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Abstract 

In distributed design systems, while designers are connected to each other through dimensioning couplings, 

they have limited control over design and performance variables. Any inconsistency among design objectives and 

working procedures of heterogeneous designers interacting in the design system can result in design conflicts due to 

these couplings. Modeling design attitudes can help to understand inconsistencies and manage conflicts in design 

processes. We extend the conventional bottom-up or design supervision approach through agent-based attitude 

modeling techniques to a more powerful level. In our model, design agents can set requirements directly on their 

wellbeing values that represent how their design targets are likely to be met at a given moment of the design 

process. Some design conflicts can in this manner be prevented at an earlier phase of the design process. Set-based 

design and constraint programming techniques are used to explore the overall performance of stochastic design 

collaborations on a product modeled with uncertainties at a given moment of the design process. Monte Carlo 

simulations are performed to evaluate the performance of our set-based thinking approach, providing a variety of 

agent attitudes. The results show that the number of design conflicts occurring during the design process and the 

intensity of design conflicts are both reduced through our collaborative design platform. 

Keywords: Collaborative design; Distributed design; Set-based design; Conflict prevention; Constraint satisfaction 

problem; Agent attitude model; Heterogeneous agents 

1. Introduction 

Design processes of complex products currently involve considerable effort and expertise from different 

disciplines. Multiple designers from different disciplines are thus involved in performing collaborative design. The 

design model converges to a solution through a series of collaborative activities performed during the design 

process. Since the design problem has multidisciplinary boundaries, a distributed design approach can be adopted. In 

distributed design systems, the system is decentralized; the global problem is decomposed into sub-problems and 

distributed to subsystems consisting of one or several designers (Papalambros et al., 1997). Subsystems have limited 

control over the design variables because of their limited expertise and responsibility. In a sub-problem there are 

three main problem elements: design variables that can be controlled, design performances that are evaluated and 

constraints that must be respected. The rest of the global problem excluding a specific sub-problem does not concern 

the specific sub-system, but it can be only observed if it is shared and necessary. Distributed design tasks allocated 
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to sub-problems are executed concurrently by subsystems, the global problem converging to a global solution 

(Zheng et al., 2011). 

In the ideal case, true concurrency is expected from distributed design systems where designers can perform 

their design activities independently. In reality, designers are related to each other through couplings between their 

sub-problems. Couplings can result in conflicts among designers if some inconsistencies are presented in the design 

system. Inconsistencies arise from design attitudes reflected by subsystems during the design process. The most 

significant inconsistency occurs between design objectives of subsystems. Typically, a design problem contains 

multiple conflicting objectives, so subsystems are forced to make trade-offs. Working procedures of designers 

influence the performances of others, and inconsistencies present in these working procedures can negatively impact 

the global solution (Zhao and Jin, 2003). For instance, a designer restricting the design model more rapidly or earlier 

than others could influence the model more. Subsequent designers are forced to deal with a restricted model which 

cannot satisfy their own design objectives. If the number of conflicts and intensity of the conflicts increase; the 

performance of the design process decreases, because individual design objectives are not satisfied in equilibrium. 

Some significant attempts have been made to coordinate and resolve existing conflicts in distributed systems. Zheng 

et al. (2011) propose to resolve conflicts by integrating resultant models of conflicting Boolean decisions in 

individual sub-problems of distributed computer-aided design. Kwon and Lee (2002) define a multi-agent based 

model that integrates a coordination mechanism. This can manage conflicting agents in a decentralized enterprise in 

order to resolve interdepartmental conflicts. Koulinitch and Sheremetov (1998) define a constraint-based dynamic 

design system model that includes facilitator agents which are responsible for coordination and conflict resolution 

during the design process. When a conflict occurs amongst design agents, facilitator agents send messages to relax 

some constraints until a consistent solution is obtained. Huang et al. (2006) develop a fuzzy interactive multi-

objective optimization model for engineering design. The collaborative relationships among the objectives are 

improved with adjusting the threshold of satisfaction degree and weighting coefficients of objectives. The least 

conflicting solution is therefore selected among the generated set of Pareto optimal results. The selected solution 

gives the maximum satisfaction degree and the minimum divergence of the individual satisfactions of local 

objectives. Yvars (2009) proposes a collaborative design system where decisions of distributed designer agents are 

represented with constraints added to the model dynamically. Constraints restricting the design model restrict also 

the degree of freedom of agents, so that they cannot add anymore constraints to the design model. This results in 

conflicts that are represented as unfeasible models. Design conflicts are resolved by detecting a compromise solution 

that maximizes the number of accepted constraints by removing some constraints from the model. While these 

approaches focus on resolving conflicts that have already occurred, they overlook the idea of preventing and 

avoiding potential conflicts that have not yet occurred in the process. They interrogate the issue at a late phase of the 

problem, because the avoidance of a conflicting problem is usually more efficient and less time-consuming than the 

resolution of a conflicting problem. The approaches outlined above also fail to take into account attitude models of 

heterogeneous agents. Modeling design attitudes can help understand the design inconsistencies resulting in design 

conflicts, and as a result certain collaboration strategies can be defined with attitude models. 
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The technique chosen for modeling the design process significantly affects the collaborative solution emerging 

from different sub-problems. Devendorf and Lewis (2011) show that the stability of a distributed design system 

depends on how the process architecture is formed. Two main approaches can be adopted for global design process 

modeling. These are the top-down design approach and the bottom-up design approach (Fathianathan and Panchal, 

