
Network Decontamination ?

Nicolas Nisse

Université Côte d’Azur, Inria, CNRS, I3S, France

Abstract. The Network Decontamination problem consists in coordi-
nating a team of mobile agents in order to clean a contaminated network.
The problem is actually equivalent to tracking and capturing an invisi-
ble and arbitrarily fast fugitive. This problem has natural applications in
network security in computer science or in robotics for search or pursuit-
evasion missions. Many different objectives have been studied: the main
one being the minimization of the number of mobile agents necessary to
clean a contaminated network.
Many environments (continuous or discrete) have also been considered.
In this Chapter, we focus on networks modeled by graphs. In this con-
text, the optimization problem that consists in minimizing the number
of agents has a deep graph-theoretical interpretation. Network decon-
tamination and, more precisely, graph searching models, provide nice al-
gorithmic interpretations of fundamental concepts in the Graph Minors
theory by Robertson and Seymour.
For all these reasons, graph searching variants have been widely studied
since their introduction by Breish (1967) and mathematical formaliza-
tions by Parsons (1978) and Petrov (1982).
This chapter consists of an overview of algorithmic results on graph de-
contamination and graph searching.

Keywords: Graph Searching, (Distributed) Graph Algorithms, Compu-
tational Complexity.

1 Introduction

Network Decontamination is a problem in which a team of mobile agents, called
searchers, aims at clearing the links and nodes of an infected network. Alterna-
tively, it can be defined as a pursuit-evasion game between a malicious intruder,
called the fugitive, and a team of searchers that must capture the fugitive.

Since its introduction by Breisch [Bre67], Parsons [Par78a] and Petrov [Pet82],
this field has received a lot of attention due to its numerous applications in net-
work security and distributed computing, in robotics and differential games, and
in graph theory. Previous surveys on network decontamination have been pro-
posed [Bie91,Als04,FS06,FT08,CHI11,Bre12]. Most of them mainly focus either
on a centralized setting or on a distributed setting. This chapter aims at present-
ing an up-to-date (as exhaustive as possible) overview on graph decontamination
both in distributed and centralized settings.

? This work has been partially supported by ANR program “Investments for the Fu-
ture” under reference ANR-11- LABX-0031-01, the Inria Associated Team AlDyNet.

Lost in a cave. In 1967, Breisch opened the field of network decontamination
by asking the following question:

“A person is lost in a particular cave and is wandering aimlessly. Is there
an efficient way for the rescue party to search for the lost person? What is the
minimum number of searchers required to explore a cave so that it is impossible
to miss finding the victim if it is in the cave?” [Bre67].

Parsons [Par78a] and Petrov [Pet82] independently formalized the problem
in a continuous setting where the objective is, for a team of mobile agents, the
searchers, to capture an invisible and arbitrarily fast fugitive, in an environment
modeled by a continuous embedding of a graph G on a surface. In this model,
both the fugitive and the searchers move simultaneously in a continuous way
from a point of G (corresponding to a vertex or in the interior of an edge) to
another. The searchers capture the fugitive if, at some time, the fugitive occupies
the same point as a searcher. We recall this technical definition for completeness.

Definition 1. [Par78a] For any k ∈ N∗, let Ck(G) be the set of families F =
{s1, · · · , sk} such that, for every 1 ≤ i ≤ k, si : [0,∞[→ G is a continuous func-
tion. A search plan for G is a family F ∈ Ck(G) such that, for every continuous
function f : [0,∞[→ G, there exists tf ∈ [0,∞[and i ∈ {1, · · · , k} such that
si(tf) = f(tf).

Intuitively, k represents the number of searchers. A search plan of Ck(G) is
therefore a set of trajectories determined for each searcher (si represents the
trajectory of searcher i), which ensures that, whatever be the trajectory f of the
fugitive in G, there is a searcher that will occupy the same point as the fugitive at
some time tf . In other words, a search plan ensures that whatever be the strategy
used by the fugitive, it must eventually be captured. Note that, this model
of pursuit-evasion game is actually equivalent to the network decontamination
problem where a team of searchers must clear an infected network (e.g., a system
of tunnels contaminated by some toxic gas, a computer network infected by a
virus, etc.).

The continuous model of Parsons and Petrov can equivalently be defined in a
discrete setting where environments are modeled by graphs [Par78b,Gol89a,Gol89b].
This latter formulation (formal definitions and examples are postponed to Sec-
tion 2.1) is often referred to as Graph Searching1 in the literature. Besides its
natural applications in robotics or network security, one of the reasons for the
vast literature on graph searching is probably its close relationship with some
of the cornerstones of the Graph Minors theory [RS83,RS04]. Precisely, graph
searching provides an algorithmic interpretation of tree- and path-decompositions
of graphs [RS90] that are very important tools of modern graph algorithmic (see,
e.g., [CM93,DH08,BFL+09,FLS18]). This relationship led to numerous results
common to graph searching and graph decompositions (see Sections 2 and 4.1).

1 We should emphasize that there is another different topic of graph theory, related
to Depth/Breadth First Search, called Graph Searching, a.k.a. Graph Traversals
(e.g. [CDH+16]).

2

Pursuit-evasion games. Before starting our survey on graph searching, let us
briefly mention different approaches for studying pursuit-evasion games. Roughly,
the field may be divided into two main branches: pursuit-evasion games in con-
tinuous environments (polygonal environments, polyhedral surfaces, etc.) or in
graphs. For the former approach, in a continuous setting, the reader is invited to
see [GLL+99,CHI11,BKIS12,KS15,ABC+15] and references therein. In the case
of discrete environments (i.e., in graphs), the field of pursuit-evasion games may
also be divided into (at least) two different families of problems where results
and tools are very different: Cops and robber games (see, e.g., [BN11] and Chap-
ter 1 of [Nis14]) and Graph Searching. The main differences between these two
approaches are (1) the different speeds of the fugitive, and (2) that Cops and
Robber games are played turn-by-turn by two players while, in graph searching,
the searchers and the fugitive move simultaneously. Roughly, Graph Searching
is mainly related to graph structural properties while Cops and Robber games
also rely on graph metric properties.

In this Chapter, we focus on graph environments, with searchers and an arbi-
trarily fast fugitive moving simultaneously, i.e., we speak about Graph Searching.

Organization of the chapter. The main graph searching variants are for-
mally defined in Section 2, where relationships with graph decompositions and
algorithmic results are presented. In Section 3, we focus on the connected vari-
ant of graph searching and on distributed algorithms for graph decontamination.
Finally, Section 4 is devoted to the study of several alternative graph searching
models. In this paper, the network decontamination terminology will be mainly
used in Sections 2 and 3, and the pursuit-evasion terminology is used in Section 4.

We assume that the reader is familiar with graph terminology (see, e.g., [Die12]).
In particular, see [BLS99] for the definitions of the graph classes mentioned
throughout the chapter.

2 Graph Searching

This section is devoted to the presentation of the basics of graph searching. We
focus on computational complexity, algorithms in a centralized setting, and on
the relationship between variants of graph searching and graph parameters and
decompositions.

2.1 The seminal model: Edge-search

Graph searching aims at clearing the vertices and edges of a graph using a team
of mobile agents, called searchers. Let us now formally define the seminal variant
of graph searching, a.k.a. edge-searching [Par78b].

Network decontamination terminology. Initially all vertices and edges of
a graph2 G = (V,E) are contaminated. A vertex is cleared when it is occupied

2 Unless stated otherwise, all graphs considered in this chapter are simple, undirected,
and connected.

3

by a searcher (in particular, initially, no vertices are occupied). Once a vertex
has been cleared, it is said clear. An edge e ∈ E is cleared if a searcher slides
along e. However, an unoccupied clear vertex is recontaminated as soon as there
is a path free of searchers from it to a contaminated vertex. Similarly, an edge
is recontaminated as soon as one of its ends is recontaminated.

A strategy consists of a finite sequence of steps, or moves, where each step
consists in either sliding a searcher along an edge, or placing a searcher at some
vertex of the graph, or removing a searcher from a vertex of G. The number
of searchers used by a strategy is the maximum number of searchers present in
the graph among all its steps. A strategy is winning if, eventually, it results in a
state where all vertices and edges are (simultaneously) clear.

Simple examples. As a warm-up, let us consider the following examples.

