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Abstract

In distributed design systems, while designerscanenected to each other through dimensioning cogpli
they have limited control over design and perforogamariables. Any inconsistency among design dbgsctand
working procedures of heterogeneous designersdatig in the design system can result in desigrilicts due to
these couplings. Modeling design attitudes can helpnderstand inconsistencies and manage conflictesign
processes. We extend the conventional bottom-ugesign supervision approach through agent-baseitudé
modeling techniques to a more powerful level. In model, design agents can set requirements dyrextl their
wellbeing values that represent how their desigmydts are likely to be met at a given moment of dasign
process. Some design conflicts can in this managrévented at an earlier phase of the design m®c8et-based
design and constraint programming techniques amdu® explore the overall performance of stochadésign
collaborations on a product modeled with uncert@stat a given moment of the design process. MGaro
simulations are performed to evaluate the perforoeaaf our set-based thinking approach, providingaaety of
agent attitudes. The results show that the numbeesign conflicts occurring during the design ss and the

intensity of design conflicts are both reduced tigto our collaborative design platform.

Keywords: Collaborative design; Distributed design; Set-badesign; Conflict prevention; Constraint satisfati
problem; Agent attitude model; Heterogeneous agents

1. Introduction
Design processes of complex products currently lugvaonsiderable effort and expertise from différen

disciplines. Multiple designers from different dgmes are thus involved in performing collabovatdesign. The
design model converges to a solution through aeseni collaborative activities performed during thesign
process. Since the design problem has multidis@pliboundaries, a distributed design approactbeaadopted. In
distributed design systems, the system is decergdalthe global problem is decomposed into sulblpros and
distributed to subsystems consisting of one orrsdwesigners (Papalambros et al., 1997). Subsgdtave limited
control over the design variables because of timaited expertise and responsibility. In a sub-peat there are
three main problem elements: design variablesdhatbe controlled, design performances that arkiaes and
constraints that must be respected. The rest dfltmal problem excluding a specific sub-problenesinot concern

the specific sub-system, but it can be only obskiivé is shared and necessary. Distributed detagks allocated



to sub-problems are executed concurrently by sidsgs the global problem converging to a globaltsah
(Zheng et al., 2011).

In the ideal case, true concurrency is expecteah fdgstributed design systems where designers ceforpe
their design activities independently. In realifgsigners are related to each other through capletween their
sub-problems. Couplings can result in conflicts aghdesigners if some inconsistencies are presamtée design
system. Inconsistencies arise from design attitudlected by subsystems during the design procHEss. most
significant inconsistency occurs between desigreathjes of subsystems. Typically, a design probtamtains
multiple conflicting objectives, so subsystems &meed to make trade-offs. Working procedures ofigieers
influence the performances of others, and incosrstses present in these working procedures cartimelyampact
the global solution (Zhao and Jin, 2003). For ins&a a designer restricting the design model mapally or earlier
than others could influence the model more. Subesgdesigners are forced to deal with a restriotedel which
cannot satisfy their own design objectives. If thember of conflicts and intensity of the confligterease; the
performance of the design process decreases, leeraiigidual design objectives are not satisfiecduilibrium.
Some significant attempts have been made to caaeland resolve existing conflicts in distributgdtems. Zheng
et al. (2011) propose to resolve conflicts by indigg resultant models of conflicting Boolean dems in
individual sub-problems of distributed computereziddesign. Kwon and Lee (2002) define a multi-adeged
model that integrates a coordination mechanisims Tan manage conflicting agents in a decentrakmnégrprise in
order to resolve interdepartmental conflicts. Koiith and Sheremetov (1998) define a constraineédaynamic
design system model that includes facilitator ag@ritich are responsible for coordination and confiesolution
during the design process. When a conflict occorermyst design agents, facilitator agents send mgesda relax
some constraints until a consistent solution isaioled. Huang et al. (2006) develop a fuzzy intéracmulti-
objective optimization model for engineering desidie collaborative relationships among the objestiare
improved with adjusting the threshold of satisfactidegree and weighting coefficients of objectivEse least
conflicting solution is therefore selected among tenerated set of Pareto optimal results. Thetselesolution
gives the maximum satisfaction degree and the mimindivergence of the individual satisfactions ofdb
objectives. Yvars (2009) proposes a collaboratesigh system where decisions of distributed desiggents are
represented with constraints added to the modehrdyeelly. Constraints restricting the design maastrict also
the degree of freedom of agents, so that they c¢aamiob anymore constraints to the design model. fidgslts in
conflicts that are represented as unfeasible moBelsign conflicts are resolved by detecting a aamise solution
that maximizes the number of accepted constraiptsemoving some constraints from the model. Whilese
approaches focus on resolving conflicts that haweady occurred, they overlook the idea of prevemtand
avoiding potential conflicts that have not yet ated in the process. They interrogate the issaelae phase of the
problem, because the avoidance of a conflictindplpro is usually more efficient and less time-conisignthan the
resolution of a conflicting problem. The approacbetined above also fail to take into accountiad models of
heterogeneous agents. Modeling design attitudetiekmnunderstand the design inconsistencies reguili design
conflicts, and as a result certain collaboratioatsgies can be defined with attitude models.