2009). In the top-down design approach, decisions are made for parameterization of design variables in order to find 

detailed solutions that satisfy designer objectives. This approach is considered as a transition from an abstract level 

to a detailed level: in complex design problems, the effect of any parameter on the solution is usually abstract until 

the parameter is tested and a detailed solution is obtained. In contrast, the bottom-up design approach consists in 

defining detailed solutions to identify values of the design variables. With this bottom-up design approach, designers 

can make decisions on their design performances. The top-down design approach requires detailed decomposition of 

the problem where all the relations between variables are explicit. However, this may not be possible when the 

complexity of the design problem is very high and the problem contains too many couplings. Therefore, the effect of 

the decisions about design variables on design performances is highly uncertain, especially in early design phases. 

Engineering project failures can increase when it is not possible to predict the effect of the modifications because of 

the presence of intense couplings in complex design problems. Chanron and Lewis (2005) highlight the difficulty of 

allocating design variables to subsystems in a coupled problem where the same design variables influence the design 

performances of several subsystems. The allocation technique is critical, because it can influence the design quality 

(Kim et al., 2003) or the design process performance (Park et al., 2001). Fathianathan and Panchal (2009) propose 

the adoption of a bottom-up design approach when these limitations arise from a top-down design approach. 

 

 

 

 

 

 

 

Figure 1. Comparison of process approaches 

In this paper we extend the bottom-up design approach with agent-based attitude modeling techniques. A 
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top-down approach. In the top-down design approach, alternatives are generated first by making decisions on the 

design variables, and emerging solutions are subsequently evaluated considering design performances. In the 

bottom-up approach, solutions are generated by making decisions on design performance values and the parameters 

emerging from these values are evaluated to see if they are feasible or if they violate the problem constraints. Thus, 
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trade-offs are made on design performance values. Traditionally, the bottom-up design approach is modeled at the 

design problem level: it starts at the lowest level of the physical problem. However it does not include modeling the 

preferences of designers emerging from their design attitudes. We think that modeling design attitudes and including 

them at the bottom of the design approach will enable better control of collaborative convergence, because trade-offs 

can be made directly on satisfaction values of designer preferences. Therefore, the design conflicts can be reduced. 

A common design issue, regardless of the design process approach used, is the presence of epistemic 

uncertainty due to the imprecision caused by the lack of knowledge about the final decision (Parry, 1996). 

According to Malak et al. (2009) this issue requires representing the uncertainty with imprecise intervals/sets and 

delaying uncertain decisions to later process stages when the information about the related decision becomes 

available. In this paper, we use the set-based design (SBD) concept to simulate the process performance of the 

extended bottom-up design approach modeled with agent attitudes. In section 2 we discuss the ability of SBD and 

constraint satisfaction problem (CSP) techniques to manage imprecision in design. In section 3 the attitudes of 

design agents in multi-agent systems and egoistic and altruistic agent characters emerging from dynamic attitudes 

are considered. Our agent-based SBD model is introduced in section 4 and the CSP simulation process of this model 

is presented in section 5. Monte Carlo simulations of our approach are performed on a design problem which 

involves variable agent characters composed of variable design attitudes that define how design agents react during 

the design process. The sequence of the agent reactions is stochastic. Problem definitions and simulation results are 

presented in section 6. 

2. SBD and CSP techniques 

In coupled and conflicting design problems, especially in preliminary design processes, variables cannot be 

crisply defined due to the lack of information about the decision consequences (Antonsson and Otto, 1995; Yannou, 

2004). Even so, in deterministic design methods, crisp values are attributed to variables, so trade-offs are made on 

design point solutions. Hence, deterministic methods simplify and restrict the design problem in order to optimize it. 

However, this requires making radical decisions before the information about the decision becomes certain. 

Therefore, important uncertainty aspects are overlooked. Alternatively, SBD concept considers the design process as 

an ongoing evolution of non-crisp concurrent decisions (Sobek et al., 1999; Ward et al., 1994). Variables are 

represented with imprecise values in domains (intervals for real variables), so epistemic uncertainty can be 

propagated and evaluated. This concept allows information to be gathered before making decisions on the design 

model, and decisions to be delayed when the information is not certain. The delayed decisions are reconsidered at 

later process stages where more information has been gathered due the reduction of epistemic uncertainty through 

earlier decisions. This approach provides flexibility of modifications and higher adaptability to changes as shown by 

Wang and Terpenny (2003), as well as robustness to design errors as shown by Parsons et al. (1999). Process time is 

consequently reduced due to a decrease of repetitive design activities and loopbacks. 

If SBD has been principally adopted at a managerial level, it is only recently that this concept has been adapted 

using CSP definitions at a technical solution level e.g. (Meyer and Yvars, 2012; Panchal et al., 2007; Yannou and 

Harmel, 2006). A CSP is defined with sets of variables, sets of domains that contain the allowable values of 
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variables and sets of constraints that restrict the problem (Montanari, 1974). The Cartesian product of the variable 

intervals defines a multidimensional space that contains the consistent values which respect the constraints. A 

decomposed design problem can be defined with three spaces: the design space defined by design variables, the 

performance space defined by design performance variables, and the solution space that contains both design and 

performance spaces. Design decisions are represented with constraints restricting the solutions space, so the 

epistemic uncertainty is reduced and the remaining solution space is precisely determined with domain 

reduction/filtering algorithms of constraint programming (CP) techniques. Yannou and Harmel (2004) show how CP 

techniques can compete with and outperform probabilistic and fuzzy methods on managing imprecision in design. 

CP techniques allow the bottom-up design approach with enabling constraint definitions on value occurrences. For 

instance X and Y are integer variables with domains ����  �  �15 , 25� and ���  �  �10 , 20� and � � � �  is a 

value occurrence. If a constraint is defined on Z, its consistency is evaluated and the inconsistent values of X and Y 

are extracted from their domains. If � � 200 the domains of the variables are reduced to ����  �  �15 , 20� and 

���  �  �10 , 13�. Current CSP definitions are able to support a bottom-up SBD, but we are not aware of any CSP 

platform that includes collaboration indicators derived from design attitudes. 

3. Attitudes of design agents in MAS 

Through agent-based modeling, many complex phenomena can be considered as systems of autonomous agents 

that follow simple rules of repetitive, cooperative and competitive interactions. Thus multi-agent system (MAS) 

simulation is considered as an appropriate approach to investigate complex emergent systems. For instance, MASs 

have been used for social simulation (Caballero et al., 2011), for modeling bounded rational agents (Lin et al., 

2008), and for organization of societies (Rodriguez et al., 2011). Agents are sub-systems that are situated in an 

environment, and in order to satisfy their design objectives they perform autonomous actions (Wooldridge and 

Jennings, 1995). In the environment they are social, so they can communicate and interact; they are reactive, so they 

can perceive the environment and respond to the change in the environment; and they are pro-active, so they can 

take initiatives by their goal-directed attitudes. In MAS, agents can reflect different attitudes that represent the 

reactions of agents to uncertainties of complex dynamic domains (Goyal, 2005). The widely deployed architecture 

of an agent, the belief-desire-intention (BDI) paradigm, is developed by Bratman et al. (1988). BDI views the 

system as it is emerging from agents with different mental attitudes. The emergent mental attitudes construct the 

system behavior and are important for the optimal performance of the system. Beliefs correspond to the information 

emerging from the analysis of the model. Desires correspond to the objectives of the agent and the tasks allocated to 

it. In a complex emergent system, agents are not able to satisfy all their desires at the same time, so they are forced 

to make trade-offs and compromise. Intentions correspond to the choices of the agent for some desires when 

compromise is necessary. Actions of choosing desires are intentions: an agent makes intentions until the desire is 

satisfied or until the agent believes that the intention is no longer feasible (Cohen and Levesque, 1990). Agents 

perceive their environment through sensors and act upon that environment through effectors. The system between 

perception and action consists of their attitudes. An agent is stimulated by the analysis of the model and through its 

belief, desire and intention architecture its attitudes are defined, so the agent performs actions (Fig. 2). Finally the 

new form of the model is synthesized following the actions. 
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Figure 2. BDI paradigm 

A distributed design system is an emergent system and it can be simulated as an MAS. In a distributed design 

system, the stimuli are sent to agents by the dynamic design model and agents react through defining decision 

constraints in the dynamic design model. Design attitudes are bounded and design agents need to interact and 

collaborate. Attitudes of design agents determine when and how their decision constraints are defined during the 

progress of the design process. This shapes the decision making process and collaborative convergence. The most 

widely employed decision making model in MAS is the multiple attribute utility theory (MAUT) which evaluates 

multiple performances. The decision maker agent attempts to maximize the utility function which aggregates all the 

performances. The utility is used to evaluate solutions while the analysis of trade-offs between alternatives is 

represented as weighted formulae. Decision makers can also rank alternatives and define preferences on one 

alternative over another. Preferences reflect agents’ objectives and can be prioritized with constraints. Thus, 

constraints are used to make decisions either statically or dynamically. Therefore, a joint solution is generated by 

modifying the design model iteratively. 

The design system is composed of different people each with different characters. The character of an agent is 

the combination of its attitudes, and it can be used to establish strategies in order to achieve optimal interactions 

between various agents (Castelfranchi et al., 1998). However, the attitudes of different agents can result in 

conflicting activities. This problem usually requires coordination and cooperation of agents’ attitudes. MAS can 

simulate the coordination of different agents composed of different attitudes. The emergent behavior of the system 

consists of different compositions of altruistic and egoistic behaviors of every agent in the system (Pita and Lima 

Neto, 2007). Egoistic behaviors are actions that are motivated by self-interested gains, while altruistic behaviors are 

motivated by the gain of others, such as the pleasure obtained from others’ pleasure. Altruism can also be viewed as 

sacrificing one’s own good for the benefit of the group that one belongs to. While egoistic actions can cause harm to 

the other agents, altruistic actions help the others. A mutual defection may be the rational solution of the agents, but 

it is neither the most beneficial one for the global benefit nor even for individual benefits. Bazzan et al. (2002) 

simulate the effects of altruism among agents playing the Iterated Prisoner’s Dilemma. They conclude that egoistic 

agents maximize their benefits only in the short term, but they compromise their performances in the long term. 