Paths. Let Pn be an n-node path. A strategy in Pn consists in, first, placing a
searcher at one end of Pn and, then, sequentially sliding this searcher along
every edge until it reaches the other end of Pn. It is easy to see that, when the
searcher reaches the second end, every node and edge of Pn have been cleared
and have never been recontaminated. Hence, such a strategy is winning.

Cycles. As a second example, let us consider the cycle Cn on n ≥ 3 vertices. The
first step of any strategy can only consist of placing a searcher at some vertex
v ∈ V (Cn) which becomes clear. Now, removing this searcher from v would
result in the recontamination of v by its neighbors (and so it would result in
the initial state). On the other hand, sliding the searcher along an edge from
v to one of its neighbors u would result in a symmetrical state where only
u is clear and occupied (since v and the edge uv would be recontaminated
by the other neighbor of v). Hence, the only meaningful move is to place a
second searcher at v (actually we may imagine placing this second searcher
at other vertices but it would lead to other recontaminations) and slide it
“around” the cycle until it comes back to v. During every sliding step, the
searcher at v has guarded the vertex v, preventing the recontamination of
all edges traversed by the second searcher. Therefore, the presented strategy
using 2 searchers is winning.

Universal strategy. The last example is a universal strategy, i.e., which is win-
ning in any (connected) graph G = (V,E) with n vertices. During the n
first steps, let us place one searcher at every vertex of G. Let v ∈ V be any
vertex of G and consider the searcher A at v. Sequentially, let us slide this
searcher A along the edges of G until all edges of G have been traversed
at least once. At this step, all edges not incident to v have both their ends
occupied and have been cleared by A, therefore they are all clear. Finally,
for every neighbor u ∈ N(v)3 of v, let us slide the searcher at u along the
edge uv from u to v. Clearly, the presented strategy is winning and uses n
searchers.

3 Given a graph G = (V,E) and v ∈ V , N(v) denotes the set of neighbors of v, i.e.,
N(v) = {u ∈ V | uv ∈ E}.

4

Search number. As illustrated by the above examples, in any n-node graph,
there exists a winning strategy using n searchers. On the other hand, a sin-
gle searcher may not be sufficient to ensure the existence of a winning strategy
(as shown in any cycle). Therefore, a natural optimization problem is to de-
termine what is the minimum number of searchers required to clear a given
graph. Precisely, the search number of a graph G, denoted by s(G), is the min-
imum integer k ≥ 1 such that there is a winning search strategy for G using k
searchers [Par78b].

Most of the work on graph searching has been dedicated to compute the
search number of graphs and to design optimal strategies (i.e., winning strategies
using the minimum number of searchers), both in centralized and distributed
settings. However, several other objectives (see Sections 3.2 and 4.4) have been
considered such as minimizing the cost of a strategy, its “length”, the number
of moves of the searchers or the number of “rounds” of a strategy, etc.

Monotonicity. Before going further, let us define a crucial notion when dealing
with search strategies. A search strategy is monotone if, when following it, no
vertices nor edges are recontaminated. Said differently, in a monotone strategy,
it is forbidden to remove a searcher from a vertex v if v has at least one incident
contaminated edge and no other searcher is occupying v. Moreover, sliding a
searcher from a vertex v to one of its neighbors u ∈ N(v) is allowed only: if v is
occupied by another searcher; or if all edges incident to v are already clear; or if
vu ∈ E is the only edge incident to v that is still contaminated.

One of the first challenges concerning Graph Searching has been to answer
the following question: “does recontamination help?”. In other words, does there
always exist an optimal strategy that is monotone? This latter question was
first asked (and conjectured to be true) by Megiddo et al. [MHG+88]. At a
first glance, this question looks “intuitively obviously true” (why would it be
useful to let vertices be recontaminated?) but it is actually not obvious at all
and, moreover, we will see (Sections 3 and 4.2) that there are variants of graph
searching where recontamination actually helps. The conjecture of Megiddo et
al. has been first proved by LaPaugh [LaP93] and an elegant proof of it by
Bienstock and Seymour [BS91] is sketched in the next sub-section.

Theorem 1. [LaP93,BS91] “Recontamination does not help”, i.e., in any graph
G, there exists a winning monotone strategy using s(G) searchers.

We refer to Theorem 1 by saying that the edge-search variant is monotone.
To see the importance of this theorem, let us do the following remarks.

– First, there always exists a winning monotone strategy with a number of
steps which is polynomial (actually linear) in the size of the graph (since
each edge and vertex is cleared exactly once). Therefore, such a strategy
constitutes a polynomial-size certificate for the search number, i.e., given a
graph G and an integer k ≥ 1 as inputs, the problem of deciding if s(G) ≤ k
is in NP. We are not aware of another method to prove this fact.

5

– Second, monotone strategies are much easier to imagine and design, and
they are much easier to manipulate to prove lower bounds. For instance, the
universal strategy presented above allows to show that s(Kn) ≤ n where
Kn is the complete graph with n ≥ 1 vertices. For any n > 3, this result is
tight, i.e., s(Kn) = n for every n > 3. The general technique to prove such
a lower bound is to consider an optimal monotone strategy (which exists by
Theorem 1) and assume, for purpose of contradiction, that it uses less than
n searchers. Finally, it can be shown that because at most n−1 searchers are
used, there must be a step with recontamination, leading to a contradiction.

– Last but not least, the monotonicity result allows to establish the equiva-
lence between graph searching and other graph parameters such as graph
decompositions that are the corner stone of the Graph Minor theory (see
Sections 2.2 and 4.1).

2.2 Mixed/Node-search and pathwidth

The edge-search model provides a natural way to describes the initial problems
of Breisch [Bre67] and Parsons [Par78a] and it is the main model studied in
a distributed setting (see Sections 3.2 and 3.3). Variants “close” to edge-search
have been proposed because they are somehow easier to work with and, moreover,
provide alternative definitions for graph parameters known in other contexts.

Node-search. For its relationship with pebble games, Kirousis and Papadim-
itriou defined node graph searching [KP85,KP86,Bie91] where a strategy is de-
fined as a sequence of moves like in edge-searching with two main differences:
only two moves are allowed: placement/removal of a searcher at/from a vertex (so
searchers do not slide along edges), and an edge becomes clear as soon as both its
ends are occupied. In this variant, recontamination and monotone strategies are
defined as in edge-search. The corresponding graph invariant is the node search
number, denoted by ns. For any graph G, ns(G)−1 ≤ s(G) ≤ ns(G)+1 [KP86].
Moreover, the three cases are possible since s(Pn) = 1 < ns(Pn) = 2 (where Pn
is a path on n nodes), s(G) = ns(G) = 2 if G is a star with at least three leaves
and s(K3,3) = 5 > ns(K3,3) = 4 [KP86]. Simple (and polynomial-time) trans-
formations allow to go from node-search to edge-search and vice versa. Indeed,
Kirousis and Papadimitriou proved that, for any graph G, s(G//) = ns(G) + 1
and that s(G) = ns(G++) − 1 where G// (resp., G++) is obtained from G by
replacing each edge by two parallel edges (resp., by three edges in series) [KP86].
As we will see below, the node-search variant is important because monotone
node-strategies provide an algorithmic interpretation of path-decompositions of
graphs.

Mixed-search. To prove Theorem 1, Bienstock and Seymour defined the notion
of mixed-search strategy [BS91] as an edge-search strategy with the difference
that an edge is cleared either when it is crossed by a searcher or when both its
ends are occupied by a searcher. The corresponding graph invariant is the mixed

6

search number, denoted by mixs. Again, there is a close relationship with edge-
search. Precisely, for any graph G, mixs(G) ≤ ns(G) ≤ mixs(G) + 1 [BS91] and
inequalities are tight. Moreover, mixs(G+) = s(G) for any graph G where G+

is obtained from G by subdividing each edge once [BS91].
As said above, mixed-searching has been introduced because it allows an

elegant proof of Theorem 1. We aim at sketching this (a bit technical) proof
because it is instructive since many studies on graph searching use a similar
formalism, representing search-strategies by a sequence of tuples of sets of edges
or vertices.

Sketch of proof of Theorem 1.[BS91] Precisely, a crusade in a graph G = (V,E)
is a sequence (E0, · · · , E`) of subsets of E such that E0 = ∅, E` = E and
|Ei − Ei−1| ≤ 1 for every 1 ≤ i ≤ `. The crusade uses k searchers if |δ(Ei)| ≤ k
for every 0 ≤ i ≤ `, where δ(Ei) is the set of vertices incident with an edge in Ei
and an edge in E \Ei. A crusade is monotone (a.k.a., progressive) if Ei−1 ⊆ Ei
for every 1 ≤ i ≤ `.

The proof consists in first easily showing that, if there is a mixed strategy
using k searchers, then there is a crusade using at most k searchers. The second
easy step of the proof is to show that, if there is a progressive crusade using k
searchers, then there is a monotone mixed strategy using at most k searchers.
The key of the proof is to prove that if there is a crusade using k searchers then
there exists a progressive crusade using at most k searchers. The latter step is
proved by considering a crusade C (using k searchers) such that

∑
0≤i≤`

(|δ(Ei)|+1)

is minimum and, under the previous assumption,
∑

0≤i≤`
|Ei| is minimum. Then,

using the submodularity of the function δ (i.e., for every A,B ⊆ E, |δ(A∪B)|+
|δ(A ∩B)| ≤ |δ(A)|+ |δ(B)|), it can be shown that C is progressive. �

This proves that mixed-searching is monotone. Noticing that the simple
transformations presented above preserve monotonicity, this implies that both
node-search and edge-search are monotone too.

Additionally, the monotonicity of mixed search allows to prove that, for any
graph G, mixs(G)− 1 actually equals the proper pathwidth of G [TUK95].

Path-decomposition and pathwidth. Pathwidth is an important structural
measure that appears in the Graph Minor theory [RS83,Bie91,Bod98] but also
in other domains such as VLSI design [DKL87,Kin92,FL94]. Given a graph G =
(V,E), a path-decomposition is a sequence P = (X0, · · · , X`) of subsets of vertices
of G, called bags, such that (1)

⋃
0≤i≤`Xi = V ; (2) for every uv ∈ E, there exists

0 ≤ i ≤ ` with {u, v} ⊆ Xi; and (3) for every 0 ≤ i ≤ j ≤ k ≤ `, Xi ∩Xk ⊆ Xj .
The width of P is the size of its largest bag minus one, and the pathwidth of G,
denoted by pw(G), is the minimum width of a path-decomposition of G.

From any path-decomposition P = (X0, · · · , X`) of a graph G, it is easy to
derive a node-search strategy for G: for i from 0 to `, sequentially place a searcher
at every vertex of Xi and then sequentially remove the searchers from the vertices
in Xi \Xi−1. From the properties of path-decompositions, for every 0 ≤ i < `,
S = Xi∩Xi+1 separates A =

⋃
0≤j≤iXj \Xi+1 from B =

⋃
i<j≤`Xj \Xi [Bod98]

7

and therefore, the searchers at S preserve A of recontamination from B. Hence, it
is easy to see that such a strategy is winning and monotone and that the number
of searchers used is the width of P plus one. Reciprocally, from any monotone
winning strategy using k searchers, it is easy to derive a path-decomposiition of
width k − 1 (where each bag corresponds to the set of vertices occupied by a
searcher at each step). Therefore, by Theorem 1 (applied to node-search):

Theorem 2. [KP85,KP86,EST94] For any graph G, ns(G) = pw(G) + 1.

Among other important consequences, Theorem 2 allows to transpose the numer-
ous results concerning pathwidth to node-search and, sometimes, to edge-search
and mixed-search by using the simple transformations seen above.

Note that pathwidth, and so node-search number, may be equivalently de-
fined in terms of a measure, called vertex-separation, of linear layouts of ver-
tices [Kin92]. Similarly, the mixed-search number of a graph G can be defined in
terms of linear width (some measure on the linear layouts of the edges) [Thi00].

2.3 Complexity and algorithms.

This subsection is devoted to the computational complexity of the edge-, node-
and mixed graph searching problems. Algorithms to compute the search numbers
(and corresponding strategies) in general graphs and particular graph classes are
also presented.

Hardness. Given an n-node graph G and an integer k ≥ 1 as inputs, the prob-
lem of deciding if s(G) ≤ k has first been proved to be NP-hard in [MHG+88].
Then, Monien and Sudborough proved that this problem is NP-hard in the class
of planar graphs with maximum degree 3 [MS88]. This latter result also holds for
both node-search and mixed-search. Later on, Gustedt proved that deciding the
pathwidth (and so the node-search number) is NP-hard in the class of chordal
graphs [Gus93]. Edge-search is also NP-hard in chordal graphs [PTK+00]. More-
over, assuming the Small Set Expansion Conjecture, the pathwidth is NP-hard
to approximate within a constant factor [WAPL14].

Exact generic algorithms. On the positive side, all graph searching variants
mentioned so far are closed under taking minor. That is, for any minor4 H of
a graph G, s(H) ≤ s(G) (resp., ns(H) ≤ ns(G) and mixs(H) ≤ mixs(G)).
Therefore, from the Graph Minor theory [RS04,Die12], it follows that, for any
fixed k ≥ 1, the set of minimal obstructions for having a search-number at
most k is finite, and so each search-number admits a Fixed Parameter Tractable
(FPT) algorithm [RS95,CFK+15] (where the parameter is the size of the so-
lution). In the case of node-search, Ellis et al. first designed an algorithm in

time O(n2k
2+4k+8) via dynamic programming [EST87]. They also gave struc-

tural characterizations of graphs with node-search number at most 3 [EST94].

4 A minor of a graph G is any subgraph of any graph obtained from G by contracting
some edges.

8

Then, Bodlaender and Kloks gave the first constructive FPT algorithm for decid-
ing if ns(G) ≤ k in time kO(k3)n [BK96]. In the case of mixed-search (and linear
width), Bodlaender and Thilikos gave a constructive FPT algorithm [BT04]. Thi-
likos also designed a linear-time algorithm to decide whether a graph has mixed-
search (resp., edge-search) number at most two by fully characterizing the set
of minimal obstructions [Thi00]. In addition to parameterized algorithms, other
algorithms have been proposed to compute the pathwidth of general graphs. The
best known exact exponential-time algorithm computing the pathwidth runs in
time O(1.89n) [KKK+16] (see also [SV09]). Moreover, using the definition(s)
of graph searching in terms of vertex-layout, several Integer Linear Programs
solving these problems have been formulated [PSS13,CMN16,Cou16,Mal18].

Graph classes. On the other hand, search problems can be solved in vari-
ous graph classes in polynomial time. The case of trees has been particularly
studied [Par78a,MHG+88,EST94,PHH+00]. In particular, Skodinis designed a
linear-time algorithm for computing the node-search number of trees and a cor-
responding strategy [Sko03]. A generic and distributed algorithm for computing,
in time O(n log n), any of the search numbers in n-node trees (only the initial set-
ting of the algorithm differ) has been designed in [CHM12], where the interesting
notion of hierarchical decomposition of trees is introduced. The algorithms for
trees are all based on the so-called Parsons’ lemma. Since trees are particularly
interesting in graph searching, we sketch its proof below. In the following, given
a tree T , a vertex v ∈ V (T) and a connected component T ′ of T \ v, let T ′ ∪ v
denote the subtree induced by the vertices of T ′ and v.

Lemma 1 (Parsons’ lemma [Par78b]). For any k ∈ N∗ and any tree T ,
s(T) ≥ k + 1 if and only if T has a vertex v with at least three components
T1, T2, T3 of T \ v such that s(Ti ∪ v) ≥ k for every i ∈ {1, 2, 3}.

Sketch of proof. The “if” part follows from monotonicity. Indeed, assume there is
a monotone search strategy using at most k searchers in T and let v, T1, T2, and
T3 be as defined in the lemma. By monotonicity, we may assume that T1∪v, T2∪v
and T3 ∪ v are cleared in this order. However, to clear T2 ∪ v, there must be a
step at which all k searchers are occupying vertices of T2, which would imply a
recontamination of T2 ∪ v from T3, a contradiction.

On the other hand, if there exists no vertex v as in the lemma, it is possible
to find a subpath P , called an avenue, such that, for every connected component
Tu of T \P (where u is the unique neighbor of Tu in P), s(Tu ∪ u) < k. Then, a
strategy using k searchers consists in sliding one searcher from one end of P to
its other end, while sequentially clearing the components of T \P using the k−1
remaining searchers. The avenues can be recursively computed by a dynamic
programming algorithm. �

In contrast, we should mention that graph searching is NP-hard in weighted
trees (where weights on vertices represent the number of searchers required to
preserve a vertex from recontamination, and edge-weights represent the number
of searchers that must simultaneously traverse an edge to clear it) [MT09].

9

The above strategy implies that s(T) = O(log n) in any n-node tree T .
Moreover, this bound is tight (consider a rooted tree where all internal vertices
have degree 3 and all leaves are at the same distance from the root).

Many other graph classes have been studied. The pathwidth is polynomial-
time computable in circular arc graphs (in time O(n2)) [ST07], unicyclic graphs
[EM04,YZC07], biconvex bipartite graphs [PY07], in some subclasses of chordal
graphs [Gus93], in hypercubes [CK06], in cographs [BM93] (in linear time), etc.
The pathwidth can also be computed in time O(n11) in outerplanar graphs (us-
ing the fact that these graphs have bounded treewidth) and 2-approximation
algorithms (using the dual of outerplanar graphs) running in time O(n log n) are
designed in [BF02,CHS07].

The other variants have been studied as well: the mixed search number
can be computed in linear time in interval graphs, in polynomial time in split
graphs [FHM10], and in linear time in permutation graphs [HM08]; the edge
search number can be computed in linear time in cographs [GHM12] and in
polynomial time in split graphs and interval graphs [PTK+00].

We would like to conclude this section with some intriguing open questions.
First, note that there are no known graph classes where the complexity of de-
ciding the edge/node/mixed search number differs. Moreover, for any graph G
and any distinct x, y ∈ {s, ns,mixs} as inputs, the complexity of computing
x(G)− y(G) is not known.

3 Connected Graph Searching and distributed setting

In all models defined in Section 2, removing a searcher and placing it at any
vertex is allowed. Such a jump may however be unrealistic or even impossible
in practical applications. Removing a searcher from a vertex v and placing it
at another vertex u may be replaced by a sequence of slides along the edges of
a path from v to u. However, this would imply that the searcher travels in an
unsafe environment (through a part that is still contaminated) and moreover, it
may lead to strategies that are not monotone. To handle this problem, Barriere
et al. proposed a new variant, called connected graph searching, where removing
a searcher is not allowed and such that, at every step, the subgraph induced by
the clear edges and vertices must be connected [BFFS02].

Two main questions were asked with the introduction of connected graph
searching in [BFFS02,BFST03]. First, what is “the cost of connectivity” in terms
of the number of searchers? That is, does there exist a constant c such that any
graph G admits a connected search strategy using at most c · s(G) searchers?
Second, is connected graph searching monotone?

3.1 Cost of connectivity

A connected search strategy S in a graph G = (V,E) and using k ≥ 1 searchers
can be defined as follows. First, a vertex v0 ∈ V , called homebase, is chosen and
all the k searchers are placed at it. Then, S is a sequence of moves, where each

10

move consists in sliding a searcher at u ∈ V along an edge e = uv ∈ E and such
a move is allowed only if, after the sliding, there is path of clear edges from v0 to
v (here we only consider the edge-search variant where an edge is cleared when a
searcher slides along it). The connected search number of a graph G, denoted by
cs(G), is the smallest k such that there exists a connected search strategy that
clears G using k searchers. Clearly, the choice of the homebase has an impact
on the number of searchers (e.g., consider a path where the homebase is not one
of its ends). Hence, the connected search number is defined with respect to the
“best” possible homebase.

(Non) Monotonicity. The previous definition clearly allows recontamination.
Monotone connected search strategies are defined in a similar way: first, a vertex
v0 ∈ V is chosen and all the k searchers are placed at it, then, the strategy
consists of a sequence of moves, where each move consists in sliding a searcher
at u ∈ V along an edge e = uv ∈ E only if either u is still occupied by a searcher
after the move, or all incident edges of u but possibly e were already clear before
the move. One important and surprising result is that, contrary to the classical
graph searching, in the connected variant, recontamination may help [YDA09].
It is interesting to mention that their counter-example G has around 400.000
vertices and is such that cs(G) = 281 while any monotone connected strategy
requires at least 290 searchers. We are not aware of a smaller example.

Hence, the monotone connected search number of a graph G, denoted by
mcs(G), may be strictly larger than its connected search number cs(G). A con-
sequence of this result is that it is not known whether the problem of computing
the connected search number of a graph is in NP. As far as we know, there
are no lower or (non-trivial) upper bounds on the number of steps of connected
search strategies. Another difference between the search number and its (mono-
tone or not) connected counter part is that mcs and cs are not minor-closed.
Hence, it is not clear whether the problem of computing the (monotone) con-
nected search number of graphs admits a fixed parameter tractable algorithm
(nor even a polynomial-time algorithm when the number k of searchers is fixed).
However, both parameters are closed under taking contractions [BGTZ16].

Recontamination does not help for connected graph searching in trees, i.e.,
mcs(T) = cs(T) in any tree T [BFFS02,BFF+12] (proof à la Bienstock and
Seymour). Besides, in any n-node tree T and for any homebase v0, there exists
a monotone connected strategy, starting from v0 and using at most 1 + cs(T)
searchers and, moreover, cs(T) = O(log n) [BFFS02]. In the same paper, it is
shown that computing the connected search number can be done in polynomial
time in trees. Recently, it has been shown that recontamination does not help in
the class of graphs with connected search number at most two [BGTZ16]. That
is, for any graph G, mcs(G) = 2 if and only if cs(G) = 2. The result follows
from the characterization of this class of graphs by exhibiting the family of 177
minimal-contraction obstructions.

Cost in number of searchers. Let us start with a simple example. Consider
the complete rooted tree T with all internal vertices with degree three and all

11

leaves at distance 3 from the root, it is easy to see that s(T) = 3 < cs(T) = 4.
Therefore, connectivity has some price in terms of number of searchers. In any
tree T , cs(T) ≤ 2s(T)− 2 and this bound is tight [BFST03,BFF+12]. The proof
relies on the fact that cs(T) is closed under taking minors in the class of trees
and that cs(T) ≥ k if and only if T contains some specific tree Dk as a minor
(in contrast with the classical search number, the set of minimal obstructions
for connected search number in trees is reduced to a single tree).

Therefore, the question of the cost of connectivity arises naturally: how far
the connected search number of a graph is from its pathwidth? In other words,
does there exist a constant c ≥ 2 bounding the ratio between connected search
number and search number in any graph? Several partial results have been pro-
posed [Nis09,BFF+12] before Dereniowski closed the question:

Theorem 3. [Der12b] mcs(G) ≤ 2s(G) + 3 in any graph G.

For this purpose, Dereniowski designed a polynomial time algorithm that trans-
forms any monotone search strategy using k searchers into a connected one using
at most 2k+ 3 searchers. His result also shows that the ratio between monotone
connected search number and connected search number is bounded by 2.

Complexity and algorithms. On the complexity point of view, computing cs
is NP-hard since cs(G∗) = s(G) + 1 for any graph G where G∗ is obtained from
G by adding a universal vertex. Dereniowski proved that weighted connected
graph searching is also NP-hard in weighted trees [Der11]. On the positive side,
a polynomial time approximation with approximation ratio 3 is designed for this
problem in trees [Der12a]. Similar results were proved while with different termi-
nology (speaking about edge-width instead of weight) [BTK11]. The connected
search number of outerplanar graphs has been investigated in [FTT05]. Very
recently, Dereniowski et al. proved that the problem of deciding if cs(G) ≤ k can
be solved in polynomial-time when k is fixed [DOR18].

Internal Graph Searching. To conclude this subsection, let us mention inter-
nal graph searching that can be defined as monotone connected graph searching
but where there may be several homebases. That is, initially, one or more ver-
tices are chosen and some searchers are placed at them. Then, the only allowed
moves are to slide searchers if it does not create recontamination. This variant
has been first introduced in [BFST03] and an interesting heuristic has been pro-
posed in [FNS07]. In this paper, the initial vertices (the homebases) are chosen
randomly and then the searchers grow the cleared part around these vertices
in a BFS manner, then the best obtained strategies are used to generate next
generations of strategies using a classical genetic algorithm.

3.2 Distributed (Monotone) Connected Graph Searching

A major reason for which the connectivity constraint has been introduced is that
it ensures safe communications between the searchers during the execution of the

12

strategy. For instance, when the searchers have to coordinate themselves but have
no way to communicate when they are far from each other, possible solutions
would be either to leave some messages on the vertices or to use a searcher for
carrying instructions between other searchers. In both cases, the connectivity
constraint helps since it allows to avoid that messages are left on contaminated
vertices that the searcher crosses when moving in the contaminated area to
transfer instructions.

In this subsection, we study the clearing of graphs in such an environment
where the searchers have only a local vision of their environment and must
communicate to coordinate the clearing.

Distributed model. More precisely, the k searchers are modeled by syn-
chronous autonomous mobile computing entities (automata) with distinct IDs
from 1 to k. Otherwise searchers are all identical, run the same program, and
use at most O(log n) bits of memory, where n is the number of vertices of the
network. A network is modeled by an undirected connected graph G. A priori,
the network is asynchronous. However, as explained below, any synchronous al-
gorithm can be transposed into an asynchronous environment by adding an extra
searcher traveling in the (connected) clear part of the graph to synchronize the
moves of all searchers. Moreover, the network is anonymous, that is, the vertices
are not labelled. The edges incident to any vertex u are labeled from 1 to its
degree, so that the searchers can distinguish the different edges incident to a
vertex. Every vertex of the network has a zone of local memory, the whiteboard
in which searchers can read, erase, and write symbols (unless stated otherwise,
whiteboards have size O(log n) bits and are only used for face-to-face commu-
nication between searchers occupying a same vertex). It is moreover assumed
that searchers can access these whiteboards in fair mutual exclusion. The goal
is then to design an algorithm, called a search protocol, such that the fewest
number of searchers running this algorithm achieves the clearing of the graph in
a connected way.

Universal algorithms. In this section, we present several search protocols
that have been designed to clear any graph G = (V,E). In this setting, the
searchers do not know in advance in which graph they are launched. That is,
when occupying some vertex u, a searcher executes the algorithm only based on
its current state (the memory of the searcher), on the content of the whiteboard
at u, and on the degree of u. [BFNV08] designed a general algorithm allowing
mcs(G) + 1 searchers to connectedly clear any graph G. Since the extra searcher
(compared to the centralized case) cannot be avoided due to the asynchronicity
of the network, this is optimal. Roughly, this algorithm orders all possible se-
quences of moves in some well-suited lexicographical order and tries them one
after the other (sequentially increasing the number of searchers that are used)
until the graph is clear. For this purpose, the searchers uses whiteboards of size
O(|E| log |V |) bits where they write all their moves. At the end, a description
of the strategy is then stored in a distributed way on the whiteboards. This

13

algorithm has however two drawbacks: it takes an exponential amount of time
(which cannot be avoided unless P = NP) and the clearing is not monotone.

To deal with monotonicity, [NS09] proposed to address the problem by pro-
viding a small amount of information to the searchers, following the framework
of [FIP06]. Precisely, it is shown that the minimum number of bits of informa-
tion that must a priori be distributed in an n-node graph G in order to clear
it monotoneously with the optimal number of searchers is Θ(n log n) [NS09].
Roughly, this peace of information encodes a spanning tree “along which” the
clearing must be performed.

Another approach to handle monotonicity is to allow the use of more searchers.
More precisely, the cost of a search protocol P in a graph G with homebase v0
is measured by the ratio between the number of searchers it uses to clear G and
the search number mcs(G) of G. This ratio, maximized over all graphs and all
starting vertices, is called the competitive ratio of the protocol P. [INS09] proved
that monotonicity has an important cost (in terms of number of searchers) in a
distributed setting since any search protocol (clearing any graph in a monotone
connected way) has competitive ratio Ω(n

logn) and that this lower bound holds
in the class of trees with maximum degree 3. On the positive side, this bound is
tight: there exists a search protocol with competitive ratio O(n

logn) [INS09]. The

idea behind the algorithm is to “control” a (partial) spanning tree of the clear
part and to determine the next edge to be cleared according to it: in such a way
that this tree does not contain a “high” ternary tree as a minor (since such a
minor would lead to the use of many searchers).

Specific topologies. Many distributed search protocols specialized for particu-
lar graph classes have also been designed. A distributed algorithm that computes
the connected search number of trees has been proposed in [BFFS02,BFF+12].
Then, a self-stabilizing algorithm for clearing trees has been designed [MM09]
and further improved in [BMM10]. The latter algorithm allows 1+log n searchers
to clear any n-node tree and stabilizes in O(n log n) moves after initialization.
Moreover, it is a non-silent algorithm, meaning that it continues to clear the
tree indefinitely.

Then, topologies that are commonly used for interconnection networks have
been studied. Precisely, the following topologies have been considered: grids
[FLS05], chordal rings and tori [FHL07], hypercubes [FHL08], and Sierpiński
graphs [Luc09]. In this setting, the authors compare the number of searchers,
moves, and the number of rounds of their algorithms in two models. In the first
model, a particular searcher is used to coordinate the clearing while, in the latter
one, the searchers are endowed with some visibility ability: they can see whether
their neighbors are clear or contaminated, empty or occupied. All designed algo-
rithms use the fact that all these graph classes admit relatively well-structured
centralized strategies and, moreover, the symmetries of these topologies allow
the searchers to benefit from some sense of direction (for instance, clockwise ori-
entation in chordal rings or standard compass-labelling in grids). For instance,
in a grid starting from one of its corners, the strategy first makes the searchers
occupy all vertices of the first column and then move “in parallel” from one

14

column to the next one until the grid is clear. In the case with visibility, the
searchers can locally decide when they have to go to the next column without
recontamination. Table 1 summarizes the obtained results (note that these re-
sults consider the clearing of vertices only or, said differently, an edge is cleared
in the same way as in node-search). The studies of the tradeoffs between the
number of searchers, moves, and time steps are left as open problems.

Topology Model # of searchers # of moves # time steps

m× n Grids [FLS05] coordinator m+ 1∗ m2+4mn−5m−2
2

mn− 2

(m ≤ n) visibility m∗ m2+2mn−3m
2

m+ n− 2∗

m× n Tori [FHL07] coord. 2m+ 1∗ 2mn− 4m− 1 mn− 2m
(m ≤ n) vis. 2m∗ mn− 2m n− 2

n-node Chordal rings [FHL07] coord. 2`+ 1∗ 4n− 6`− 1 3n− 4`− 1
with largest chord of length ` vis. 2`∗ n− 2` d n−2`

2(`−`′)e
and `′ second largest chord

Hypercubes [FHL08] coord. Θ(n√
logn

)∗ O(n logn) O(n logn)

(dimension n) vis. n/2 O(n logn) O(logn)∗

Sierpiński graphs [Luc09] coord. n+ 1∗ O(n3n), Ω(3n) O(3n), Ω(3n/n)
built by n iterations vis. n+ 2 − −

Table 1: Monotone connected search in specific topologies. Results marked with
a star are known to be optimal.

A search protocol has also been designed for partial grids (i.e., connected
subgraphs of n × n grids) that uses O(

√
n) searchers [DU16]. The algorithm

strongly uses sense of direction and the algorithm in [BDK15] as a subprocedure.
The algorithm is optimal since some partial grids require this amount of searchers
and moreover, the authors prove that, for any search protocol, there are partial
grids (with search number O(log n)) that force the algorithm to use Ω(

√
n)

searchers [DU16].
To conclude this subsection, let us mention the cloning variant proposed

in [FHL08]. In this model, the searchers may clone themselves, i.e., the searchers
are not restricted to appear at the homebase but, at any step, a searcher at v
may create new searchers at v (this essentially allows to decrease the number
of moves and time steps). Various topologies have been studied in this setting:
hypercubes [FHL08], graph products [ISZ07], grids and tori [ISZ08], and pyra-
mids [SIS06].

3.3 Exclusive Graph Searching and Look/Compute/Move

Exclusive graph searching is defined as mixed graph searching with the extra
exclusivity constraint (each vertex can be occupied by at most one searcher at a
time) and such that searchers cannot jump from one vertex to another one, i.e.,
searchers can only slide along edges [BBN17].

15

Exclusive graph searching addresses two limitations of classical variants as
far as practical applications are concerned. First, as in internal graph search-
ing, the unrealistic assumption that searchers may jump is got rid of. Second,
classical variants assume that any vertex can be simultaneously occupied by
several searchers. This assumption may be unrealistic in several contexts. Typ-
ically, placing several searchers at the same vertex may simply be impossible
in a physical environment in which, e.g., the searchers are modeling physical
searchers moving in a network of pipes. In the case of software agents deployed
in a computer network, maintaining several searchers at the same node may con-
sume local resources (e.g., memory, computation cycles, etc.). The exclusivity
constraint aims at dealing with this problem.

More formally, given a connected n-node graphG, an exclusive search strategy
in G, using k ≤ n searchers consists in (1) placing the k searchers at k different
vertices of G, and (2) performing a sequence of slidings ensuring the exclusivity
property. An edge becomes clear whenever either a searcher slides along it, or one
searcher is placed at each of its extremities (as in mixed-search). The exclusive-
search number of G, denoted by xs(G) is the smallest k for which there exists a
winning search strategy in G. Exclusive graph searching somehow behaves very
differently from classical variants. For instance, xs(Sn) = n− 1 for any star Sn
with n ≥ 3 leaves. More important, it is not monotone even in trees and it is not
closed under taking subgraphs [BBN17]. It has been proved that, for any graph
G with maximum degree ∆, ns(G) ≤ xs(G) ≤ (∆−1)(ns(G)+1) [BBN17]. Sur-
prisingly, computing the monotone exclusive search number is NP-hard in split
graphs (where pathwidth can be polynomially computed) and can be solved
in polynomial time in a subclass of star-like graphs (where pathwidth is NP-
hard) [MNP17]. A polynomial-time algorithm that computes the monotone ex-
clusive search number of trees has been designed in [BBN17]. It is based on
a lemma in the same vein as Parsons’ lemma (while more technical) and then
follows the same principles as the algorithm of Ellis et al. for edge-search (see
Lemma 1) but the proof is more technical due to the non-closedness under sub-
graph.

Distributed exclusive graph searching has been studied in the Look-Compute-
Move model where searchers have very weak abilities (they are anonymous
and oblivious) but can “see” the whole network (see Chapter ?? for more de-
tails). Algorithms for paths and trees, using the optimal number of searchers
(or more), have been designed in [BBN12] and the case of cycles is studied
in [DSN+15,DNN17]. The algorithm in cycles relies on a subprocedure that
places the searchers in an adequate configuration that can also be used to
solve other coordination problems such as gathering and perpetual exploration.
One intriguing remaining question in the cycle is whether 4 searchers can ex-
clusively clear any cycle with at least 10 vertices in the Look-Compute-Move
model. Indeed, for any n-node cycle with n > 10, it is possible to clear it with
k ∈ {5, · · · , n − 3} ∪ {n} searchers and not possible with ≤ 3 searchers or
k ∈ {n− 2;n− 1} searchers [DSN+15].

16

4 Plethora of alternative models

Recall that, in the Introduction, it was said that the network decontamination
problem can be equivalently seen as a pursuit-evasion game between a team of
searchers and a fugitive (an intruder in the network, a lost spelunker...). Variants
of graph searching that have been described so far can all be stated in terms of
capturing a lucky invisible and arbitrarily fast fugitive in a graph. By “lucky” (or
“omniscient”), we mean that the objective is the design of a strategy that cap-
tures the fugitive in the worst case, i.e., whatever be the behavior of the fugitive.
From now on, we use the pursuit-evasion terminology (except in Subsection 4.3)
because it fits the proposed models better.

4.1 Visible/Inert fugitive and Tree-like structures

Visible fugitive. A first natural extension of node-search concerns the case of
a visible fugitive. In this variant, the fugitive occupies a vertex that is known by
the searchers but may move at any step to another (known) vertex. In particular,
if a step of a strategy consists of placing a searcher at the vertex occupied by
the fugitive, the latter may simultaneously (before the searcher “lands”) move
to any vertex it can access (through a path free of searchers). The visible search
number of a graph G, denoted by vns(G), is the minimum number of searchers
required to catch a visible fugitive in this setting. The visible search number
shares a relationship with treewidth5, denoted by tw(G), that is similar to the
relationship between pathwidth and node-search number. Precisely:

Theorem 4. [ST93] For any graph G, vns(G) = tw(G) + 1.

As in the case of pathwidth and node-search, it is easy to show that monotone
visible node-search strategies are equivalent to tree-decompositions. Again, the
difficulty is to prove that there always exists an optimal strategy that is mono-
tone. Seymour and Thomas proved the monotonicity of visible graph searching
by defining a dual structure for the tree-decompositions, namely the brambles
(initially called screens), [ST93] that actually corresponds to a winning strategy
for the fugitive. Given a graph G = (V,E), a bramble is a family B = (Bi)0≤i≤`
of subsets of vertices such that (1) Bi induces a connected subgraph of G for
each i and (2) the sets Bi are pairwise touching (i.e., any two sets intersect or
there exists an edge linking them). The order of B is the minimum size of a
hitting set, i.e., the smallest number of vertices in V that intersect each set in
B. The treewidth of a graph G is at most k − 1 ∈ N (and so vns(G) ≤ k) if
and only if the maximum order of a bramble of G is k [ST93]. Given a graph G
with a bramble B of order k+ 1, it is easy to describe a winning strategy for the
fugitive against ≤ k searchers. Indeed, at every step, the fugitive can move (since
the sets are connected and pairwise touching) to a set of B whose no vertices
are occupied by a searcher. The notion of bramble is very useful to prove lower

5 Due to the huge number of works on treewidth, we have decided not to detail them
(nor the definition of treewidth) and refer the reader to [Bod98,Die12,CFK+15].

17

bounds on the visible search number of graphs. For instance, it is easy to show
that vns(Gn×n) ≤ n + 1 in any n × n grid Gn×n and a bramble of order n in
Gn×n can also easily be found. Altogether, this proves that vns(Gn×n) = n+ 1
(such a result is rather technical without the help of brambles).

The connected capture of a visible fugitive has been studied in [FN08]. As its
invisible counterpart, it is not monotone. However, in contrast with the invisible
case (Theorem 3), this variant may require Ω(log n ∗ vns(G)) searchers in some
n-node graphs G and this is asymptotically tight [FN08].

Non-deterministic Graph Searching. Non-deterministic graph searching
generalizes both node-search and visible node-search [FFN09]. Given a fixed
integer q ≥ 0, a non-deterministic strategy aims at catching an invisible fugitive
with the additional ability that the fugitive is visible during at most q steps of
the game (the choice of when to see the fugitive is left to the searchers dynami-
cally during the strategy). The minimum number of searchers required to catch
the fugitive in this setting is denoted by nsq(G). By definition, ns0(G) = ns(G)
(the fugitive is always invisible) and ns∞(G) = vns(G) (the fugitive is always
visible). Computing nsq(G) is NP-hard for any q ≥ 0 and an exponential-time al-
gorithm to compute it is presented in [FFN09], the monotonicity of this variant is
proved in [MN08] and a constructive FPT algorithm is designed in [BBM+13]. A
polynomial-time dynamic programming algorithm to compute a 2-approximation
of nsq(T) in the class of trees T (exact for q ≤ 1) is designed in [ACN15]. The
existence of an exact polynomial-time algorithm that computes nsq(T) in any
tree T and for any q > 1 is still open. Another interesting open question is the
definition of a dual structure (similar to brambles for visible node-search [ST93]
or to blockage for node-search [BRST91]) for non-deterministic graph searching.

Inert fugitive. Another variant of node-search is related to tree-decompositions.
A fugitive is inert (a.k.a., lazy) if it is invisible but can only move if a searcher
is landing at the vertex it is currently occupying. In any graph G, the minimum
number of searchers required to catch the fugitive in this setting also equals the
treewidth of G plus one [RT11].

LIFO-search. Last but not least, let us mention a variant of graph searching
related to another tree-like parameter of graphs. Namely, LIFO-search is a vari-
ant of node-search where the searchers are labeled with distinct integers and
with the extra constraint that a searcher can be removed only if no searcher
with smaller label is present in the graph [GHT12]. In [GHT12], this variant is
proved to be monotone and equivalent to the tree-depth of graphs [NdM08].

4.2 Directed graphs

During the last decade, several digraph decompositions have been proposed in
order to try to bring to directed graphs the same algorithmic power as tree-
decompositions provide in undirected graphs [GHK+16]. Interestingly, most of

18

these attempts have been defined through graph searching games. An important
difference between directed graph searching games and undirected ones arises via
the notion of monotonicity. In the directed case, there are two distinct definitions
of monotonicity: a game is cop-monotone if each vertex is occupied at most once
by a searcher, it is robber-monotone if the area reachable by the fugitive never
increases. Clearly a cop-monotone game is robber-monotone. However, as shown
below, the converse is not always true.

Johnson et al. first defined the directed tree-decomposition which roughly
“translates” the connectivity properties of tree-decomposition into strong con-
nectivity properties in directed graphs [JRST01]. Their variant is closely related
to the graph searching game where a visible fugitive has the extra constraint
that it can move only in strongly connected components free of searchers. That
is, the fugitive can go from vertices u to v if there is a directed path from
u to v free of searchers and a directed path from v to u free of searchers. It
has been shown that, in this game, the non-monotone, the cop-monotone and
the robber-monotone variants may differ [JRST01,Adl07]. Because of the non-
monotonicity result, no min-max theorem can be expected via graph searching.
However, [JRST01] proved a weaker result: if k searchers have a winning strategy
in a digraph D, then 3k− 1 searchers have a robber-monotone winning strategy
in D, which leads to a min-max theorem up to a constant ratio between directed
treewidth and so-called havens [JRST01]. In [EHS13], it is proved that the cop-
monotone version of this game is actually equivalent to the D-width defined by
Safari [Saf05] leading to an exact algorithm for computing this variant. Moreover,
[EHS13] showed that D-width and directed treewidth are actually equivalent (in
the sense that one is bounded if and only if the other is bounded).

The DAG-decomposition is weaker than directed tree-decomposition (boun-
ded DAG-width implies bounded directed treewidth) [BDH+12]. It corresponds
to the cop-monotone version of the game where the visible fugitive is constrained
to follow the direction of arcs. While robber-monotone and cop-monotone vari-
ants coincide [BDH+12], this game is not monotone [KO11]. However, a draw-
back of DAG-decomposition is that the best known upper bound of the size of
such a decomposition with width k in an n-node digraph is O(nk) and that the
corresponding optimization problem is PSPACE-complete [AKR16]. Another de-
composition weaker than directed tree-decomposition is the Kelly-decomposition
that corresponds to the robber-monotone variant of the the game where an in-
ert fugitive is forced to follow the arcs [HK08]. Again, this game is not mono-
tone [KO11]. A polynomial-time algorithm to recognize digraphs with Kelly-
width at most 2 is given in [MTV10]. Approximation algorithms for computing

directed treewidth, Dag- and Kelly-width, with approximation ratio O(log3/2 n)
have been designed in [KKK15].

To conclude, let us mention that several directed path-decompositions and di-
rected invisible graph searching have also been proposed. These variants mainly
differ (1) in the abilities of the searchers and the fugitive: either both have to
follow the direction of arcs, or only one of them, and (2) in the variant of graph
searching that is considered: edge/node or mixed. More details can be found

19

in [Bar06,YC07b,ADHY07,YC07a,Yan07,YC08c,YC08b,YC08a,YC09]. Contrary
to their visible counterparts, all these directed variants are monotone.

4.3 Recontamination alternatives

In classical graph searching, a vertex is recontaminated instantaneously if it
is not occupied and adjacent to a contaminated vertex. Flocchini et al. pro-
posed several alternative definitions for recontamination. In a first variant, with
threshold immunity or local immunity, a vertex can be recontaminated only if a
sufficient number of its neighbors are contaminated [LPS06]. In a second model,
with temporal immunity, a vertex can be recontaminated only t steps after it
has been left by a searcher, where t ≥ 0 is a parameter [FMS08].

Local immunity. In [LPS06], a clear (and unoccupied) vertex is recontami-
nated if more than half of its neighbors are contaminated. In this setting, any
graph with maximum degree three can be cleared by at most 2 searchers and by
a single one if moreover there is a pendant vertex. [LPS06] gave search protocols
for tori that are optimal in terms of number of searchers and asymptotically
tight for the number of moves. They also considered the case of trees. Their
results have been extended by the generalization proposed in [FLPS16].

In [FLPS16], the parameterized version of this problem is considered where
the parameter m ≥ 1 represents the minimum number of neighbors of a vertex
v that must be contaminated to recontaminate v. In n1×· · ·×nd d-dimensional
grids, one searcher is sufficient for any m ≥ d, n1 ∗ · · · ∗ nd−m searchers are
sufficient otherwise. In the case of the n1 × · · · × nd d-dimensional torus, 2d ∗
n1 ∗ · · · ∗ nd−m searchers are sufficient for m ≤ d − 1 and 22d−m searchers are
sufficient for d ≤ m ≤ 2d. It is not known whether these upper bounds are tight.
Finally, a dynamic programming algorithm that computes optimal monotone
search strategies in trees has also been designed [FLPS16].

Temporal immunity. A graph G has temporal immunity t ≥ 0 if a vertex
becomes recontaminated after having been exposed (i.e., unoccupied and with
a contaminated neighbor) during more than t steps [FMS08]. As an example,
assume that t = 2, then an n-node cycle can be cleared by a single searcher
moving clockwise during 2n steps (note that the strategy is not monotone).
[DJS16] defined the immunity number ιk(G) of G as the minimum integer t ≥ 0
such that k ≥ 1 searchers can clear G with temporal immunity t.

A distributed algorithm for computing the minimum number of searchers
needed to clear a tree with temporal immunity t ≥ 0 has been designed and a
structural characterization of trees with ιk(T) = t is provided [FMS08]. Roughly,
ιk(T) = t if and only if T does not contain a subtree obtained from the complete
ternary tree of height k whose all edges have been subdivided d t2e+ 1 times. Fi-

nally, an algorithm for clearing any tree of height at most h with b 2h
t+2c searchers

is presented in [FMS08].
For any k ∈ {1, 2, 4}, any n× n grid with temporal immunity ≥ (4− k)(n−

1) − 1 can be cleared by k searchers [DFZ10], no results for other number of

20

searchers are known. In the case of strong grids, k searchers are sufficient to

clear them when the immunity is ≥ b 2(2n−1)k c [DFZ10].
Finally, ι1(G) has been studied in several classes of graphs [DJS16] such as

paths: ι1(Pn) = 0 for every n; cycles: ι1(Cn) = 2 for every n, and goes to n−1 if
monotonicity is required; complete graphs: ι1(Kn) = n−1 for every n; complete
bipartite graphs: ι1(Kn,m) = 2m−1 for 3 ≤ m ≤ n; n-node trees: ι1(T) ≤ 30

√
n;

p × q grids: p/2 ≤ ι1 ≤ p for p ≤ q, etc. It can be shown that there are n-node
trees T for which ι1(T) = Ω(n1/3+ε) for some constant ε > 0 [DJS16] and a
challenge would be to close the gap with the upper bound 30

√
n. The question

of general planar graphs is also open.

4.4 Other models and objectives

To conclude this chapter, we would like to mention some variants of graph search-
ing that differ from previous ones by: the objective that must be optimized, the
way the fugitive is captured, the speed of the fugitive, etc. We only mention
some of these variants, others may be found in [FT08].

Different objectives. The cost of a strategy is the sum of the number of oc-
cupied vertices over all steps of a strategy. This parameter (in the node-search
variant) appears to equal the profile of the graph G (minimum number of edges of
an interval supergraph of G) [FG00,Fom04], while, in the visible (or inert) vari-
ant, it equals the minimum fill in of G (minimum number of edges of a chordal
supergraph). The cost in the case of edge-search has been studied in [DD13].
The maximum occupation time is the maximum over all vertices of the num-
ber of steps during which a vertex is occupied. This parameter coincides with
the bandwidth of graphs [FHT05,Der09]. The capture time (minimum number
of bags of a path-decomposition with a given width) has also been considered
in [BH06,DKZ15].

Different speeds. The case of a fugitive with bounded speed (the fugitive
has speed s if, at every step, it can move through a path of length at most s)
has been considered in [Fom98,Fom99], and the case of an inert fugitive with
bounded speed is considered in [DKT97].

Different rules. [DYY08] introduced the fast searching game in which the
searchers cannot be removed and every edge can be traversed only once. This
variant has been studied in [SY09,Yan11,SY11,Yan13,DDD13,XYZZ16,XY17].
See also [MNP08,KP16] (and references therein) for the so-called brush game.

Different applications. Surprisingly, a variant of graph searching has been
defined to model the problem of routing reconfiguration in optical (WDM) net-
works [CHM+09]. In this variant, an invisible fugitive is moving following the
orientation of the arcs in a directed graph and it is captured as soon as the
searchers limit its moves to a component that is not strongly connected. Mono-
tonicity [NS16], computational complexity [CS11,CHM12] as well as tradeoff
between the number of searchers and the cost of strategies [CCM+11] have been
studied.

21

References

[ABC+15] Brendan P. W. Ames, Andrew Beveridge, Rosalie Carlson, Claire Djang,
Volkan Isler, Stephen Ragain, and Maxray Savage. A leapfrog strategy
for pursuit-evasion in a polygonal environment. Int. J. Comput. Geometry
Appl., 25(2):77–100, 2015.

[ACN15] Omid Amini, David Coudert, and Nicolas Nisse. Non-deterministic graph
searching in trees. Theor. Comput. Sci., 580:101–121, 2015.

[ADHY07] Brian Alspach, Danny Dyer, Denis Hanson, and Boting Yang. Arc searching
digraphs without jumping. In Proc. of first int. conf. on Combinatorial
Optimization and Applications (COCOA), volume 4616 of Lecture Notes in
Computer Science, pages 354–365. Springer, 2007.

[Adl07] Isolde Adler. Directed tree-width examples. J. Comb. Theory, Ser. B,
97(5):718–725, 2007.

[AKR16] Saeed Akhoondian Amiri, Stephan Kreutzer, and Roman Rabinovich. Dag-
width is pspace-complete. Theor. Comput. Sci., 655:78–89, 2016.

[Als04] Brian Alspach. Searching and sweeping graphs: a brief survey. Mathe-
matiche, 59:65–37, 2004.

[Bar06] János Barát. Directed path-width and monotonicity in digraph searching.
Graphs and Combinatorics, 22(2):161–172, 2006.

[BBM+13] Pascal Berthomé, Tom Bouvier, Frédéric Mazoit, Nicolas Nisse, and Ronan
Pardo Soares. An Unified FPT Algorithm for Width of Partition Functions.
Research Report RR-8372, INRIA, September 2013.

[BBN12] Lélia Blin, Janna Burman, and Nicolas Nisse. Brief announcement: Dis-
tributed exclusive and perpetual tree searching. In Proc. of 26th Interna-
tional Symposium on Distributed Computing (DISC), volume 7611 of Lec-
ture Notes in Computer Science, pages 403–404. Springer, 2012.

[BBN17] Lélia Blin, Janna Burman, and Nicolas Nisse. Exclusive graph searching.
Algorithmica, 77(3):942–969, 2017.

[BDH+12] Dietmar Berwanger, Anuj Dawar, Paul Hunter, Stephan Kreutzer, and Jan
Obdrzálek. The dag-width of directed graphs. J. Comb. Theory, Ser. B,
102(4):900–923, 2012.

[BDK15] Piotr Borowiecki, Dariusz Dereniowski, and Lukasz Kuszner. Distributed
graph searching with a sense of direction. Distributed Computing, 28(3):155–
170, 2015.

[BF02] Hans L. Bodlaender and Fedor V. Fomin. Approximation of pathwidth of
outerplanar graphs. J. Algorithms, 43(2):190–200, 2002.

[BFF+12] Lali Barrière, Paola Flocchini, Fedor V. Fomin, Pierre Fraigniaud, Nicolas
Nisse, Nicola Santoro, and Dimitrios M. Thilikos. Connected graph search-
ing. Inf. Comput., 219:1–16, 2012.

[BFFS02] Lali Barrière, Paola Flocchini, Pierre Fraigniaud, and Nicola Santoro. Cap-
ture of an intruder by mobile agents. In Proc. of the 14th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA), pages 200–
209, 2002.

[BFG+14] Darryn E. Bryant, Nevena Francetic, Przemyslaw Gordinowicz, David A.
Pike, and Pawel Pralat. Brushing without capacity restrictions. Discrete
Applied Mathematics, 170:33–45, 2014.

[BFL+09] Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx,
Saket Saurabh, and Dimitrios M. Thilikos. (meta) kernelization. In 50th
Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 629–638. IEEE Computer Society, 2009.

22

[BFNV08] Lélia Blin, Pierre Fraigniaud, Nicolas Nisse, and Sandrine Vial. Distributed
chasing of network intruders. Theor. Comput. Sci., 399(1-2):12–37, 2008.

[BFST03] Lali Barrière, Pierre Fraigniaud, Nicola Santoro, and Dimitrios M. Thi-
likos. Searching is not jumping. In Proc. of 29th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG), volume 2880 of
Lecture Notes in Computer Science, pages 34–45. Springer, 2003.

[BGTZ16] Micah J. Best, Arvind Gupta, Dimitrios M. Thilikos, and Dimitris Zoros.
Contraction obstructions for connected graph searching. Discrete Applied
Mathematics, 209:27–47, 2016.

[BH06] Franz-Josef Brandenburg and Stephanie Herrmann. Graph searching and
search time. In 32nd Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM), volume 3831 of Lecture Notes in Com-
puter Science, pages 197–206. Springer, 2006.

[Bie91] Daniel Bienstock. Graph searching, path-width, tree-width and related
problems (A survey). In Proc. of Reliability Of Computer And Commu-
nication Networks, a DIMACS Workshop, volume 5 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 33–50. DI-
MACS/AMS, 1991.

[BK96] Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms
for the pathwidth and treewidth of graphs. J. Algorithms, 21(2):358–402,
1996.

[BKIS12] Deepak Bhadauria, Kyle Klein, Volkan Isler, and Subhash Suri. Capturing
an evader in polygonal environments with obstacles: The full visibility case.
I. J. Robotics Res., 31(10):1176–1189, 2012.

[BLS99] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes:
A Survey. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 1999.

[BM93] Hans L. Bodlaender and Rolf H. Möhring. The pathwidth and treewidth of
cographs. SIAM J. Discrete Math., 6(2):181–188, 1993.

[BMM10] Jean R. S. Blair, Fredrik Manne, and Rodica Mihai. Efficient self-stabilizing
graph searching in tree networks. In Proc. of 12th Int. Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS), volume
6366 of Lecture Notes in Computer Science, pages 111–125. Springer, 2010.

[BN11] Anthony Bonato and Richard J. Nowakovski. The game of Cops and Robber
on Graphs. American Math. Soc., 2011.

[Bod98] Hans L. Bodlaender. A partial k -arboretum of graphs with bounded
treewidth. Theor. Comput. Sci., 209(1-2):1–45, 1998.

[Bre67] Richard L. Breisch. An intuitive approach to speleotopology. Southwestern
Cavers, 6:72–78, 1967.

[Bre12] Richard L. Breish. Lost in a Cave: applying graph theory to cave exploration.
Greyhound press, 2012.

[BRST91] Daniel Bienstock, Neil Robertson, Paul D. Seymour, and Robin Thomas.
Quickly excluding a forest. J. Comb. Theory, Ser. B, 52(2):274–283, 1991.

[BS91] Daniel Bienstock and Paul D. Seymour. Monotonicity in graph searching.
J. Algorithms, 12(2):239–245, 1991.

[BT04] Hans L. Bodlaender and Dimitrios M. Thilikos. Computing small search
numbers in linear time. In Proc. of First Int. Workshop on Parameter-
ized and Exact Computation (IWPEC), volume 3162 of Lecture Notes in
Computer Science, pages 37–48. Springer, 2004.

23

[BTK11] Richard B. Borie, Craig A. Tovey, and Sven Koenig. Algorithms and com-
plexity results for graph-based pursuit evasion. Auton. Robots, 31(4):317–
332, 2011.

[CCM+11] Nathann Cohen, David Coudert, Dorian Mazauric, Napoleão Nepomuceno,
and Nicolas Nisse. Tradeoffs in process strategy games with application in
the WDM reconfiguration problem. Theor. Comput. Sci., 412(35):4675–
4687, 2011.

[CDH+16] