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Introduction

In the last few years, the question of the essential self-adjointness of discrete Laplacian acting on graph drew a lot interest, see for instances [START_REF] Milatovic | Essential self-adjointness of magnetic Schrödinger operators on locally finite graphs[END_REF][START_REF] Golénia | Unboundedness of adjacency matrix of locally finite grphs[END_REF][START_REF] Baloudi | The adjacency matrix and the discrete Laplacian acting on forms[END_REF][START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators II, Magnetic fields[END_REF]. Graphs can be regarded as 1-dimensional simplicial complex. Simplicial complexes represent useful and accurate models of complex networks and complex systems in general. In this paper, we will focus on weighted triangulation as 2-dimensional complex such that all 2-simplexes are triangle. The concept of triangulation was investigated in [START_REF] Chebbi | The discrete Laplacian of a 2-Simplicial complex[END_REF][START_REF] Mukherjee | Random walks on simplicial complex and harmonics[END_REF] as generalization of graphs. We refer to [START_REF] Lim | Hodge Laplacians on graphs, Geometry and Topology in Statistical Inference[END_REF] for this point of view and applications to game theory and ranking. The weighted triangulation permits to define two discrete Laplacian: The 2-Laplacian ∆ 2 and the 1-Hodge Laplacian

∆ 2 := ∆ fu 1 + ∆ lo 1 ,
where ∆ fu 1 is the full Laplacian and ∆ lo 1 is the lower Laplacian. In the case of 1-simplicial complex, the weight of the 2-simplexes equal 0 and thus ∆ 1 = ∆ fu 1 . Recently, the 1-Hodge Laplacian was visited in [START_REF] Mukherjee | Random walks on simplicial complex and harmonics[END_REF]. The question of the self-adjointness was visited in [START_REF] Baloudi | The discrete laplacian acting on 2forms and application[END_REF][START_REF] Chebbi | The discrete Laplacian of a 2-Simplicial complex[END_REF]. More specifically, in [START_REF] Chebbi | The discrete Laplacian of a 2-Simplicial complex[END_REF], the author gives a relation between the geometric hypothesis for the triangulation and the self-adjointness for ∆ 1 and ∆ 2 . In [START_REF] Baloudi | The discrete laplacian acting on 2forms and application[END_REF], the authors give a criterion of essential self-adjointness using the Nelson lemma. In this paper, we continue the discussion of the question of essential self-adjointness for ∆ 1 and ∆ 2 . Note that the two Laplacian depends on the weight of vertices m, weighted edge E and weighted face F. Let d V be the degree of vertices and d E be the weight degree of edges, we refer to Section 2 for precise definitions. Thanks to [START_REF] Nussbaum | Quasi-analytic vectors[END_REF][START_REF] Masson | Classes of C ∞ vectors and essential selfadjointness[END_REF], we prove that ∆ 1 and ∆ 2 are essentially self-adjoint under some hypothesis on d V and d E . This hypothesis covers a certain book-like triangulation, see Section 4 for more detail. The article is organized as follows: In Section 2, we present general definitions about graphs and simplicial complex. Then we define two different types of discrete operators (The discrete 2-Laplacian and the 1-Hodge Laplacian). In Section 4, we provide a new criterion of essential self-adjointness for ∆ 1 and ∆ 2 using Stieltjes vectors approach. Finally, in Section 5 and 6, we apply the obtained results to investigate the question of essential selfadjointness for the book-like triangulation and the adjacency matrix.

Preliminary

2.1. Definitions on graphs. We star with some definitions and fix our notations for graphs. We refer to [START_REF] De Verdière | Spectres de graphes[END_REF][START_REF] Chung | Spectral graph theory[END_REF][START_REF] Mohar | A survey on spectra of infinite graphs[END_REF][START_REF] Jeribi | Spectral theory and applications of linear operators and block operator matrices[END_REF] for surveys on the matter. A weighted graph G is a triple (V, m, E) where V is a set at most countable whose elements are called vertices, E is a non-negative symmetric function on V × V and m : V -→ (0, +∞). We say that two vertices x, y ∈ V are neighbors if E(x, y) > 0. In this case, we write (x, y) ∈ E. In the setting of electrical network, E correspond to the conductances. We say that there is a loop in x ∈ V, if E(x, x) = 0. A graph G is simple if it has no loops and E has values in {0, 1}. The of neighbors of x ∈ V is denoted by

N G (x) := {y ∈ V : E(x, y) > 0}.
A graph is locally finite if ♯N G (x) is finite for all x ∈ V. The weighted degree of vertices is given by

d V (x) := 1 m(x) y∈V E(x, y). When G is simple, d V (x) = ♯N G (x). A graph G is connected, if for all
x, y ∈ V, there exists an xy-path, i.e., there is a finite set (x 0 , ..., x n ) ∈ V n such that x 0 = x, x n = y and E(x i , x i+1 ) > 0 for all i ∈ {0, ..., n -1}. The minimal possible n is denoted by ρ V (x, y) and called the distance between x and y. For simplicity, we assume that all graphs are locally finite, connected and have no loop. 2.2. Simplicial complex. Simplicial complex generalize the notion of a graph of higher dimensions. Let V be a countable set. Any nonempty subset σ ⊂ V of the form σ = {v 0 , v 1 , ..., v n } is called a n-dimensional simplex or n-simplex. A simplicial complex X is a collection of simplexes of various dimension that is closed under taking subsets; that is, for any set σ ∈ X and any subset Y ⊂ σ, we have Y ∈ X. Let X be a simplicial complex. We denote the set of n-simplexes of X as X n . We say that X is m-dimensional or that X is a m-complex if X m = ∅ and X m+1 = ∅. Graphs can be regarded as 1-dimensional simplicial complex.

2.3.

Triangulation. Let G := (V, m, E) be a weighted graph and let x, y ∈ V. The path γ is called a cycle or closed when the origin and the end are identical.

A cycle γ = {a, b, c} is called triangle if (a, b) ∈ E and c ∈ N G (a) ∩ N G (b).
Let Tr(G) the set of all triangles. Let F =Tr(G)/ ∼ where (x 0 , y 0 , z 0 ) ∼ (x 1 , y 1 , z 1 ) ⇐⇒ (x 1 , y 1 , z 1 ) ∈ {(x 0 , y 0 , z 0 ), (y 0 , z 0 , x 0 ), (z 0 , x 0 , y 0 )}.

Let F : V 3 -→ [0, +∞) such that F(x, y, z) > 0 ⇐⇒ (x, y, z) ∈ F and F(x, y, z) = F(z, y, x), (x, y, z) ∈ V 3 .
We say that T := (V, m, E, F) is a weighted triangulation with vertices V, weight of the vertices m, weighted edges E and weighted faces F. Remark 2.1. A triangulation is a 2-simplicial complex such that all faces are triangles.

We say that T is simple if G := (V, m, E) is simple and the weight of the faces equal 1. The set of vertices belonging to the edge (x, y) is given by

F (x,y) := N G (x) ∩ N G (y).
The weighted degree of edges is given by:

d E (x, y) := 1 E(x, y) z∈F (x,y) F(x, y, z).
When T is simple, d E (x, y) = ♯F (x,y) .

The 2-Laplacian and the 1-Hodge Laplacian on a triangulation

Let T := (V, m, E, F) be a weighted triangulation. Let C c (V) be the set of functions f : V -→ C with finite support and let ℓ 2 (V, m) be the set of function f : V -→ C such that

f ℓ 2 (V,m) := x∈V m(x)|f (x)| 2 < ∞.
is finite. Note that ℓ 2 (V, m) is a Hilbert space with respect to the scalar product

f, g m := x∈V m(x)f (x)g(x).
Let C c (E) be the set of skew-symmetric functions f : V × V -→ C with finite support and let ℓ 2 (E) be the set

   f : V × V -→ C skew-symmetric: 1 2 (x,y)∈E E(x, y)|f (x, y)| 2 < ∞   
We have ℓ 2 (E) is a Hilbert space with respect to the scalar product f, g := 1 2

x,y∈V E(x, y)f (x, y)g(x, y).