Xianjia and Weibing (2009) propose a method to investigate the evolutionary outcome of the behaviors of players 

with egoistic or altruistic preference in an iterated prisoner’s dilemma. Their results show that egoism can cause 

defection, and altruism can increase the performance of cooperation. Jennings and Campos (Jennings and Campos, 

1997) conclude that the overall performance of the system can be increased if agents are sometimes allowed to work 
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for the benefit of others. Since agents are autonomous and have different knowledge and resources, cooperation 

attitudes are conditional to the environment and are dynamic through the allocation of time and resources. Agents 

are therefore heterogeneous, and it is almost impossible to define optimal agent attitudes. To maintain cooperation 

among heterogeneous agents, social norms and collaborative strategies should be adopted upstream in the system. 

4. Agent-based SBD model 

We define the extended bottom-up design approach as an agent-based SBD model that considers the design 

attitudes of interacting agents. We first define the design process before presenting the design attitudes and the 

control indicators that derive from these attitudes.  

4.1. Design process of agents 

In the preliminary design phase, the solution space is very large. While the solution that designers find at the 

end of the design process is presented in the initial solution space, this solution is not known at the initial state. This 

implies a very high epistemic uncertainty. CSP definitions can be used to model designer actions. Designer actions 

are considered as decision constraints defined on the solution space iteratively. The design model is therefore 

dynamic, evolving with the actions representing decisions. Hence, a collaborative point solution emerges from the 

converging solution space while the epistemic uncertainty is reduced iteratively during the design process stages. 

We model an agent-based design process in order to understand both how the epistemic uncertainty is reduced, and 

how the solution space converges collaboratively. The design process model is shown in Fig. 3. Design agents make 

three decisions during the process: these are shown as D1, D2, and D3. D1 and D3 are Boolean decisions and D2 is 

a “how” decision. 

D1: Define a decision constraint or not. 

D2: How the decision constraint is defined. 

D3: Accept the decision constraint or not. 

 

 

 

 

 

 

 

Figure 3. Design process of agents 
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During a process stage, agents evaluate the solution space to decide whether they will define a decision 

constraint, or wait. If they decide to define a decision constraint, next they decide how the constraint is defined. 

When the constraint is defined in the dynamic design model, the model’s feasibility is tested. After the definition of 

the constraint, if there is at least one solution remaining in the solution space, the constraint is consistent for the 

model and it is accepted collaboratively. If the solution space is empty, then it is refused and rejected. The 

consistency of the constraint depends on the previously accepted constraints that have been defined by the process 

stage agent and other agents. In addition, the consistency of the constraint depends on how it is restrictively defined, 

and the nature of the initial problem. If the constraint is very restrictive, it is probably refused whether there is a 

previously accepted constraint or not. Therefore, D3 is a collaborative decision which has emerged from the 

collaborative behavior of the design system. In contrast, D1 and D2 are individual decisions defined by the 

individual design attitudes of the agents. When a constraint is refused, it is considered as a potential conflict because 

the agent’s desires may not be sufficiently satisfied. The degree of the conflict can be evaluated by the divergence of 

the agents’ individual solutions. The solution space is shared and design objectives are typically conflicting. If an 

agent can satisfy its desires, it results in dissatisfaction of another agent with conflicting objectives. When their 

satisfaction solutions diverge - for instance the solution of an agent with a very low satisfaction and the solution of 

another agent with a very high satisfaction - the conflicts increase in intensity. The conflict is reasonable if only the 

agent’s desires are not sufficiently satisfied. Our proposition is to evaluate design attitudes with a BDI model and 

evaluate agents’ states with control indicators called wellbeing indicators. Wellbeing indicators are derived from the 

desires of the agents reflected on the beliefs of the agents. They enable a bottom-up design process where 

convergence is controlled, with defining decision constraints impacting directly on the wellbeing intervals instead of 

on design variable intervals. 

4.2. Attitudes of agents and control indicators 

Design space emerges from the intervals of design variables modified dynamically during the design process. 

This represents the dynamic design model. Analysis of the dynamic design model stimulates design agents and 

triggers their BDI mechanism. Figure 4 shows design agents’ BDI mechanism. Beliefs of design agents are reflected 

with the intervals of the design performances emerging from the dynamic design model. The bounds of the intervals 

of the design performances represent the worst possible cases and the best possible cases for the corresponding 

design performances. Since actions of the design agents are bound through couplings, the intervals propagate some 

uncertainty. The worst possible cases and the best possible cases depend on the actions of the other agents. 

Therefore design agents define their desires to adopt the performance values. Desires are design agents’ preferences 

on two factors: design performance alternatives and the satisfaction obtained by design performances. While 

preferences on design performances reflect agents’ attitudes for satisfaction obtained from the alternatives, 

preferences on satisfaction represent agents’ attitudes for compromise. Beliefs and preferences of design agents lead 

design agents to define their intentions in order to reduce the solution space by improving their worst cases. 

Intentions are reflected with how frequently and how restrictively their decision constraints are defined. Design 

agents react to the emerging performance space through defining decision constraints into solution space. These 

modifications synthesize the next design space in the dynamic process. 
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Figure 4. BDI mechanism of design agents 

We define an agent k, ��, as an entity with four different attitudes: ������, �� , �� , ���. ��� is the set of 
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If �� "  � "  �� , 1 # ��� #  0 (3) 

In the SBD framework, all the variables are defined with intervals instead of points. The design process 

progresses with time and the intervals are reduced through the decision constraints defined on the solution space 

during the progress. Thus the design process is composed of design stages where agents take actions. At process 

stage t, performance i has a minimum value $�% and a maximum value &�%, the interval of the performance i at process 
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agent k from the performance i at stage t: ��� � �'()���%  , '*$���% � where '()���%  is the minimum satisfaction and 
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'*$���%  is the maximum satisfaction obtained within the interval �$�%  , &�%�. This phenomenon is illustrated in Fig. 5. 

Piecewise constraints are the same as above. Minimum satisfaction is obtained at point A and maximum satisfaction 

is obtained at point B. During the process while uncertainty is reduced, agents can observe the potential maximum 

and minimum satisfaction values from performances. When design agents have several design performances to 

evaluate, they can assign weights to their satisfaction values considering the importance of the performances for 

their job. As individual performance satisfaction values are aggregated, general satisfaction states of agents can be 

observed.  

 

 

 

 

 

Figure 5. Intervals of satisfaction function 
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Satisfaction values are normalized through dividing them by the compromise threshold value; this provides 

wellbeing states Eq. (4, 5). Wellbeing states represent global states of design agents; they show if an agent suffers 

from not being able to approach the compromise state or if an agent could have performed modifications to the 

model and thus approached the compromise state. Wellbeing is defined with an interval ./� � �'()./�%  , '*$./�% � 
where the minimum value is the minimum wellbeing indicator and the maximum value is the maximum wellbeing 

indicator. The wellbeing interval converges through the progress of the design process. If the minimum wellbeing 

value is larger than or equal to 1, then the agent is in a perfect wellbeing state. The worst wellbeing state is when the 

value is equal to 0. 

'()./�% � '()��%
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 (4) 

'*$./�% � '*$��%
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4.2.3. Frequency 

Design agents define decision constraints at an average frequency �� per process stage. This attitude, dependant 

on agent character, reflects if agents intend to restrict the solution space more frequently or less. �0� is the phase of 

the decision frequency of ��. Phases of frequencies can differ from one agent to the other agent depending on their 

availability and their time zone. �� defines decision constraints at each process stage t where �1 2 �0�� value is an 

integer multiple of 1/��. In order to define a consistent function, we assume that 1/�� is integer. 

4.2.4. Coefficient of restriction 

Any variable of the design problem can be improved with constraints. This improvement increases the 

minimum satisfaction and wellbeing of the agent. �� is the coefficient of restriction for the constraints defined by 

��. This attitude defines the restriction effect of the constraints defined on the solution space. �� is used as an 

improvement coefficient for the minimum values of the intervals. The constraint defined by �� at process stage t is 

+�%:  � ! '() �% � �1 5 ��� where  � can be any variable of the design problem and '() �%  is its minimum value 

at process stage t. However, '() �%  value and �� value should be larger than 0. 

If the constraint is consistent for the design model, which means that there is at least one feasible solution after 

propagating the constraint, then the constraint is accepted. If the constraint is inconsistent, which means that it 
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returns an unfeasible solution space, then it is refused and rejected from the model. The consistency of the constraint 

depends on the nature of the initial problem and the earlier constraints defined during progress. Thus it depends on 

the emerging attitudes of the design agents and propagates an uncertainty. 

4.3. Characterization of agents 

Depending on their attitudes, agents can have different characters. We consider �� , �� , �� attitudes for 

characterization of ��. ��� is not considered for characterization, because performance values of different agents 

may not be the same, and they may not have the same unit of measurement. Besides, �� attitude reflects the 

fondness of agents for their preferences. Design agents may be more egoistic or more altruistic compared to the 

others. More egoistic agents try to satisfy their needs at the highest levels without considering other agents. More 

altruistic agents have an opposite character, taking other agents into consideration. The solution space is shared 

between design agents, so any restriction performed by an agent on the solution space will decrease the degree of 

freedom of the other agents and leave less space to them. As Fig. 6 shows, the reduction of the degree of freedom is 

on the favorable side of the satisfaction intervals due to the conflicting objectives. Hence, agents with relatively 

restrictive design attitudes are considered as more egoistic and agents with less restrictive design attitudes are 

considered as more altruistic. 

Figure 7 represents egoistic and altruistic characteristics of agents. When two agents are compared, if �� and �� 

attitudes are identical, the agent with the larger �� is more egoistic than the other, because it will compromise at a 

higher satisfaction value. Thus, it will restrict the solution space more than the other, until its objective is satisfied. If 

�� and �� are identical, the agent with larger �� is more egoistic than the other, because when an agent defines 

decision constraints more frequently, it will restrict the bounded solution space more rapidly during the process. 

Consequently, it leaves less space to the other agents. If �� and �� are identical the agent with larger �� is more 

egoistic than the other, because its decision constraints will be more restrictive than the other agent’s decision 

constraints. This will reduce the solution space for the egoistic agent’s benefit. 

 

 

 

 

 

 

 

 

 

Figure 7. Egoism and altruism in design agents 
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The desires of design agents and their intentions should be rational. If an agent has egoistic desires its intentions 

are also egoistic. Therefore, more egoistic agents tend to define decision constraints more frequently with a larger 

coefficient of restriction, and they do not accept to compromise easily. In contrast, more altruistic agents tend to 

define decision constraints less frequently with a smaller coefficient of restriction, and they can compromise more 

easily. However the structure of the rationality between the desires and the intentions can be different from agent to 

agent, since they model human beings. For example, an agent can have a larger �� value but a smaller �� value than 

another agent with the same �� value. As seen in Fig. 7, in the extreme case, the most egoistic agent in the design 

system has the largest �� , �� , �� attitude values while the most altruistic agent has the smallest �� , �� , �� attitude 

values. The process performance and the design solutions can be influenced by the characters of designers. When 

the design system consists of heterogeneous agents with different design attitudes, the results may diverge where 

one agent has a very low wellbeing and another has a very high wellbeing. Process time and the number of conflicts 

that occur during the design process can also increase due to the non-converging design characters. 

5. CSP simulation process 

We present an automatic constraint propagating simulation of our model where the solution space is reduced 

iteratively considering design agents’ BDI mechanism. The objective is to simulate some top-down and bottom-up 

design processes with different combinations of design agent characters, and compare the results that emerge from 

these processes. Two practical top-down simulation cases are defined. Case 1 represents the design process where a 

designer can modify only one design variable after the modification of another designer. Case 2 consists of an all-at-

once approach where designers can modify all the design variables after the modification of another designer. Next, 

two bottom-up simulation cases are defined. In Case 3, designers can modify their design performances. Case 4 is 

our extended bottom-up design process where designers can modify their wellbeing indicators derived from the 

performances. In the simulation process we used a split mechanism similar to the round-robin strategy that loops on 

all the variables at process iteration (Granvilliers, 2012). The objective is to obtain an upper value and a lower value 

that are as close as possible for each interval. Intervals are reduced until a good degree of precision is obtained. The 

simulation algorithm is shown in Fig. 8. We make some assumptions when defining the simulation process: 

• If �1 2 �0�� � �� > Z and '()��% " �� each agent can define (a) decision constraint(s) only once at any 

iteration and constraints are defined sequentially. If all the agents are processed in iteration then the process 

passes to the next iteration: t++. 

• Decision constraints are defined for improving the worst case scenarios with a coefficient of restriction 

�� # 0 or ��� # 0 or ��@ # 0  AB, (, C. Initial worst cases are larger than 0: '()D)@8 # 0 AC, '()�)�8 # 0 

A(, '()./�8 # 0 AB. If '()��% ! �� then the compromising agent is extracted from the splitting loop (Cases 1 

and 2: ��@ � 0 AC , Case 3: ��� � 0 A( , Case 4: �� � 0). 

o Cases 1 and 2:  D)@ ! '()D)@% � E1 5 ��@F where D)@ is the normalized design variable j, '()D)@% is 

its minimum value at iteration t and ��� is the coefficient of restriction on the performance i defined by 

agent k. 
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o Case 3:  �)� ! '()�)�% � �1 5 ���� where �)� is the normalized performance i, '()�)�% is its 

minimum value at iteration t and ��� is the coefficient of restriction on the performance i defined by 

agent k. 

o Case 4:  ./� ! '()./�% � �1 5 ���. 
• If a constraint is rejected, its related coefficient of restriction value is reduced by half. If the coefficient of 

restriction value of a variable reaches a precision value (P), then the splitting is stopped for this variable, 

because the upper and lower bounds are as close as possible considering the precision value. If all the 

coefficient of restriction values reach the precision, then the simulation process stops. 

• Agents’ attitudes are defined at the initial state of the process. ��� and ��@ values are equal to �� at the 

initial state. ��� and �� attitudes do not change during the simulation process because they represent desires. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. CSP simulation algorithm 
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difference between their individual wellbeing states. In the ideal case, agents should obtain the same wellbeing 

values, and each value should be larger than 1. Absolute differences of the wellbeing values of either two element 

combination represent a vector ��G�, … , G6�. The Euclidian distance of this vector solution to the ideal case solution 

gives the divergence of the individual solutions: �( I�JI)KI � L�G��� 5 … 5 �G6��. More divergent solutions 

lead to more intense conflicts, because the divergence is caused by agents with a relatively low wellbeing value. 

However, the divergence cannot be evaluated alone. A zero divergence is not desirable if the total wellbeing is zero. 

6. Monte Carlo simulation 

We ran a Monte Carlo simulation with the design problem of the pressure vessel in (Karandikar and Mistree, 

1992; Lewis and Mistree, 1998). We define three agent characters as shown in Table 1: Egoistic, Moderate, and 

Altruistic. We consider that there are no frequency phase differences. All four simulation cases are repeated 1000 

times for permutations of these characters generated randomly from their attitude sets. Design agents and their 

design variables and performances are also chosen randomly in process iterations, so the process sequence is 

completely independent from agent characters. 

Table 1 Definitions of random characters 

 Egoistic Moderate Altruistic 
��: (0.6, 0.65, 0.7, 

0.75, 0.8, 0.85, 
0.9, 0.95, 1) 

(0.45, 0.5, 0.55) (0.1, 0.15, 0.2, 0.25, 
0.3, 0.35, 0.4) 

��: (0.5, 1) (1/3, 0.5, 1) (1/3, 0.5) 
��: (5, 6, 7, 8, 9) (3, 4, 5, 6, 7) (1, 2, 3, 4, 5) 

In the simulation process, the worst cases are improved by increasing the lower bounds of the intervals. 

Therefore, for minimization objectives the larger bounds are normalized to 0 and the smaller bounds are normalized 

to 1, and for maximization objectives the smaller bounds are normalized to 0 and the larger bounds are normalized 

to 1.The precision value is defined as 0.001. This means that if the interval of a variable �: �'()�, '*$��  does not 

contain '()� � 1.001, it is extracted from the loop. Dynamic CSP is defined in C++ computer language and a CP 

solver library called IBM ILOG CP V1.6 (IBM, 2012) is used to find solutions through its domain reduction and 

constraint propagation algorithms. The solve function of IBM ILOG CP is used to examine the feasibility of the 

model. 

 

Figure 9. Thin-walled pressure vessel 
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The design problem consists of a cylindrical thin walled pressure vessel with hemispherical ends as shown in 

Fig. 9. Problem nomenclature and constant values are given in Table 2. There are three design variables (R, T, L) 

and two design performance variables (W, V). Design performance formulas are given in Table 3 and initial 

constraints are given in Table 4. With given constraints, the weight and volume bounds are determined using CP 

techniques (Table 4). The design problem is divided into two sub-problems assigned to two designers (Agent 1 and 

Agent 2). The objective of Agent 1 is to minimize W by controlling R, T and L while satisfying the related 

constraints; the objective of Agent 2 is to maximize V by controlling R and L while satisfying the related constraints. 

Their design activities are coupled because of the shared information in constraints and performance formulas. 

While Agent 1 minimizes the weight, the volume is minimized; while Agent 2 maximizes the volume, the weight is 

maximized. Since their objectives are inconsistent, their design activities are conflicting. 

Table 2 Problem nomenclature and constants 

W Weight of the pressure vessel, lbs. 
V Volume of the pressure vessel, in.3 
R Radius, in. 
T Thickness of the vessel wall, in. 
L Length of the cylinder, in. 
P Pressure inside the cylinder, 3.89 klb. 
NOPQ Ultimate tensile strength of the vessel material, 35 klb. 

G Density of the vessel material, 0.283 lbs./in.3 
NR�SR  Circumferential stress, lbs./in.2 
�� Satisfaction of agent k 

./� Wellbeing of agent k  

)D Normalized volume 

)T Normalized weight 

)U�  Radius normalized for agent k 

)V� Length normalized for agent k 

)� Normalized thickness 

 k=1 for Agent 1 and k=2 for Agent 2 

Table 3 Design performance formulas 

T � G W4
3 Y�U 5 ��, 5 Y�U 5 ���V 2 Z4

3 YU, 5 YU�V[\ 

D � 4
3 YU, 5 YU�V 

Table 4 Initial constraints 

Stress Constraint: NR�SR � �U
� � NOPQ 

Geometric Constraints: 5� 2 U � 0 

 U 5 � 2 40 � 0 

 V 5 2U 5 2� 2 150 � 0 

Bounds: 0.1 � U � 36 

 0.1 � V � 140 

 0.5 � � � 6 

 13.7288 � T � 56907.6 

 67.4138 � D � 480404 
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Table 5 Preferences 

If  T � 8000 a/� then �� � 1 
If  T ! 31000 a/� then �� � 0 
If  8000 a/� " T " 31000 a/� then 1 # �� # 0 
If  D ! 380000 ()., then �� � 1 
If  D � 120000 ()., then �� � 0 
If  120000 ()., " D " 380000 ()., then 0 # �� # 1 

Table 6 Normalizations 

13.7288 � T � 56907.6 : 1 ! )T ! 0 
67.4138 � D � 480404 : 0 � )D � 1 
0.5 � � � 6 : 1 ! )� ! 0 
0.1 � U � 36 : 1 ! )U� ! 0 
 0 � )U� � 1 
0.1 � V � 140 : 1 ! )V� ! 0 
 0 � )V� � 1 

Agents define their performance satisfaction functions with piecewise constraints as shown in Table 5. All the 

transitions between the preferences are considered linear as shown in Fig. 5. Design performances and design 

variables are normalized using their bound values. Piecewise constraints are defined for normalizations and are 

shown in Table 6. Agent 1 minimizes W through minimizing R, T and L and Agent 2 maximizes V through 

maximizing R and T. Supplementary initial constraints are defined in order to avoid non-zero worst case scenarios 

for enabling fruitful constraint propagations (��, ��, )�, )U�, )U�, )V�, )V� ! 0.01). These very small constraint 

values do not affect the performance of the simulation process. 

