend on the actions of the other agents.

Therefore design agents define their desires to adopt the performance values. Desires are design agents’ preferences

on two factors: design performance alternatives and the satisfaction obtained by design performances. While

preferences on design performances reflect agents’ attitudes for satisfaction obtained from the alternatives,

preferences on satisfaction represent agents’ attitudes for compromise. Beliefs and preferences of design agents lead

design agents to define their intentions in order to reduce the solution space by improving their worst cases.

Intentions are reflected with how frequently and how restrictively their decision constraints are defined. Design

agents react to the emerging performance space through defining decision constraints into solution space. These

modifications synthesize the next design space in the dynamic process.

9

Figure 4. BDI mechanism of design agents

We define an agent k, ��, as an entity with four different attitudes: ������, �� , �� , ���. ��� is the set of

preferences of the agent on performance values. �� is the compromise threshold value of the agent, representing the

preference of the agent on the satisfaction values for compromise. �� is the average frequency of the agent for

defining constraints in the model and �� is the coefficient of restriction of the constraints defined by the agent,

reflecting the restrictiveness of the decision constraints defined by the agent.

4.2.1. Preferences and satisfaction

Preferences of an agent about design performances can be modeled as a satisfaction function. The list of

preferences of an agent �� on its performances creates the ��� attitude. Complete dissatisfaction is represented by 0

on the scale, while complete satisfaction is represented by 1. Design agents are moderately satisfied in the transition

between fully satisfied and fully dissatisfied states. In this paper, we assume that the transition is linear; however

nonlinear satisfaction functions can be adopted for different studies. We integrate piecewise constraints into the

model in order to define information about performance preferences without restricting the solution space. For

example, one objective of an agent k could be minimizing a performance i; the agent is fully satisfied by a

performance value below or equal to �� and fully dissatisfied by a performance value above or equal to ��. It is

assumed that there is a linear transition between these two preference values. ��� is the satisfaction value of the agent

k obtained by the performance i and � is the performance value of the performance i. The corresponding integrated

piecewise constraints are:

If � � ��� , ��� � 1 (1)

If � ! �� , ��� � 0 (2)

If �� " � " �� , 1 # ��� # 0 (3)

In the SBD framework, all the variables are defined with intervals instead of points. The design process

progresses with time and the intervals are reduced through the decision constraints defined on the solution space

during the progress. Thus the design process is composed of design stages where agents take actions. At process

stage t, performance i has a minimum value $�% and a maximum value &�%, the interval of the performance i at process

stage t being �$�% , &�%�. Since the performance is defined with an interval, we obtain an interval for the satisfaction of

agent k from the performance i at stage t: ��� � �'()���% , '*$���% � where '()���% is the minimum satisfaction and

Stimuli Reactions

Dynamic Design
Model

(Design Space)

Synthesis Analysis

How ?
• Frequently
• Restrictive

Intentions:
Decision

Constraints

• Worst Cases

• Best Cases

Beliefs:
Performance

Space

On
• Performances
• Satisfaction

Desires:
Preferences

10

'*$���% is the maximum satisfaction obtained within the interval �$�% , &�%�. This phenomenon is illustrated in Fig. 5.

Piecewise constraints are the same as above. Minimum satisfaction is obtained at point A and maximum satisfaction

is obtained at point B. During the process while uncertainty is reduced, agents can observe the potential maximum

and minimum satisfaction values from performances. When design agents have several design performances to

evaluate, they can assign weights to their satisfaction values considering the importance of the performances for

their job. As individual performance satisfaction values are aggregated, general satisfaction states of agents can be

observed.

Figure 5. Intervals of satisfaction function

4.2.2. Compromise threshold and wellbeing

In a coupled design system, it is highly unlikely that all the design agents will be fully satisfied. Since design

objectives are conflicting, a decision constraint defined to increase the minimum satisfaction value of an agent will

decrease the maximum satisfaction value of another agent. Thus, the convergence of satisfaction intervals is

bilateral, and design agents are forced to compromise at a certain level on their satisfaction values where maximum

and minimum satisfactions are as close as possible. Figure 6 shows a clear example of this phenomenon where