The set of 2-cochains or 2-forms is given by

C(F) = f : F -→ C : f (x, y, z) = -f (z, y, x) .
The set of functions with finite support is denoted by C c (F). Let us define the Hilbert spaces ℓ 2 (F) as the sets of 2-cochains with finite norm, we have

ℓ 2 (F) :=    f ∈ C skew (F) : f = 1 6 (x,y,z)∈F F(x, y, z) | f (x, y, z) | 2    .
The associated scalar product is given by f, g := 1 6

(x,y,z)∈F F(x, y, z)g(x, y, z)f (x, y, z).

The 1-Hodge Laplacian of T is defined to be

∆ 1 := ∆ fu 1 + ∆ lo 1
where ∆ fu 1 is the full Laplacian given by ∆ fu 1 f (x, y)

1 m(x) z∈V E(x, z)f (x, z) + 1 m(y) z∈V E(z, y)f (z, y)
and ∆ lo 1 is the lower Laplacian given by

∆ lo 1 f (x, y) := 1 E(x, y) z∈F (x,y) F(x, y, z)(f (x, y) + f (y, z) + f (z, x)) with f ∈ C c (E). The 2-Laplacian of T is defined to be ∆ 2 f (x, y, z) = 1 E(x, y) t∈F (x,y) F(x, y, t)f (x, y, t) + 1 E(y, z) t∈F (y,z) F(y, z, t)f (y, z, t) + 1 E( z, x) t∈F (z,x) F(z, x, t)f (z, x, t), with f ∈ C c skew (F).
Both of them are symmetric and thus closable, see [START_REF] Chebbi | The discrete Laplacian of a 2-Simplicial complex[END_REF]. We denote the closure by ∆ 1 (resp. ∆ 2 ), its domain by D(∆ 1 ) (resp. D(∆ 2 )) and its adjoint by ∆ * 1 (resp. ∆ * 2 ). Remark 3.1. In [START_REF] Baloudi | The adjacency matrix and the discrete Laplacian acting on forms[END_REF], in the case of 1-simplicial complex, we have F = 0 and thus ∆ 1 = ∆ fu 1 .

Essential self-adjointness

Let T = (V, m, E, F) be a weighted triangulation. The ball of radius n ∈ N * around a vertex o ∈ V is the set

B n (o) = {x ∈ V : ρ V (o, x) ≤ n}.
In [START_REF] Baloudi | The adjacency matrix and the discrete Laplacian acting on forms[END_REF], they prove that ∆ fu 1 is essentially self-adjoint on C c (E) when

+∞ n=1   i≤n sup x∈B i (o) d G (x)   -1 2n = ∞.
The technique of the proof is based on the Stieltjes vectors approach. In the following theorem, we adapt this approach for ∆ 1 .

Theorem 4.1. Let T = (V, m, E, F) be a weighted triangulation and let o ∈ V. Assume that

(1) ∞ n=1 n k=1 sup x∈B k (o) d V (x) + sup (x,y)∈B k (o) 2 ∩E d E (x, y) -1 2n = +∞, where B k (o) 2 = B k (o) × B k (o). Then ∆ 1 is essentially self-adjoint on C c (E).
Proof. Let n ∈ N and g ∈ C c (E). Then

g, 1 B 2 n (o)∩E ∆ 1 1 B 2 n (o)∩E g = 1 B 2 n (o)∩E g, ∆ fu 1 1 B 2 n (o)∩E g + 1 B 2 n (o) g, ∆ lo 1 1 B 2 n (o) g
By repeating the proof of [2, Theorem 6.15], we have