All the permutations of egoistic (E), moderate (M) and altruistic (A) characters of Agent 1 and Agent 2 are 

simulated for each case 1000 times through a Monte Carlo simulation approach and the average results are shown in 

Fig. 10. Case 1, the process which enables modifications on design variables only one agent at a time, requires the 

longest process time because the number of iterations is the largest for every character combination. One of the 

bottom-up approaches outperforms the second top-down design approach, Case 2, for every character permutation 

except EM. When there is at least one altruistic agent, Case 4 outperforms Case 3 except AE. The process time 

should be evaluated with the number of failures, because when the number of failures decreases, �� is split less, and 

the convergence continues during subsequent process stages. The number of failures can be considered as the 

number of conflicts. Case 1 and Case 2 result in the highest number of failures. Case 3 and Case 4 generate 

significantly less conflicts. Case 4 outperforms Case 3 except when one of the agents is moderate and the other is 

egoistic or both of them are egoistic. The intensity of the conflicts also needs to be evaluated. A conflict is more 

reasonable when its intensity is relatively high, because one agent covers more space, resulting in the blocking of the 

other agent in order to satisfy preferences. When the final wellbeing values are compared, it is significant that in 

Case 1 and Case 2, Agent 1 dominates Agent 2 regardless of their characters. In Case 3, Agent 2 generally 

dominates Agent 1 except when Agent 1 is more egoistic than Agent 2 (MA and EA). In Case 4, when agents reflect 

the same characters, no domination occurs, except when one is more egoistic than the other. These findings are 

reflected in the divergence results. Case 4 generates significantly the least divergence regardless of agent characters. 

These conflicts are relatively less intense. However, the reduction of divergence is obtained by compromising some 

of the total wellbeing value for some character combinations. This compromise of the total wellbeing is due to a 

slight concaveness of the wellbeing space. The total wellbeing of two agents - one is over-satisfied by exceeding its 

compromise threshold value, while the other is under-satisfied - can be larger than the total wellbeing of two 

satisfied agents with wellbeing values equal to 1. This is observed with character combinations that include at least 

one altruistic agent, because an altruistic agent has a lower compromise threshold value and has greater potential to 

be over-satisfied. 
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Figure 10. Simulation results 
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Figure 11 shows the average total satisfaction values and the average absolute differences of the individual 

satisfaction values obtained by our approach for Case 4. Optimal results are obtained when both agents are 

moderate, because the absolute difference of satisfaction values is minimal while the total satisfaction value is 

maximal. Egoistic agents overestimate their desires represented as compromise threshold values when they work 

with an egoistic agent or a moderate agent, because the total satisfaction values of these situations are not greater 

than the total satisfaction of the situation where both agents are moderate. Also, the absolute differences of 

satisfaction values of EE, EM and ME situations are larger than the MM situation. This shows that the individual 

satisfaction values diverge more because of the egoistic attitudes reflected during the design process. Altruistic 

agents underestimate their desires when the other agent is altruistic or moderate. Even if altruistic agents can be 

over-satisfied, the total satisfaction values of AA, AM and MA situations are smaller than the total satisfaction 

values of the other character situations. 

 

Figure 11. Case 4 satisfaction results 

7. Conclusions 

In this paper, we define an extended bottom-up design approach, exploring agent-based attitude modeling 

techniques within the set-based design concept. The conventional bottom-up design approach is usually defined at 

problem level; however design attitudes that define beliefs, desires and intentions are overlooked at the initial state 

of the problem, so trade-offs on design preferences remain abstract. In contrast, our extended bottom-up design 

approach includes design preferences at an earlier state and explores the solution space with design preferences 

emerging from the desires of various designers. 

We perform a CSP simulation for different designer characters. The simulation results show that when design 

attitudes of heterogeneous designers in distributed design are not evaluated beforehand, the performance of the 

design process is significantly lower. Regardless of the designer characters, significant dominations usually occur on 

the same designer. This means that the results are mostly influenced by the process itself. Consequently, individual 

solutions do not converge in equilibrium, so conflicts are unavoidable. However, when design attitudes are 

evaluated beforehand, designers can make trade-off intentions on their wellbeing values derived from their beliefs 

and desires. With this approach, designer domination is relatively less significant and is coherent with designer 

characters. This shows that the results are only influenced by the design attitudes. Designers can therefore converge 

0

0.2

0.4

0.6

0.8

1

1.2

EE MM AA EM ME AM MA EA AE

Case4 Total s Case4 Abs. Difference s



20 

in equilibrium. Consequently, the number of conflicts and the divergence of the solutions that result in the intensity 

of the conflicts are prevented. However, it should be noted that these process performances are achieved by 

compromising some of the total wellbeing.  

Other conclusions deduced from our approach are about how the satisfaction results emerge from different 

reciprocal design attitudes. It is shown that reciprocal egoistic attitudes can cause diverging satisfaction results. In 

contrast, more altruistic reciprocal attitudes can decrease the divergence of individual satisfactions. However, too 

much altruism can decrease the total satisfaction obtained from the final solution, except when the reciprocating 

design agent reflects very significant egoistic attitudes.  

Our approach is capable of determining and preventing design conflicts, but it does not provide any strategies 

for resolving existing conflicts. Some cooperative conflict resolution strategies can be defined and integrated into 

the same platform, but this requires design agents to negotiate, and compromising constraints through relaxing them. 
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