Agent 1 and Agent 2 have conflicting objectives, such as decreasing the mass and increasing the volume of a

product. Agent 1 defines +� and +, and Agent 2 defines +� and +- at different process stages, in order to improve

their satisfaction states. However, these constraints decrease the other agent’s maximum satisfaction value. Since

agents cannot be aware of the other agents’ actions, the convergence propagates some uncertainty. Thus, design

agents can reflect an attitude of desiring a value in which they may compromise. While preferences on design

performances reflect the desires of agents on product specifications, preferences on satisfaction values obtained by

these performances reflect the desires about process convergence. The preference about the satisfaction value is

called compromise threshold ��, and it defines the compromise attitude of an agent. This compromise threshold

value represents the satisfaction value that an agent wants to guarantee. The agent wants the solution to converge at

least to this value. The agent defines decision constraints considering the preferences ��� in order to increase the

satisfaction obtained from the model until the minimum satisfaction value reaches the agent’s satisfaction

preference. This introduces a condition for making decisions during the design process. If the minimum satisfaction

of an agent by the model reaches or exceeds value �� , then the agent passes to the compromise state. In the

compromise state, agents stop adding decision constraints to the model, so this leaves space to the other agents.

1

0

���%

 �

��

�� $�% &�%

A

B

11

 Agent 1 Agent 2

stage
0

stage
m

stage
n

Figure 6. Bilateral convergence

Satisfaction values are normalized through dividing them by the compromise threshold value; this provides

wellbeing states Eq. (4, 5). Wellbeing states represent global states of design agents; they show if an agent suffers

from not being able to approach the compromise state or if an agent could have performed modifications to the

model and thus approached the compromise state. Wellbeing is defined with an interval ./� � �'()./�% , '*$./�% �
where the minimum value is the minimum wellbeing indicator and the maximum value is the maximum wellbeing

indicator. The wellbeing interval converges through the progress of the design process. If the minimum wellbeing

value is larger than or equal to 1, then the agent is in a perfect wellbeing state. The worst wellbeing state is when the

value is equal to 0.

'()./�% � '()��%

��
 (4)

'*$./�% � '*$��%

��
 (5)

4.2.3. Frequency

Design agents define decision constraints at an average frequency �� per process stage. This attitude, dependant

on agent character, reflects if agents intend to restrict the solution space more frequently or less. �0� is the phase of

the decision frequency of ��. Phases of frequencies can differ from one agent to the other agent depending on their

availability and their time zone. �� defines decision constraints at each process stage t where �1 2 �0�� value is an

integer multiple of 1/��. In order to define a consistent function, we assume that 1/�� is integer.

4.2.4. Coefficient of restriction

Any variable of the design problem can be improved with constraints. This improvement increases the

minimum satisfaction and wellbeing of the agent. �� is the coefficient of restriction for the constraints defined by

��. This attitude defines the restriction effect of the constraints defined on the solution space. �� is used as an

improvement coefficient for the minimum values of the intervals. The constraint defined by �� at process stage t is

+�%: � ! '() �% � �1 5 ��� where � can be any variable of the design problem and '() �% is its minimum value

at process stage t. However, '() �% value and �� value should be larger than 0.

If the constraint is consistent for the design model, which means that there is at least one feasible solution after

propagating the constraint, then the constraint is accepted. If the constraint is inconsistent, which means that it

�'()��6, '*$��6�

'()��6 7 '*$��6

�'()��8 , '*$��8�

�'()��9 , '*$��9�

�'()��9 , '*$��9�

�'()��6, '*$��6�

'()��6 7 '*$��6

+� +� +� +�

+, +, +- +-

�'()��8 , '*$��8�

12

returns an unfeasible solution space, then it is refused and rejected from the model. The consistency of the constraint

depends on the nature of the initial problem and the earlier constraints defined during progress. Thus it depends on

the emerging attitudes of the design agents and propagates an uncertainty.

4.3. Characterization of agents

Depending on their attitudes, agents can have different characters. We consider �� , �� , �� attitudes for

characterization of ��. ��� is not considered for characterization, because performance values of different agents

may not be the same, and they may not have the same unit of measurement. Besides, �� attitude reflects the

fondness of agents for their preferences. Design agents may be more egoistic or more altruistic compared to the

others. More egoistic agents try to satisfy their needs at the highest levels without considering other agents. More

altruistic agents have an opposite character, taking other agents into consideration. The solution space is shared

between design agents, so any restriction performed by an agent on the solution space will decrease the degree of

freedom of the other agents and leave less space to them. As Fig. 6 shows, the reduction of the degree of freedom is

on the favorable side of the satisfaction intervals due to the conflicting objectives. Hence, agents with relatively

restrictive design attitudes are considered as more egoistic and agents with less restrictive design attitudes are

considered as more altruistic.