1 B 2 n (o)∩E g, ∆ fu 1 1 B 2 n (o)∩E g ≤ sup x∈Bn(o) d V (x). 1 B 2 n (o) g 2 ℓ 2 (E) .
Furthermore, we have

1 B 2 n (o)∩E g, ∆ lo 1 1 B 2 n (o)∩E g ≤ 1 6 (x,y,z)∈F F(x, y, z)|1 B 2 n (o)∩E (x, y)g(x, y) + 1 B 2 n (o)∩E (y, z)g(y, z) + 1 B 2 n (o)∩E (z, x)g(z, x)| 2 ≤ 2 3 (x,y,z)∈F |1 B 2 n (o) (x, y)g(x, y)| 2 = 2 3 (x,y)∈B 2 n (o)∩E E(x, y) 1 E(x, y) z∈F (x,y) F(x, y, z) × |1 B 2 n (o) (x, y)g(x, y)| 2 ≤ 4 3 sup (x,y)∈B 2 n (o)∩E d E (x, y). 1 B 2 n (o) g 2 ℓ 2 (E) .
Therefore,

1 B 2 n (o)∩E ∆ 1 1 B 2 n (o)∩E ≤ sup x∈Bn(o) d V (x) + sup (x,y)∈B 2 n (o)∩E d E (x, y) . Let f ∈ C c (E). There is p ∈ N such that supp(f ) ⊂ B 2 p (o) ∩ E, where supp(f ) = {(x, y) ∈ E : f (x, y) = 0}. Note that supp(∆ n 1 f ) ⊂ B 2 p+n . Therefore, ∆ n+1 1 f ℓ 2 (E) ≤ 1 B 2 p+n+1 (o) ∆ 1 1 B 2 p+n+1 (o) ℓ 2 (E) ∆ n 1 f ℓ 2 (E) ≤ 4 3 sup x∈B n+p+1 (o) d V (x) + sup (x,y)∈B 2 n+p+1 (o) d E (x, y) ∆ n 1 f ℓ 2 (E) .
Hence, we have

+∞ n=1 1 2n ∆ n 1 f := +∞.
Applying [START_REF] Nussbaum | Quasi-analytic vectors[END_REF] or [START_REF] Masson | Classes of C ∞ vectors and essential selfadjointness[END_REF], the result follows.

In the next theorem, we adapt the previous approach for ∆ 2 . Then ∆ 2 is essentially self-adjoint on C c (F).

Proof. We set

F n := {(x, y, z) ∈ F such that x, y, z ∈ B n (o)}.
Let g ∈ ℓ 2 (F). Then,

1 Fn g, ∆ 2 1 Fn g = (x,y)∈E 1 E(x, y) | z∈F (x,y) F(x, y, z)1 Fn (x, y, z)g(x, y, z) | 2 ≤ (x,y)∈E 1 E(x, y) t∈F (x,y) F(x, y, t) × z∈F (x,y) F(x, y, z)|1 Fn (x, y, z)g(x, y, z)| 2 ≤ sup (x,y)∈B 2 n (o)∩E d E (x, y) 1 F k g ℓ 2 (F ) . Now, let f ∈ C c (F). There is p ∈ N such that supp(f ) ⊂ F p . This implies that supp(∆ 2 f ) ⊂ F p+1 . Therefore, ∆ n+1 2 f ℓ 2 (F ) ≤ 1 F p+n+1 ∆ 2 1 F p+n+1 ∆ n 2 f ℓ 2 (F ) ≤ sup (x,y)∈B 2 p+n+1 ∩E d E (x, y) ∆ n 2 f ℓ 2 (F ) .
In this way, we see that

+∞ n=1 1 2n ∆ n 2 f := +∞.
Applying [START_REF] Nussbaum | Quasi-analytic vectors[END_REF] or [START_REF] Masson | Classes of C ∞ vectors and essential selfadjointness[END_REF], the result follows.