The technique chosen for modeling the design psosiemificantly affects the collaborative solutiemerging
from different sub-problems. Devendorf and Lewi®L2) show that the stability of a distributed dasgystem
depends on how the process architecture is forii@d.main approaches can be adopted for global desiocess
modeling. These are the top-down design approadhrenbottom-up design approach (Fathianathan andhal,
2009). In the top-down design approach, decisioasrade for parameterization of design variablexder to find
detailed solutions that satisfy designer objectiVdss approach is considered as a transition faonabstract level
to a detailed level: in complex design problems, éffect of any parameter on the solution is uguatstract until
the parameter is tested and a detailed solutiabtizined. In contrast, the bottom-up design appr@ansists in
defining detailed solutions to identify values logtdesign variables. With this bottom-up desigrraggh, designers
can make decisions on their design performancestdgrdown design approach requires detailed decsitqm of
the problem where all the relations between vaemlare explicit. However, this may not be possibien the
complexity of the design problem is very high ane problem contains too many couplings. Therefire effect of
the decisions about design variables on desigroqeainces is highly uncertain, especially in eadgign phases.
Engineering project failures can increase whes iitat possible to predict the effect of the modifiens because of
the presence of intense couplings in complex dgsighlems Chanron and Lewi§€005) highlight the difficulty of
allocating design variables to subsystems in aleougroblem where the same design variables infle¢ne design
performances of several subsystems. The alloctgiimique is critical, because it can influencedasign quality
(Kim et al., 2003)or the design process performance (Park et al1)26@thianathan and Panci{@D09) propose

the adoption of a bottom-up design approach whesettimitations arise from a top-down design apgnoa

1: Top-down 2: Bottom-up 3: Expanded Bottom-up
Evaluate
Decisions Transition_ ., Solutions
[0 D
@—> 0 Pl © p—¢| &5
(] % 4"—54
el Decisions] o
Evaluate .8 | Transition £ 3
Parameters < RS c
¢ > e o >
c o £
K=y c Q .
Evaluate a 2 » 2 | Decisions
Parameters a Transition|  § Transition g
° < O |e < < :>

Figure 1. Comparison of process approaches

In this paper we extend the bottom-up design amgprasith agent-based attitude modeling techniques. A
wellbeing indicator is presented that shows howptteference objectives of various designers aisfigat Figure 1
shows the comparison of our extended bottom-upydespproach with the traditional bottom-up approaecht the
top-down approach. In the top-down design approaltBrnatives are generated first by making decssion the
design variables, and emerging solutions are sulksdly evaluated considering design performancesthé
bottom-up approach, solutions are generated byngatkecisions on design performance values andateneters

emerging from these values are evaluated to dbeyfare feasible or if they violate the problemstoaints. Thus,



trade-offs are made on design performance valuesglitionally, the bottom-up design approach is nediat the
design problem level: it starts at the lowest |lenfehe physical problem. However it does not inelunodeling the
preferences of designers emerging from their degitiftudes. We think that modeling design attituded including
them at the bottom of the design approach will émbétter control of collaborative convergence gose trade-offs
can be made directly on satisfaction values ofgutesi preferences. Therefore, the design conflamsbe reduced.

A common design issue, regardless of the desigreepsoapproach used, is the presence of epistemic
uncertainty due to the imprecision caused by tlek laf knowledge about the final decision (Parry9a@Q
According to Malak et al. (2009) this issue regsiirepresenting the uncertainty with imprecise iraks/sets and
delaying uncertain decisions to later process stagieen the information about the related decisienomes
available. In this paper, we use the set-basedydg8BD) concept to simulate the process performarfcthe
extended bottom-up design approach modeled withtaggttudes. In section 2 we discuss the abilitgBD and
constraint satisfaction problem (CSP) techniquesnémage imprecision in design. In section 3 thiudgs of
design agents in multi-agent systems and egoisticadiruistic agent characters emerging from dycaatiitudes
are considered. Our agent-based SBD model is n¢emtlin section 4 and the CSP simulation procefisi®model
is presented in section 5. Monte Carlo simulatioh®ur approach are performed on a design probldrithy
involves variable agent characters composed ohbbridesign attitudes that define how design ageatst during
the design process. The sequence of the agentoreai stochastic. Problem definitions and simaratesults are
presented in section 6.

2. SBD and CSP techniques

In coupled and conflicting design problems, esphcia preliminary design processes, variables carive
crisply defined due to the lack of information abthe decision consequences (Antonsson and Ot8%; annou,
2004). Even so, in deterministic design methodspcovalues are attributed to variables, so trafieafe made on
design point solutions. Hence, deterministic meshsichplify and restrict the design problem in ortbeoptimize it.
However, this requires making radical decisionsoteefthe information about the decision becomesarert
Therefore, important uncertainty aspects are ogkdd. Alternatively, SBD concept considers the glegirocess as
an ongoing evolution of non-crisp concurrent decisi (Sobek et al., 1999; Ward et al., 1994). Viemtare
represented with imprecise values in domains {mater for real variables), so epistemic uncertaioin be
propagated and evaluated. This concept allows nmtion to be gathered before making decisions end#sign
model, and decisions to be delayed when the infoomas not certain. The delayed decisions arensicered at
later process stages where more information has gathered due the reduction of epistemic unceytaimough
earlier decisions. This approach provides flexipitif modifications and higher adaptability to cgas as shown by
Wang and Terpenny (2003), as well as robustnededign errors as shown by Parsons et al. (19983eBs time is
consequently reduced due to a decrease of repeti¢isign activities and loopbacks.

If SBD has been principally adopted at a managéial, it is only recently that this concept haei adapted
using CSP definitions at a technical solution lexg. (Meyer and Yvars, 2012; Panchal et al., 20@Anou and
Harmel, 2006). A CSP is defined with sets of vagapsets of domains that contain the allowableiaslof



variables and sets of constraints that restrictptioblem (Montanari, 1974). The Cartesian proddiche variable
intervals defines a multidimensional space thattaios the consistent values which respect the @int. A
decomposed design problem can be defined with thpeees: the design space defined by design vesiathie
performance space defined by design performandables, and the solution space that contains betigd and
performance spaces. Design decisions are represavitle constraints restricting the solutions spase, the
epistemic uncertainty is reduced and the remainsofution space is precisely determined with domain
reduction/filtering algorithms of constraint prograing (CP) techniques. Yannou and Harmel (2004yvdhawv CP
techniques can compete with and outperform proiséibiland fuzzy methods on managing imprecisiodesign.
CP techniques allow the bottom-up design approatth emabling constraint definitions on value ocences. For
instanceX andY are integer variables with domaifg$X) = [15,25] andD(Y) = [10,20] andZ =X XY isa
value occurrence. If a constraint is definedZoits consistency is evaluated and the inconsisteinies ofX andY

are extracted from their domains.Af< 200 the domains of the variables are reduced @) = [15,20] and
D(Y) = [10,13]. Current CSP definitions are able to support ¢obotup SBD, but we are not aware of any CSP

platform that includes collaboration indicatorsided from design attitudes.

3. Attitudes of design agents in MAS
Through agent-based modeling, many complex phenarman be considered as systems of autonomous agents

that follow simple rules of repetitive, cooperatiaad competitive interactions. Thus multi-agenttesys (MAS)
simulation is considered as an appropriate appraaaghvestigate complex emergent systems. For ricstaMASs
have been used for social simulation (Caballeralgt2011), for modeling bounded rational agents (&t al.,
2008), and for organization of societies (Rodrige¢zl., 2011). Agents are sub-systems that avated in an
environment, and in order to satisfy their desidpectives they perform autonomous actions (Woolgkicnd
Jennings, 1995). In the environment they are soetathey can communicate and interact; they aetise, so they
can perceive the environment and respond to thegehan the environment; and they are pro-activethey can
take initiatives by their goal-directed attituddés. MAS, agents can reflect different attitudes thegpresent the
reactions of agents to uncertainties of complexadyic domains (Goyal, 2005). The widely deployechiaecture
of an agent, the belief-desire-intention (BDI) mhgm, is developed by Bratman et al. (1988). BDdws the
system as it is emerging from agents with diffener@ntal attitudes. The emergent mental attitudestcoct the
system behavior and are important for the optineaigpmance of the system. Beliefs correspond tartfoeemation
emerging from the analysis of the model. Desiresespond to the objectives of the agent and thes talkocated to
it. In a complex emergent system, agents are rettatsatisfy all their desires at the same tinoghgy are forced
to make trade-offs and compromise. Intentions spwad to the choices of the agent for some desiten
compromise is necessary. Actions of choosing desire intentions: an agent makes intentions umgildesire is
satisfied or until the agent believes that thentitm is no longer feasible (Cohen and Levesqu80)1L9Agents
perceive their environment through sensors andipah that environment through effectors. The sydbetween
perception and action consists of their attitudesagent is stimulated by the analysis of the meadhel through its
belief, desire and intention architecture its atlés are defined, so the agent performs actioms i Finally the

new form of the model is synthesized following #otions.
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Figure 2. BDI paradigm

A distributed design system is an emergent systednitacan be simulated as an MAS. In a distributesign
system, the stimuli are sent to agents by the dimaesign model and agents react through definiagisebn
constraints in the dynamic design model. Desigitudts are bounded and design agents need to ¢hizna
collaborate. Attitudes of design agents determiherwand how their decision constraints are defoh@thg the
progress of the design process. This shapes theiateenaking process and collaborative convergembe. most
widely employed decision making model in MAS is theltiple attribute utility theory (MAUT) which elaates
multiple performances. The decision maker ageetrgits to maximize the utility function which aggaegs all the
performances. The utility is used to evaluate gmhst while the analysis of trade-offs between aliéves is
represented as weighted formulae. Decision makansatso rank alternatives and define preference®oran
alternative over another. Preferences reflect ajemtijectives and can be prioritized with constr®inThus,
constraints are used to make decisions eithercaligtior dynamically. Therefore, a joint solution generated by
modifying the design model iteratively.

The design system is composed of different peogdd evith different characters. The character ohgent is
the combination of its attitudes, and it can beduseestablish strategies in order to achieve agtimteractions
between various agents (Castelfranchi et al., 19B®wever, the attitudes of different agents casultein
conflicting activities. This problem usually regesr coordination and cooperation of agents’ attgaudéAS can
simulate the coordination of different agents cosmabof different attitudes. The emergent behavidch® system
consists of different compositions of altruisticdaggoistic behaviors of every agent in the systBita(and Lima
Neto, 2007). Egoistic behaviors are actions thamaotivated by self-interested gains, while altraibehaviors are
motivated by the gain of others, such as the pteasiotained from others’ pleasure. Altruism cam &is viewed as
sacrificing one’s own good for the benefit of threwp that one belongs to. While egoistic actions @@use harm to
the other agents, altruistic actions help the ath&mutual defection may be the rational soluttbthe agents, but
it is neither the most beneficial one for the globanefit nor even for individual benefits. Bazzainal. (2002)
simulate the effects of altruism among agents ptayhe Iterated Prisoner’s Dilemma. They concludg egoistic
agents maximize their benefits only in the shamniebut they compromise their performances in treglterm.
Xianjia and Weibing (2009) propose a method to stigate the evolutionary outcome of the behavidrglayers
with egoistic or altruistic preference in an itedhtprisoner’s dilemma. Their results show that ®gotan cause
defection, and altruism can increase the performafcooperation. Jennings and Campos (Jenning€antos,

1997) conclude that the overall performance ofsygtem can be increased if agents are sometinoegeallito work



for the benefit of others. Since agents are autawsnand have different knowledge and resourcegyeration
attitudes are conditional to the environment areddynamic through the allocation of time and resesir Agents
are therefore heterogeneous, and it is almost isilglesto define optimal agent attitudes. To mami@operation

among heterogeneous agestxial norms and collaborative strategies shoulddmpted upstream in the system.

4. Agent-based SBD model
We define the extended bottom-up design approadmnasgent-based SBD model that considers the design

attitudes of interacting agents. We first define ttesign process before presenting the desigidesitand the
control indicators that derive from these attitudes

4.1. Design process of agents
In the preliminary design phase, the solution spaaery large. While the solution that designénsl fat the

end of the design process is presented in thalisiution space, this solution is not known atittitial state. This
implies a very high epistemic uncertainty. CSPrdéfins can be used to model designer actions.gnesiactions
are considered as decision constraints definedhensblution space iteratively. The design modeth&refore

dynamic, evolving with the actions representingiglens. Hence, a collaborative point solution erasrffom the

converging solution space while the epistemic uagay is reduced iteratively during the designgass stages.
We model an agent-based design process in orderderstand both how the epistemic uncertaintydsiced, and
how the solution space converges collaborativeye d@esign process model is shown in Fig. 3. Desggnts make

three decisions during the process: these are shevidi, D2, and D3. D1 and D3 are Boolean decisaonisD2 is
a “how” decision.

D1: Define a decision constraint or not.
D2: How the decision constraint is defined.

D3: Accept the decision constraint or not.

)
l e Accept

Define Decision
Constraints

Dynamic
—p D2 »| Design D3
Model

Design Agents ® Wait Unfeasible
A Q\\

Feasible

y

Refuse

Figure 3. Design process of agents



During a process stage, agents evaluate the solspace to decide whether they will define a denisi
constraint, or wait. If they decide to define aiden constraint, next they decide how the constra defined.
When the constraint is defined in the dynamic desngpdel, the model’s feasibility is tested. Aftee tdefinition of
the constraint, if there is at least one solutiemaining in the solution space, the constraintoissistent for the
model and it is accepted collaboratively. If thdudon space is empty, then it is refused and tegecThe
consistency of the constraint depends on the puslaccepted constraints that have been definatidprocess
stage agent and other agents. In addition, thastensy of the constraint depends on how it isrictstely defined,
and the nature of the initial problem. If the coasit is very restrictive, it is probably refusedhether there is a
previously accepted constraint or not. Therefor8, i® a collaborative decision which has emergednfitbe
collaborative behavior of the design system. Intamt, D1 and D2 are individual decisions defingdthe
individual design attitudes of the agents. Wheworsstraint is refused, it is considered as a pateatinflict because
the agent’s desires may not be sufficiently satisfirThe degree of the conflict can be evaluatetthéylivergence of
the agents’ individual solutions. The solution spécshared and design objectives are typicallylicting. If an
agent can satisfy its desires, it results in diskaition of another agent with conflicting objees. When their
satisfaction solutions diverge - for instance thleition of an agent with a very low satisfactiordahe solution of
another agent with a very high satisfaction - tbeflicts increase in intensity. The conflict is seaable if only the
agent’s desires are not sufficiently satisfied. @roposition is to evaluate design attitudes witBld model and
evaluate agents’ states with control indicatoredalvellbeing indicators. Wellbeing indicators derived from the
desires of the agents reflected on the beliefshef agents. They enable a bottom-up design procéssew
convergence is controlled, with defining decisiomtraints impacting directly on the wellbeing ints instead of
on design variable intervals.

4.2. Attitudes of agents and control indicators

Design space emerges from the intervals of desigiables modified dynamically during the designgess.
This represents the dynamic design model. Analgbithe dynamic design model stimulates design agent
triggers their BDI mechanism. Figure 4 shows desigents’ BDI mechanism. Beliefs of design agentgefiected
with the intervals of the design performances eimgrifom the dynamic design model. The bounds efititervals
of the design performances represent the worstilpessases and the best possible cases for thespamding
design performances. Since actions of the designtagire bound through couplings, the intervalpggate some
uncertainty. The worst possible cases and the pessible cases depend on the actions of the othemta
Therefore design agents define their desires tptatie performance values. Desires are design sigeeferences
on two factors: design performance alternatives Hred satisfaction obtained by design performantekile
preferences on design performances reflect ageattdudes for satisfaction obtained from the akives,
preferences on satisfaction represent agenti@gst for compromise. Beliefs and preferences afjdexgents lead
design agents to define their intentions in orderdduce the solution space by improving their waesses.
Intentions are reflected with how frequently andvhrestrictively their decision constraints are defi. Design
agents react to the emerging performance spaceadhrdefining decision constraints into solution cgpalhese

modifications synthesize the next design spackdrdiynamic process.
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Figure 4. BDI mechanism of design agents

We define an agerk, A, as an entity with four different attitudes; (Pr, Ty, Fi, M)). Pry is the set of
preferences of the agent on performance valfjes the compromise threshold value of the ageptesenting the
preference of the agent on the satisfaction valoesompromiseF, is the average frequency of the agent for
defining constraints in the model aMj, is the coefficient of restriction of the consttzirdefined by the agent,
reflecting the restrictiveness of the decision ti@sts defined by the agent.

4.2.1. Preferences and satisfaction

Preferences of an agent about design performaramesbe modeled as a satisfaction function. Theolist
preferences of an ageAf on its performances creates fhe attitude. Complete dissatisfaction is represebied
on the scale, while complete satisfaction is repres] by 1. Design agents are moderately satisfidite transition
between fully satisfied and fully dissatisfied st&atIn this paper, we assume that the transitidimesr; however
nonlinear satisfaction functions can be adopteddiferent studies. We integrate piecewise constsainto the
model in order to define information about perfonoa preferences without restricting the solutioacsp For
example, one objective of an agdattould be minimizing a performande the agent is fully satisfied by a
performance value below or equalRp and fully dissatisfied by a performance value &ow equal ta?,. It is
assumed that there is a linear transition betwieesettwo preference valuag; is the satisfaction value of the agent
k obtained by the performancandv; is the performance value of the performancihe corresponding integrated

piecewise constraints are:

|fUiSP1i,Skl‘=1 (1)
|fUi2P2,Skl‘=O (2)
fP, <v;< Py,1>5,;>0 (3)

In the SBD framework, all the variables are defineith intervals instead of points. The design pssce
progresses with time and the intervals are redtfwezligh the decision constraints defined on thatswl space
during the progress. Thus the design process iposad of design stages where agents take actidnmofess
staget, performance has a minimum valug' and a maximum valug’, the interval of the performancat process
staget being[x} , yf]. Since the performance is defined with an interwel obtain an interval for the satisfaction of

agentk from the performanceat stage: s,; = [minsf; , maxsf;] whereminsf; is the minimum satisfaction and



maxsg; is the maximum satisfaction obtained within theeiwal [x! , y}]. This phenomenon is illustrated in Fig. 5.
Piecewise constraints are the same as above. Mimisatisfaction is obtained at point A and maximatisgaction
is obtained at point B. During the process whileartainty is reduced, agents can observe the patenaximum
and minimum satisfaction values from performand¥sen design agents have several design performaaces
evaluate, they can assign weights to their satisfawalues considering the importance of the perémces for
their job. As individual performance satisfactiomlues are aggregated, general satisfaction sthegeats can be
observed.

Ski

AB

1

Figure 5. Intervals of satisfaction function

4.2.2. Compromise threshold and wellbeing

In a coupled design system, it is highly unlikdiat all the design agents will be fully satisfi&ince design
objectives are conflicting, a decision constraiefirted to increase the minimum satisfaction valiiaragent will
decrease the maximum satisfaction value of anodigent. Thus, the convergence of satisfaction iateris
bilateral, and design agents are forced to com@®mi a certain level on their satisfaction valuksre maximum
and minimum satisfactions are as close as posdiiderre 6 shows a clear example of this phenomenoere
Agent 1 and Agent 2 have conflicting objectiveschsias decreasing the mass and increasing the vobfirae
product. Agent 1 define§, andC; and Agent 2 define§, andC, at different process stages, in order to improve
their satisfaction states. However, these consralecrease the other agent’s maximum satisfagidure. Since
agents cannot be aware of the other agents’ actibesconvergence propagates some uncertainty., Tassgn
agents can reflect an attitude of desiring a vahug/hich they may compromise. While preferencesdesign
performances reflect the desires of agents on ptaghecifications, preferences on satisfaction amlobtained by
these performances reflect the desires about ammsvergence. The preference about the satisfagihie is
called compromise threshofg, and it defines the compromise attitude of an agBnmis compromise threshold
value represents the satisfaction value that antagents to guarantee. The agent wants the soltdiconverge at
least to this value. The agent defines decisiorstcaimts considering the preferendgg in order to increase the
satisfaction obtained from the model until the mmom satisfaction value reaches the agent's sdiisfac
preference. This introduces a condition for maldegisions during the design process. If the mininsatisfaction
of an agent by the model reaches or exceeds V@glughen the agent passes to the compromise statbeln

compromise state, agents stop adding decisionredmistto the model, so this leaves space to ther @igents.
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Satisfaction values are normalized through dividingm by the compromise threshold value; this plewi
wellbeing states Eg. (4, 5). Wellbeing states regmeglobal states of design agents; they show dgent suffers
from not being able to approach the compromises statif an agent could have performed modificatitmshe
model and thus approached the compromise statébée is defined with an intervatb, = [minwb}, , maxwbt]
where the minimum value is the minimum wellbeindigator and the maximum value is the maximum waetipe
indicator. The wellbeing interval converges through progress of the design process. If the minimuetibeing
value is larger than or equal to 1, then the ageinta perfect wellbeing state. The worst welllgestate is when the

value is equal to 0.

ot
mins
minwbj, = k 4)
Ty
¢
maxs
maxwbf = k (5)
Ty

4.2.3. Frequency

Design agents define decision constraints at aragedrequency, per process stagéhis attitude, dependant
on agent character, reflects if agents intenddtriot the solution space more frequently or |1€4s. is the phase of
the decision frequency df,. Phases of frequencies can differ from one agetite other agent depending on their
availability and their time zonél,, defines decision constraints at each process stagere(t — Ph;) value is an

integer multiple oft /F,,. In order to define a consistent function, we assthatl /F, is integer.

4.2.4. Coefficient of restriction

Any variable of the design problem can be improweith constraints. This improvement increases the
minimum satisfaction and wellbeing of the agett. is the coefficient of restriction for the consiviai defined by
A,. This attitude defines the restriction effect loé tconstraints defined on the solution spa€g.is used as an
improvement coefficient for the minimum values loé tintervals. The constraint defined Ay at process stagds
Ct: v, = minvk x (1 + M) wherev,, can be any variable of the design problem iy}, is its minimum value

at process stageHowever,minv}, value and’, value should be larger than 0.

If the constraint is consistent for the design nhodlich means that there is at least one feasibliation after

propagating the constraint, then the constrairdcisepted. If the constraint is inconsistent, whiohans that it
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returns an unfeasible solution space, then itfisseel and rejected from the model. The consistehtye constraint
depends on the nature of the initial problem amderlier constraints defined during progress. Thdspends on

the emerging attitudes of the design agents aruhgiaies an uncertainty.

4.3. Characterization of agents

Depending on their attitudes, agents can have rdiftecharacters. We consid&, F,, M, attitudes for
characterization ofi;. Pr; is not considered for characterization, becaustoqeance values of different agents
may not be the same, and they may not have the samef measurement. Besideg, attitude reflects the
fondness of agents for their preferences. Desigmtagmay be more egoistic or more altruistic coregpan the
others. More egoistic agents try to satisfy theieds at the highest levels without consideringrodigents. More
altruistic agents have an opposite character, gakiher agents into consideration. The solutiorcega shared
between design agents, so any restriction perforioyeaih agent on the solution space will decreaseddgree of
freedom of the other agents and leave less spabertn As Fig. 6 shows, the reduction of the degfdeeedom is
on the favorable side of the satisfaction intervdile to the conflicting objectives. Hence, agenith welatively
restrictive design attitudes are considered as mguastic and agents with less restrictive desigjitudes are

considered as more altruistic.

Figure 7 represents egoistic and altruistic charestics of agents. When two agents are compair&g,andM,,
attitudes are identical, the agent with the laf§ers more egoistic than the other, because it withpromise at a
higher satisfaction value. Thus, it will restribetsolution space more than the other, until ijeative is satisfied. If
T, and M, are identical, the agent with largé is more egoistic than the other, because whengantalefines
decision constraints more frequently, it will rédtrthe bounded solution space more rapidly dutheg process.
Consequently, it leaves less space to the othertagé T, andF, are identical the agent with larghf;, is more
egoistic than the other, because its decision caingt will be more restrictive than the other aggeuecision
constraints. This will reduce the solution spacéti@ egoistic agent’s benefit.

Most
Egoistic

Lar

Smaller

Smaller Larger’—

Figure 7. Egoism and altruism in design agents

Most
Altruistic

12



The desires of design agents and their intentibnald be rational. If an agent has egoistic desisagtentions
are also egoistic. Therefore, more egoistic agemd to define decision constraints more frequentt a larger
coefficient of restriction, and they do not accepttompromise easily. In contrast, more altruisiyents tend to
define decision constraints less frequently witbnzaller coefficient of restriction, and they camnmgwomise more
easily. However the structure of the rationalityween the desires and the intentions can be diffdrem agent to
agent, since they model human beings. For exaraplagent can have a largé¢ value but a smalldf, value than
another agent with the sarfig value. As seen in Fig. 7, in the extreme casenthst egoistic agent in the design
system has the largegt, F,, M, attitude values while the most altruistic agerd thee smallest,, F,, M,, attitude
values. The process performance and the desigtissican be influenced by the characters of desgyriWhen
the design system consists of heterogeneous aghtslifferent design attitudes, the results mayedje where
one agent has a very low wellbeing and anotheahaesy high wellbeing. Process time and the nurobeonflicts

that occur during the design process can alsoaserdue to the non-converging design characters.

5. CSP simulation process

We present an automatic constraint propagating lation of our model where the solution space isuced
iteratively considering design agents’ BDI mechaniFhe objective is to simulate some top-down aoitioin-up
design processes with different combinations ofgiteagent characters, and compare the resultethatge from
these processes. Two practical top-down simulatases are defined. Case 1 represents the desicgsprehere a
designer can modify only one design variable aftermodification of another designer. Case 2 ctssisan all-at-
once approach where designers can modify all thiggdevariables after the modification of anothesigeer. Next,
two bottom-up simulation cases are defined. In Gasesigners can modify their design performanCese 4 is
our extended bottom-up design process where desigram modify their wellbeing indicators deriveadrir the
performances. In the simulation process we usgalitansechanism similar to the round-robin stratéigst loops on
all the variables at process iteration (Granvilje2012). The objective is to obtain an upper value a lower value
that are as close as possible for each intervervals are reduced until a good degree of pratisi@btained. The

simulation algorithm is shown in Fig. 8. We makensoassumptions when defining the simulation process

e If (t— Phy) X F, € Z andmins. < T, each agent can define (a) decision constraintf) once at any
iteration and constraints are defined sequenti#ilgll the agents are processed in iteration tenprocess

passes to the next iteration: t++.

» Decision constraints are defined for improving iherst case scenarios with a coefficient of restict
M, >0 or My; > 0 or My; >0 Vk,i,j. Initial worst cases are larger thanminVn) > 0 Vj, minPn} > 0

Vi, minwb) > 0 Vk. If minst > T, then the compromising agent is extracted fromsgiliiting loop (Cases 1
and 2:M,; = 0vj , Case 3M,; = 0 Vi, Case 4M; = 0).

o Cases 1 and 2Vn; > minVn]-t X (1 + Mk]-) whereVn; is the normalized design variakjleninVn]-t is
its minimum value at iterationandM,; is the coefficient of restriction on the perforrean defined by

agentk.
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o Case 3: Pn; = minPnf x (1 + M,;) where Pn; is the normalized performande minPn} is its
minimum value at iteratiom and M,; is the coefficient of restriction on the perforrnam defined by

agentk.
o Case 4:wb, = minwb} X (1 + M,).

» If a constraint is rejected, its related coeffitieh restriction value is reduced by half. If theefficient of
restriction value of a variable reaches a precisialue ), then the splitting is stopped for this variable,
because the upper and lower bounds are as clopeszthle considering the precision value. If ak th

coefficient of restriction values reach the premisithen the simulation process stops.

¢ Agents’ attitudes are defined at the initial statehe processM,; andM,; values are equal ti, at the

initial state.Pr;,, andT}, attitudes do not change during the simulation ggedecause they represent desires.

Case 1&2M,; < P Vkj
Case 3M,; < P Vki
Case 4M, < P Vk

t=0,Vkij
My = My,
Mkj = M,

NO
* YES
Choose unprocessed agent
Case 4: withvf,, > P < NO All agents
+ processec
NO |
Case 1&2M,; = 0Vj A YES
Case 3M,; =0 Vi
CasedM, =0
Case 2: All

variables
processec

Case 1&2: Choose variabjlavith M,; > P Accept constraint
Case 3: Choose performariogith M,; > P
v Reject constraint
Define decision Feasible Case 1&_2Mki = My;/2
constraint Solution’ Case 3My; = M,;/2
Case 4M, = M, /2

Figure 8. CSP simulation algorithm

The simulation process is evaluated by four peréoroe criteria: number of iterations, number ofuias, total
wellbeing and divergence of individual solution©uF simulation cases are compared regarding theseess
performances. A smaller number of iterations mearfester convergence of intervals and a rapid dgsigcess.
This should not however be evaluated alone, becahea there are less failures, the coefficientestniction is
split later, which leads to the number of iterasiancreasing. When a decision constraint is rejedtds a process
failure. Each failure is a potential conflict amatesigners. Therefore less failures means a desigvergence with
less conflict. The total number of failures represehe number of conflicts occurring in a desigocpss. The

objective is to maximize agents’ wellbeing valudsilesminimizing their divergence. Divergence isidetl as the
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difference between their individual wellbeing statén the ideal case, agents should obtain the se@fibeing
values, and each value should be larger than loltesdifferences of the wellbeing values of eithveo element

combination represent a vect®(d,, ..., d,,). The Euclidian distance of this vector solutiortte ideal case solution

gives the divergence of the individual solutiodsvergence =/(d;)? + ...+ (d,)?. More divergent solutions
lead to more intense conflicts, because the divergés caused by agents with a relatively low vegfily value.

However, the divergence cannot be evaluated aforero divergence is not desirable if the totalllbethg is zero.

6. Monte Carlo simulation

We ran a Monte Carlo simulation with the designbpem of the pressure vessel in (Karandikar andrighst
1992; Lewis and Mistree, 1998). We define threenagbaracters as shown in Table 1: Egoistic, Magerand
Altruistic. We consider that there are no frequephwse differences. All four simulation cases ameated 1000
times for permutations of these characters gerten@iedomly from their attitude sets. Design agertd their
design variables and performances are also cha@ssiomly in process iterations, so the process segues

completely independent from agent characters.

Table 1 Definitions of random characters

Egoistic Moderate Altruistic

T.. (0.6,0.65,0.7, (0.45, 0.5, 0.55) (0.1, 0.15, 0.2, 0.25,
0.75, 0.8, 0.85, 0.3,0.35,0.4)
0.9, 0.95, 1)

F.: (05,1) (1/3,05, 1) (1/3, 0.5)

M, (56,78, 9) (3,4,5,6,7) (1,2, 3,4,5)

In the simulation process, the worst cases aredadwepr by increasing the lower bounds of the intexval
Therefore, for minimization objectives the largeubds are normalized to 0 and the smaller bourels@malized
to 1, and for maximization objectives the smalleurids are normalized to 0 and the larger bounds@realized
to 1.The precision value is defined as 0.001. fieéans that if the interval of a variabie[minX, maxX] does not
containminX x 1.001, it is extracted from the loop. Dynamic CSP ismed in C++ computer language and a CP
solver library called IBM ILOG CP V1.6 (IBM, 20123 used to find solutions through its domain reuinceind
constraint propagation algorithms. The solve fuorctof IBM ILOG CP is used to examine the feasibilif the

model.

Figure 9. Thin-walled pressure vessel
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The design problem consists of a cylindrical thialled pressure vessel with hemispherical ends asrsin
Fig. 9. Problem nomenclature and constant valuegiaen in Table 2. There are three design varsafite T, L)
and two design performance variablé¥, (\). Design performance formulas are given in Tabland initial
constraints are given in Table 4. With given caasts, the weight and volume bounds are determirsing CP
techniques (Table 4). The design problem is diviéol two sub-problems assigned to two designege(® 1 and
Agent 2). The objective of Agent 1 is to minimi¥é by controllingR, T andL while satisfying the related
constraints; the objective of Agent 2 is to maxienizby controllingR andL while satisfying the related constraints.
Their design activities are coupled because ofsthered information in constraints and performarmentlas.
While Agent 1 minimizes the weight, the volume imimized; while Agent 2 maximizes the volume, theigit is

maximized. Since their objectives are inconsistifrgy design activities are conflicting.

Table 2 Problem nomenclature and constants

W Weight of the pressure vessel, Ibs.

\Y/ Volume of the pressure vesselZin.

R Radius, in.

T Thickness of the vessel wall, in.

L Length of the cylinder, in.

P Pressure inside the cylinder, 3.89 kib.

oyrs Ultimate tensile strength of the vessel materialki®.
d Density of the vessel material, 0.283 Ibs®/in.

o.re Circumferential stress, Ibs./mn.

Sk Satisfaction of agerk

wb,  Wellbeing of agenk
nV Normalized volume
nW  Normalized weight
nR,  Radius normalized for agekt
nL,  Length normalized for agekt
nT Normalized thickness
k=1 for Agent 1 and k=2 for Agent 2

Table 3 Design performance formulas

” 4
wW=d [gn(R +T)  +n(R+T)L— <§T[R3 + nRZL)]

4
V= §1TR3 + nR?L

Table 4 Initial constraints

Stress Constraint: PR
Ocirc = T < oyrs

Geometric Constraints: 5T —R < 0
R+T—-40<0
L+2R+2T—-150<0

Bounds: 01<R <36
01<L<140
05<T<6
13.7288 < W < 56907.6
67.4138 <V < 480404
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Table 5 Preferences Table 6 Normalizations

13.7288 < W < 56907.6 : 1>nW >0
If W < 8000 lbs thens, =1 67.4138 <V < 480404 : o<nr<1
If W > 31000 lbs thens, = 0 .
If 8000 lbs < W < 31000 lbs thenl 0 05<T<6: 1=nT 20
s<W< s thenl >s; > 01<R<36: 1>nR, >0

If V> 380000 in? thens, = 1
> 0<nR,<1
If V < 120000 in? thens, = 0 01 <L <140 o230
If 120000 in? < V < 380000 in.? then0 > s, > 1 SEEE oeniZ]
= 2 S

Agents define their performance satisfaction fuoriwith piecewise constraints as shown in Tabl&ll5the
transitions between the preferences are consideredr as shown in Fig. 5. Design performances design
variables are normalized using their bound vallRecewise constraints are defined for normalizatiand are
shown in Table 6. Agent 1 minimizé¥ through minimizingR, T andL and Agent 2 maximize¥ through
maximizingR andT. Supplementary initial constraints are defineatder to avoid non-zero worst case scenarios
for enabling fruitful constraint propagations,,(s,, nT,nR,,nR,,nL,,nL, = 0.01). These very small constraint

values do not affect the performance of the sinrigbrocess.

All the permutations of egoistic (E), moderate (M)d altruistic (A) characters of Agent 1 and Ag2rdre
simulated for each case 1000 times through a MGat® simulation approach and the average restdtsteown in
Fig. 10. Case 1, the process which enables motidfiton design variables only one agent at a tremjires the
longest process time because the number of itemi®the largest for every character combinatne of the
bottom-up approaches outperforms the second topr-adi®sign approach, Case 2, for every character ysation
except EM. When there is at least one altruistienagCase 4 outperforms Case 3 except AE. The gsdome
should be evaluated with the number of failuresabse when the number of failures decredadgss split less, and
the convergence continues during subsequent pratages. The number of failures can be considesethe
number of conflicts. Case 1 and Case 2 result enhighest number of failures. Case 3 and Case érgien
significantly less conflicts. Case 4 outperforms€a& except when one of the agents is moderat¢hanother is
egoistic or both of them are egoistic. The intgnsitthe conflicts also needs to be evaluated. Aflad is more
reasonable when its intensity is relatively highcduse one agent covers more space, resulting iidbking of the
other agent in order to satisfy preferences. Whenfihal wellbeing values are compared, it is digant that in
Case 1 and Case 2, Agent 1 dominates Agent 2 degardf their characters. In Case 3, Agent 2 gdéiyera
dominates Agent 1 except when Agent 1 is more &gdisan Agent 2 (MA and EA). In Case 4, when ageeflect
the same characters, no domination occurs, exchphwne is more egoistic than the other. Thesenfysdare
reflected in the divergence results. Case 4 geeesignificantly the least divergence regardlessgeht characters.
These conflicts are relatively less intense. Howgethee reduction of divergence is obtained by campsing some
of the total wellbeing value for some character bimations. This compromise of the total wellbeisgdue to a
slight concaveness of the wellbeing space. Thé wahbeing of two agents - one is over-satisfigdeliceeding its
compromise threshold value, while the other is wsdd¢isfied - can be larger than the total wellbeof two
satisfied agents with wellbeing values equal toHis is observed with character combinations theltide at least
one altruistic agent, because an altruistic agastshlower compromise threshold value and hasegrpatential to

be over-satisfied.
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Figure 10. Simulation results
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Figure 11 shows the average total satisfactionegaknd the average absolute differences of theichail
satisfaction values obtained by our approach foseC4. Optimal results are obtained when both agards
moderate, because the absolute difference of aaiiwh values is minimal while the total satisfantivalue is
maximal. Egoistic agents overestimate their desiepsesented as compromise threshold values wregnwiiork
with an egoistic agent or a moderate agent, bedduestotal satisfaction values of these situatiaresnot greater
than the total satisfaction of the situation wheth agents are moderate. Also, the absolute diffes of
satisfaction values of EE, EM and ME situations larger than the MM situation. This shows that ithgividual
satisfaction values diverge more because of théswgaittitudes reflected during the design procédsuistic
agents underestimate their desires when the otfesrtas altruistic or moderate. Even if altruistigents can be
over-satisfied, the total satisfaction values of, AM and MA situations are smaller than the totafigfaction
values of the other character situations.

M Case4 Totals W Case4 Abs. Differences

1.2

1 .
0.8
0.6
0.4
0.2
0 A T T T T T T T T
EE MM AA EM ME AM MA EA AE

Figure 11. Case 4 satisfaction results
7. Conclusions

In this paper, we define an extended bottom-upgaesipproach, exploring agent-based attitude maglelin
techniques within the set-based design concept.cbheentional bottom-up design approach is uswgfined at
problem level; however design attitudes that defiakefs, desires and intentions are overlookeithainitial state
of the problem, so trade-offs on design preferemeesain abstract. In contrast, our extended bottpnuesign
approach includes design preferences at an eathée and explores the solution space with desigfefgnces
emerging from the desires of various designers.

We perform a CSP simulation for different desigdearacters. The simulation results show that whesigd
attitudes of heterogeneous designers in distribdiegign are not evaluated beforehand, the perfarenaf the
design process is significantly lower. Regardidst@ designer characters, significant dominatiosigally occur on
the same designer. This means that the resultsiasty influenced by the process itself. Consedygeimdividual
solutions do not converge in equilibrium, so cadli are unavoidable. However, when design attitumles
evaluated beforehand, designers can make tradatefftions on their wellbeing values derived frdmeit beliefs
and desires. With this approach, designer dominagorelatively less significant and is coherenthwilesigner

characters. This shows that the results are offilyeinced by the design attitudes. Designers carefibre converge
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in equilibrium. Consequently, the number of cotfliand the divergence of the solutions that reésuhe intensity
of the conflicts are prevented. However, it shobll noted that these process performances are adhley

compromising some of the total wellbeing.

Other conclusions deduced from our approach aretabow the satisfaction results emerge from differe
reciprocal design attitudes. It is shown that nemipl egoistic attitudes can cause diverging satigin results. In
contrast, more altruistic reciprocal attitudes cecrease the divergence of individual satisfactiditavever, too
much altruism can decrease the total satisfactiaimed from the final solution, except when theipeocating

design agent reflects very significant egoistittades.

Our approach is capable of determining and prewgrdesign conflicts, but it does not provide amgtsigies
for resolving existing conflicts. Some cooperatognflict resolution strategies can be defined artdgrated into

the same platform, but this requires design agemegotiate, and compromising constraints thraaggxing them.
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