Figure 7 represents egoistic and altruistic characteristics of agents. When two agents are compared, if �� and ��

attitudes are identical, the agent with the larger �� is more egoistic than the other, because it will compromise at a

higher satisfaction value. Thus, it will restrict the solution space more than the other, until its objective is satisfied. If

�� and �� are identical, the agent with larger �� is more egoistic than the other, because when an agent defines

decision constraints more frequently, it will restrict the bounded solution space more rapidly during the process.

Consequently, it leaves less space to the other agents. If �� and �� are identical the agent with larger �� is more

egoistic than the other, because its decision constraints will be more restrictive than the other agent’s decision

constraints. This will reduce the solution space for the egoistic agent’s benefit.

Figure 7. Egoism and altruism in design agents

Smaller Larger

Smaller Larger

Sm
al

le
r

L
ar

ge
r

Sm
al

le
r

L
ar

ge
r

:;

<; <;

Most
Altruistic

Most
Egoistic

=;

:;

Smaller

Larger

13

The desires of design agents and their intentions should be rational. If an agent has egoistic desires its intentions

are also egoistic. Therefore, more egoistic agents tend to define decision constraints more frequently with a larger

coefficient of restriction, and they do not accept to compromise easily. In contrast, more altruistic agents tend to

define decision constraints less frequently with a smaller coefficient of restriction, and they can compromise more

easily. However the structure of the rationality between the desires and the intentions can be different from agent to

agent, since they model human beings. For example, an agent can have a larger �� value but a smaller �� value than

another agent with the same �� value. As seen in Fig. 7, in the extreme case, the most egoistic agent in the design

system has the largest �� , �� , �� attitude values while the most altruistic agent has the smallest �� , �� , �� attitude

values. The process performance and the design solutions can be influenced by the characters of designers. When

the design system consists of heterogeneous agents with different design attitudes, the results may diverge where

one agent has a very low wellbeing and another has a very high wellbeing. Process time and the number of conflicts

that occur during the design process can also increase due to the non-converging design characters.

5. CSP simulation process

We present an automatic constraint propagating simulation of our model where the solution space is reduced

iteratively considering design agents’ BDI mechanism. The objective is to simulate some top-down and bottom-up

design processes with different combinations of design agent characters, and compare the results that emerge from

these processes. Two practical top-down simulation cases are defined. Case 1 represents the design process where a

designer can modify only one design variable after the modification of another designer. Case 2 consists of an all-at-

once approach where designers can modify all the design variables after the modification of another designer. Next,

two bottom-up simulation cases are defined. In Case 3, designers can modify their design performances. Case 4 is

our extended bottom-up design process where designers can modify their wellbeing indicators derived from the

performances. In the simulation process we used a split mechanism similar to the round-robin strategy that loops on

all the variables at process iteration (Granvilliers, 2012). The objective is to obtain an upper value and a lower value

that are as close as possible for each interval. Intervals are reduced until a good degree of precision is obtained. The

simulation algorithm is shown in Fig. 8. We make some assumptions when defining the simulation process:

• If �1 2 �0�� � �� > Z and '()��% " �� each agent can define (a) decision constraint(s) only once at any

iteration and constraints are defined sequentially. If all the agents are processed in iteration then the process

passes to the next iteration: t++.

• Decision constraints are defined for improving the worst case scenarios with a coefficient of restriction

�� # 0 or ��� # 0 or ��@ # 0 AB, (, C. Initial worst cases are larger than 0: '()D)@8 # 0 AC, '()�)�8 # 0

A(, '()./�8 # 0 AB. If '()��% ! �� then the compromising agent is extracted from the splitting loop (Cases 1

and 2: ��@ � 0 AC , Case 3: ��� � 0 A(, Case 4: �� � 0).

o Cases 1 and 2: D)@ ! '()D)@% � E1 5 ��@F where D)@ is the normalized design variable j, '()D)@% is

its minimum value at iteration t and ��� is the coefficient of restriction on the performance i defined by

agent k.

14

o Case 3: �)� ! '()�)�% � �1 5 ���� where �)� is the normalized performance i, '()�)�% is its

minimum value at iteration t and ��� is the coefficient of restriction on the performance i defined by

agent k.

o Case 4: ./� ! '()./�% � �1 5 ���.
• If a constraint is rejected, its related coefficient of restriction value is reduced by half. If the coefficient of

restriction value of a variable reaches a precision value (P), then the splitting is stopped for this variable,

because the upper and lower bounds are as close as possible considering the precision value. If all the

coefficient of restriction values reach the precision, then the simulation process stops.

• Agents’ attitudes are defined at the initial state of the process. ��� and ��@ values are equal to �� at the

initial state. ��� and �� attitudes do not change during the simulation process because they represent desires.

Figure 8. CSP simulation algorithm

The simulation process is evaluated by four performance criteria: number of iterations, number of failures, total

wellbeing and divergence of individual solutions. Four simulation cases are compared regarding these process

performances. A smaller number of iterations means a faster convergence of intervals and a rapid design process.

This should not however be evaluated alone, because when there are less failures, the coefficient of restriction is

split later, which leads to the number of iterations increasing. When a decision constraint is rejected, it is a process

failure. Each failure is a potential conflict among designers. Therefore less failures means a design convergence with

less conflict. The total number of failures represents the number of conflicts occurring in a design process. The

objective is to maximize agents’ wellbeing values while minimizing their divergence. Divergence is defined as the

YES

NO

YES

START ��� � ��
��@ � ��

1 � 0, AB, (, C

Case 1&2: Choose variable j with ��@ ! �
Case 3: Choose performance i with ��� ! �

Choose unprocessed agent
Case 4: with �� ! �

'()��% " ��

All agents
processed?

Define decision
constraint

Feasible
Solution?

Accept constraint

Reject constraint
Case 1&2: ��@ � ��@/2

Case 3: ��� � ���/2
Case 4: �� � ��/2

t++

Case 1&2: ��@ � 0 AC
Case 3: ��� � 0 A(

Case 4: �� � 0

Case 1&2: ��@ " � ABC
Case 3: ��� " � AB(
Case 4: �� " � AB

FINISH

NO

NO

NO

YES

YES

Case 2: All
variables

processed?

YES

NO

�1 2 �0� � � �� > Z

NO

YES

15

difference between their individual wellbeing states. In the ideal case, agents should obtain the same wellbeing

values, and each value should be larger than 1. Absolute differences of the wellbeing values of either two element

combination represent a vector ��G�, … , G6�. The Euclidian distance of this vector solution to the ideal case solution

gives the divergence of the individual solutions: �(I�JI)KI � L�G��� 5 … 5 �G6��. More divergent solutions

lead to more intense conflicts, because the divergence is caused by agents with a relatively low wellbeing value.

However, the divergence cannot be evaluated alone. A zero divergence is not desirable if the total wellbeing is zero.

6. Monte Carlo simulation

We ran a Monte Carlo simulation with the design problem of the pressure vessel in (Karandikar and Mistree,

1992; Lewis and Mistree, 1998). We define three agent characters as shown in Table 1: Egoistic, Moderate, and

Altruistic. We consider that there are no frequency phase differences. All four simulation cases are repeated 1000

times for permutations of these characters generated randomly from their attitude sets. Design agents and their

design variables and performances are also chosen randomly in process iterations, so the process sequence is

completely independent from agent characters.

Table 1 Definitions of random characters

 Egoistic Moderate Altruistic
��: (0.6, 0.65, 0.7,

0.75, 0.8, 0.85,
0.9, 0.95, 1)

(0.45, 0.5, 0.55) (0.1, 0.15, 0.2, 0.25,
0.3, 0.35, 0.4)

��: (0.5, 1) (1/3, 0.5, 1) (1/3, 0.5)
��: (5, 6, 7, 8, 9) (3, 4, 5, 6, 7) (1, 2, 3, 4, 5)

In the simulation process, the worst cases are improved by increasing the lower bounds of the intervals.

Therefore, for minimization objectives the larger bounds are normalized to 0 and the smaller bounds are normalized

to 1, and for maximization objectives the smaller bounds are normalized to 0 and the larger bounds are normalized

to 1.The precision value is defined as 0.001. This means that if the interval of a variable �: �'()�, '*$�� does not

contain '()� � 1.001, it is extracted from the loop. Dynamic CSP is defined in C++ computer language and a CP

solver library called IBM ILOG CP V1.6 (IBM, 2012) is used to find solutions through its domain reduction and

constraint propagation algorithms. The solve function of IBM ILOG CP is used to examine the feasibility of the

model.

Figure 9. Thin-walled pressure vessel

16

The design problem consists of a cylindrical thin walled pressure vessel with hemispherical ends as shown in

Fig. 9. Problem nomenclature and constant values are given in Table 2. There are three design variables (R, T, L)

and two design performance variables (W, V). Design performance formulas are given in Table 3 and initial

constraints are given in Table 4. With given constraints, the weight and volume bounds are determined using CP

techniques (Table 4). The design problem is divided into two sub-problems assigned to two designers (Agent 1 and

Agent 2). The objective of Agent 1 is to minimize W by controlling R, T and L while satisfying the related

constraints; the objective of Agent 2 is to maximize V by controlling R and L while satisfying the related constraints.

Their design activities are coupled because of the shared information in constraints and performance formulas.

While Agent 1 minimizes the weight, the volume is minimized; while Agent 2 maximizes the volume, the weight is

maximized. Since their objectives are inconsistent, their design activities are conflicting.

Table 2 Problem nomenclature and constants

W Weight of the pressure vessel, lbs.
V Volume of the pressure vessel, in.3
R Radius, in.
T Thickness of the vessel wall, in.
L Length of the cylinder, in.
P Pressure inside the cylinder, 3.89 klb.
NOPQ Ultimate tensile strength of the vessel material, 35 klb.

G Density of the vessel material, 0.283 lbs./in.3
NR�SR Circumferential stress, lbs./in.2
�� Satisfaction of agent k

./� Wellbeing of agent k

)D Normalized volume

)T Normalized weight

)U� Radius normalized for agent k

)V� Length normalized for agent k

)� Normalized thickness

 k=1 for Agent 1 and k=2 for Agent 2

Table 3 Design performance formulas

T � G W4
3 Y�U 5 ��, 5 Y�U 5 ���V 2 Z4

3 YU, 5 YU�V[\

D � 4
3 YU, 5 YU�V

Table 4 Initial constraints

Stress Constraint: NR�SR � �U
� � NOPQ

Geometric Constraints: 5� 2 U � 0

 U 5 � 2 40 � 0

 V 5 2U 5 2� 2 150 � 0

Bounds: 0.1 � U � 36

 0.1 � V � 140

 0.5 � � � 6

 13.7288 � T � 56907.6

 67.4138 � D � 480404

17

Table 5 Preferences

If T � 8000 a/� then �� � 1
If T ! 31000 a/� then �� � 0
If 8000 a/� " T " 31000 a/� then 1 # �� # 0
If D ! 380000 ()., then �� � 1
If D � 120000 ()., then �� � 0
If 120000 ()., " D " 380000 ()., then 0 # �� # 1

Table 6 Normalizations

13.7288 � T � 56907.6 : 1 !)T ! 0
67.4138 � D � 480404 : 0 �)D � 1
0.5 � � � 6 : 1 !)� ! 0
0.1 � U � 36 : 1 !)U� ! 0
 0 �)U� � 1
0.1 � V � 140 : 1 !)V� ! 0
 0 �)V� � 1

Agents define their performance satisfaction functions with piecewise constraints as shown in Table 5. All the

transitions between the preferences are considered linear as shown in Fig. 5. Design performances and design

variables are normalized using their bound values. Piecewise constraints are defined for normalizations and are

shown in Table 6. Agent 1 minimizes W through minimizing R, T and L and Agent 2 maximizes V through

maximizing R and T. Supplementary initial constraints are defined in order to avoid non-zero worst case scenarios

for enabling fruitful constraint propagations (��, ��,)�,)U�,)U�,)V�,)V� ! 0.01). These very small constraint

values do not affect the performance of the simulation process.

All the permutations of egoistic (E), moderate (M) and altruistic (A) characters of Agent 1 and Agent 2 are

simulated for each case 1000 times through a Monte Carlo simulation approach and the average results are shown in

Fig. 10. Case 1, the process which enables modifications on design variables only one agent at a time, requires the

longest process time because the number of iterations is the largest for every character combination. One of the

bottom-up approaches outperforms the second top-down design approach, Case 2, for every character permutation

except EM. When there is at least one altruistic agent, Case 4 outperforms Case 3 except AE. The process time

should be evaluated with the number of failures, because when the number of failures decreases, �� is split less, and

the convergence continues during subsequent process stages. The number of failures can be considered as the

number of conflicts. Case 1 and Case 2 result in the highest number of failures. Case 3 and Case 4 generate

significantly less conflicts. Case 4 outperforms Case 3 except when one of the agents is moderate and the other is

egoistic or both of them are egoistic. The intensity of the conflicts also needs to be evaluated. A conflict is more

reasonable when its intensity is relatively high, because one agent covers more space, resulting in the blocking of the

other agent in order to satisfy preferences. When the final wellbeing values are compared, it is significant that in

Case 1 and Case 2, Agent 1 dominates Agent 2 regardless of their characters. In Case 3, Agent 2 generally

dominates Agent 1 except when Agent 1 is more egoistic than Agent 2 (MA and EA). In Case 4, when agents reflect

the same characters, no domination occurs, except when one is more egoistic than the other. These findings are

reflected in the divergence results. Case 4 generates significantly the least divergence regardless of agent characters.

These conflicts are relatively less intense. However, the reduction of divergence is obtained by compromising some

of the total wellbeing value for some character combinations. This compromise of the total wellbeing is due to a

slight concaveness of the wellbeing space. The total wellbeing of two agents - one is over-satisfied by exceeding its

compromise threshold value, while the other is under-satisfied - can be larger than the total wellbeing of two

satisfied agents with wellbeing values equal to 1. This is observed with character combinations that include at least

one altruistic agent, because an altruistic agent has a lower compromise threshold value and has greater potential to

be over-satisfied.

18

Figure 10. Simulation results

0

20

40

60

80

100

EE MM AA EM ME AM MA EA AE

Case1 Iteration

Case2 Iteration

Case3 Iteration

Case4 Iteration

0

20

40

60

EE MM AA EM ME AM MA EA AE

Case1 Fail

Case2 Fail

Case3 Fail

Case4 Fail

0

1

2

3

EE MM AA EM ME AM MA EA AE

Case1 Divergence

Case2 Divergence

Case3 Divergence

Case4 Divergence

0

1

2

3

4

5

EE MM AA EM ME AM MA EA AE

Case1 Total wb

Case2 Total wb

Case3 Total wb

Case4 Total wb

0

0.5

1

1.5

2

2.5

3

3.5

EE MM AA EM ME AM MA EA AE

Case1 wb1

Case1 wb2

Case2 wb1

Case2 wb2

Case3 wb1

Case3 wb2

Case4 wb1

Case4 wb2

19

Figure 11 shows the average total satisfaction values and the average absolute differences of the individual

satisfaction values obtained by our approach for Case 4. Optimal results are obtained when both agents are

moderate, because the absolute difference of satisfaction values is minimal while the total satisfaction value is

maximal. Egoistic agents overestimate their desires represented as compromise threshold values when they work

with an egoistic agent or a moderate agent, because the total satisfaction values of these situations are not greater

than the total satisfaction of the situation where both agents are moderate. Also, the absolute differences of

satisfaction values of EE, EM and ME situations are larger than the MM situation. This shows that the individual

satisfaction values diverge more because of the egoistic attitudes reflected during the design process. Altruistic

agents underestimate their desires when the other agent is altruistic or moderate. Even if altruistic agents can be

over-satisfied, the total satisfaction values of AA, AM and MA situations are smaller than the total satisfaction

values of the other character situations.

Figure 11. Case 4 satisfaction results

7. Conclusions

In this paper, we define an extended bottom-up design approach, exploring agent-based attitude modeling

techniques within the set-based design concept. The conventional bottom-up design approach is usually defined at

problem level; however design attitudes that define beliefs, desires and intentions are overlooked at the initial state

of the problem, so trade-offs on design preferences remain abstract. In contrast, our extended bottom-up design

approach includes design preferences at an earlier state and explores the solution space with design preferences

emerging from the desires of various designers.

We perform a CSP simulation for different designer characters. The simulation results show that when design

attitudes of heterogeneous designers in distributed design are not evaluated beforehand, the performance of the

design process is significantly lower. Regardless of the designer characters, significant dominations usually occur on

the same designer. This means that the results are mostly influenced by the process itself. Consequently, individual

solutions do not converge in equilibrium, so conflicts are unavoidable. However, when design attitudes are

evaluated beforehand, designers can make trade-off intentions on their wellbeing values derived from their beliefs

and desires. With this approach, designer domination is relatively less significant and is coherent with designer

characters. This shows that the results are only influenced by the design attitudes. Designers can therefore converge

0

0.2

0.4

0.6

0.8

1

1.2

EE MM AA EM ME AM MA EA AE

Case4 Total s Case4 Abs. Difference s

20

in equilibrium. Consequently, the number of conflicts and the divergence of the solutions that result in the intensity

of the conflicts are prevented. However, it should be noted that these process performances are achieved by

compromising some of the total wellbeing.

Other conclusions deduced from our approach are about how the satisfaction results emerge from different

reciprocal design attitudes. It is shown that reciprocal egoistic attitudes can cause diverging satisfaction results. In

contrast, more altruistic reciprocal attitudes can decrease the divergence of individual satisfactions. However, too

much altruism can decrease the total satisfaction obtained from the final solution, except when the reciprocating

design agent reflects very significant egoistic attitudes.

Our approach is capable of determining and preventing design conflicts, but it does not provide any strategies

for resolving existing conflicts. Some cooperative conflict resolution strategies can be defined and integrated into

the same platform, but this requires design agents to negotiate, and compromising constraints through relaxing them.

21

References

Antonsson, E.K., Otto, K.N., 1995. Imprecision in engineering design. Journal of Mechanical Design 117, 25–32.

Bazzan, A.L.C., Bordini, R.H., Campbell, J.A., 2002. Evolution of agents with moral sentiments in an iterated prisoner’s

dilemma exercise, in: Parsons, S., Gmytrasiewicz, P., Wooldridge, M. (Eds.), Game Theory and Decision Theory in

Agent-Based Systems, Multiagent Systems, Artificial Societies, and Simulated Organizations. Springer US, pp. 43–64.

Bratman, M.E., Israel, D.J., Pollack, M.E., 1988. Plans and resource-bounded practical reasoning. Computational Intelligence 4,

349–355.

Caballero, A., Botía, J., Gómez-Skarmeta, A., 2011. Using cognitive agents in social simulations. Engineering Applications of

Artificial Intelligence 24, 1098–1109.

Castelfranchi, C., Rosis, F.D., Falcone, R., Pizzutilo, S., 1998. Personality traits and social attitudes in multiagent cooperation.

Applied Artificial Intelligence 12, 649–675.

Chanron, V., Lewis, K., 2005. A study of convergence in decentralized design processes. Res Eng Design 16, 133–145.

Cohen, P.R., Levesque, H.J., 1990. Intention is choice with commitment. Artificial Intelligence 42, 213–261.

Devendorf, E., Lewis, K., 2011. The impact of process architecture on equilibrium stability in distributed design. Journal of

Mechanical Design 133, 101001.

Fathianathan, M., Panchal, J.H., 2009. Modelling an ongoing design process utilizing top-down and bottom-up design strategies.

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 223, 547–560.

Goyal, M., 2005. Attitude based teams in a hostile dynamic world. Knowledge-Based Systems 18, 245–255.

Granvilliers, L., 2012. Adaptive bisection of numerical CSPs, in: Milano, M. (Ed.), Principles and Practice of Constraint

Programming, Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 290–298.

Huang, H.-Z., Gu, Y.-K., Du, X., 2006. An interactive fuzzy multi-objective optimization method for engineering design.

Engineering Applications of Artificial Intelligence 19, 451–460.

IBM, 2012. IBM ILOG CPLEX CP Optimizer for Constraint Programs - Features and benefits [WWW Document]. URL

http://www-01.ibm.com/software/integration/optimization/cplex-cp-optimizer/about/ (accessed 2.24.13).

Jennings, N.R., Campos, J.R., 1997. Towards a social level characterisation of socially responsible agents. IEE Proceedings -

Software Engineering 144, 11.

Karandikar, H., Mistree, F., 1992. Designing a composite material pressure vessel for manufacture: A case study in concurrent

engineering. Engineering Optimization 18, 235–262.

Kim, H.M., Michelena, N.F., Papalambros, P.Y., Jiang, T., 2003. Target Cascading in Optimal System Design. Journal of

Mechanical Design 125, 474.

Koulinitch, A.S., Sheremetov, L.B., 1998. Coordination and communication issues in multi-agent expert system: concurrent

configuration design advisor. Expert Systems with Applications 15, 295–307.

Kwon, O.B., Lee, K.C., 2002. MACE: multi-agents coordination engine to resolve conflicts among functional units in an

enterprise. Expert Systems with Applications 23, 9–21.

Lewis, K., Mistree, F., 1998. Collaborative, sequential, and isolated decisions in design. Journal of Mechanical Design 120, 643.

Lin, R., Kraus, S., Wilkenfeld, J., Barry, J., 2008. Negotiating with bounded rational agents in environments with incomplete

information using an automated agent. Artificial Intelligence 172, 823–851.

Malak, R.J., Aughenbaugh, J.M., Paredis, C.J.J., 2009. Multi-attribute utility analysis in set-based conceptual design. Computer-

Aided Design 41, 214–227.

Meyer, Y., Yvars, P.-A., 2012. Optimization of a passive structure for active vibration isolation: an interval-computation- and

constraint-propagation-based approach. Engineering Optimization 44, 1463–1489.

22

Montanari, U., 1974. Networks of constraints: Fundamental properties and applications to picture processing. Information

Sciences 7, 95–132.

Panchal, J.H., Fernández, M.G., Paredis, C.J.J., Allen, J.K., Mistree, F., 2007. An Interval-based Constraint Satisfaction (IBCS)

method for decentralized, collaborative multifunctional design. Concurrent Engineering 15, 309–323.

Papalambros, P.Y., Michelena, N.F., Kikuchi, N., 1997. Distributed cooperative systems design. Proceedings of the 11 th

international conference on engineering design 2, 265–270.

Park, H., Michelena, N., Kulkarni, D., Papalambros, P.Y., 2001. Convergence criteria for hierarchical overlapping coordination

of linearly constrained convex design problems. Computational Optimization and Applications 18, 273–293.

Parry, G.W., 1996. The characterization of uncertainty in Probabilistic Risk Assessments of complex systems. Reliability

Engineering & System Safety 54, 119–126.

Parsons, M.G., Singer, D.J., Sauter, J.A., 1999. A hybrid agent approach for set-based conceptual ship design, in: Proceedings of

10th International Conference on Computer Applications in Shipbuilding. Cambridge, MA.

Pita, M.S., Lima Neto, F.B., 2007. Simulations of egoistic and altruistic behaviors using the vidya multiagent system platform, in:

Proceedings of the 2007 GECCO Conference Companion on Genetic and Evolutionary Computation, GECCO ’07.

ACM, New York, NY, USA, pp. 2927–2932.

Rodriguez, S., Julián, V., Bajo, J., Carrascosa, C., Botti, V., Corchado, J.M., 2011. Agent-based virtual organization architecture.

Engineering Applications of Artificial Intelligence 24, 895–910.

Sobek, D.K., Ward, A.C., Liker, J., 1999. Toyota’s principles of set-based concurrent engineering. Sloan Management Review

40, 67–83.

Wang, J., Terpenny, J., 2003. Interactive evolutionary solution synthesis in fuzzy set-based preliminary engineering design.

Journal of Intelligent Manufacturing 14, 153–167.

Ward, A.C., Liker, J., Sobek, D.K., Cristiano, J.J., 1994. Set-based concurrent engineering and Toyota, in: Proceedings of ASME

Design Engineering Technical Conferences. ASME, pp. 79–90.

Wooldridge, M., Jennings, N.R., 1995. Intelligent agents: Theory and practice. Knowledge Engineering Review 10, 115–152.

Xianjia, W., Weibing, L., 2009. Preference and evolution in the iterated prisoner’s dilemma. Acta Mathematica Scientia 29, 456–

464.

Yannou, B., 2004. Managing uncertainty of product data. An enhancement on constraint programming techniques, in:

Tichkiewitch, S., Brissaud, D. (Eds.), Methods and Tools for Co-operative and Integrated Design Methods and Tools

for Co-operative and Integrated Design. Kluwer Academic Publishers, Springer, pp. 195–208.

Yannou, B., Harmel, G., 2004. A comparative study of constraint programming techniques over intervals in preliminary design,

in: Proceedings of ASME Design Engineering Technical Conferences. ASME, pp. 189–198.

Yannou, B., Harmel, G., 2006. Use of constraint programming for design, in: ElMaraghy, H.A., ElMaraghy, W.H. (Eds.),

Advances in Design, Springer Series in Advanced Manufacturing. Springer London, pp. 145–157.

Yvars, P.-A., 2009. A CSP approach for the network of product lifecycle constraints consistency in a collaborative design

context. Engineering Applications of Artificial Intelligence 22, 961–970.

Zhao, L., Jin, Y., 2003. Work structure based collaborative engineering design. ASME Conference Proceedings 865–874.

Zheng, Y., Shen, H., Sun, C., 2011. Collaborative design: Improving efficiency by concurrent execution of Boolean tasks. Expert

Systems with Applications 38, 1089–1098.