Application to the class of Book-like triangulation

In this section, we strengthen the previous section and follow idea of [START_REF] Bonnefont | Essential spectrum and Weyl asymptotics for discrete Laplacians[END_REF].

Definition 5.1. [4] A 1-dimensional decomposition of the graph G = (V, m, E) is a family of finite sets (S n ) n∈N which forms a partition of V, that is V = ∪ n∈N S n , and such that for all x ∈ S n , y ∈ S m , E(x, y) > 0 =⇒ |n -m| ≤ 1
The following definition is introduced in [START_REF] Chebbi | The discrete Laplacian of a 2-Simplicial complex[END_REF].

Definition 5.2. Let T := (V, m, E, R) be a weighted triangulation and (S n ) n∈N a 1-dimensional decomposition of the graph G = (V, m, E). We say that T is a book-like triangulation if

1) ♯S 0 = 1, ♯S 2n+1 = 2 and ♯(S 2 2n+1 ∩ E) = 1, for all n ∈ N. 2) x, y ∈ S 2n+2 =⇒ E(x, y) = 0, 3) ∀x ∈ S 2n+1 , N G (x) = S 2n ∪ S 2n+2 .

A book-like triangulation

In [START_REF] Chebbi | The discrete Laplacian of a 2-Simplicial complex[END_REF], they prove that ∆ 2 is not necessarily essentially self-adjoint on a simple triangulation. Moreover, they not give an example of book-like triangulation where ∆ 2 is essentially self-adjoint. The aim of the following theorem is to tackle it. 

d V (x)) - 1 2n ≥ ∞ n=1 1 2 √ 2n α + 1 = ∞
Applying Theorem 4.1 and Theorem 4.2, the result follows.

Application to the adjacency matrix

The spectral theory of adjacency matrix acting on 1-simplicial complex is useful for the study of some gelling polymers, of some electrical networks,

Theorem 4 . 2 .

 42 Let T = (V, m, E, F) be a weighted triangulation and let o ∈ V. Assume that +∞ n=1 n k=1 sup (x,y)∈B 2 k (o)∩E d E (x, y)
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 53 Let T := (V, m, E, R) be a simple book-like triangulation. Set α ∈ (0, 2]. Assume that ♯S 2n+2 = ⌊n α ⌋. Then ∆ 1 is essentially selfadjoint on C c (E) and ∆ 2 is essentially self-adjoint on C c (F).d E (x, y) + sup x∈B k (o)

and in number theory, e.g. [START_REF] Doyle | Random walks and electric networks[END_REF][START_REF] Davidoff | Elementary number theory, group theory, and Ramanujan graphs[END_REF][START_REF] Mohar | The spectrum of infinite graphs with bounded vertex degrees, Graphs, hypergraphsGraphs, hypergraphs and applications[END_REF]. We define the adjacency matrix:

It is symmetric and thus closable. We denote its closure by the same symbol. Definition 6.1. Let T = (V, m, E, R) be a weighted triangulation. The triangular graph of T is the graph T = ( V, m, E) where V = F, m = 1 and E((x 0 , y 0 , z 0 ), (x, y, z)) = R(x 0 , y 0 , z 0 ) R(x, y, z) E(x, y)

In the case of tri-partite triangulation, in [START_REF] Baloudi | The discrete laplacian acting on 2forms and application[END_REF], we proved that ∆ 2 is unitarily equivalent to

and Q(V ) be the operator of multiplication by V .

Example 6.3. ( Z-like triangulation)

Let T = (V, m, E, F) be a weighted triangulation. We say that T is a Z-like

in particular, we have

where σ(∆ 2 ) is the spectrum of ∆ 2 . Then A G is essentially self-adjoint on C c ( V).

Proof. Combine Theorem 4.2 and [START_REF] Baloudi | The discrete laplacian acting on 2forms and application[END_REF].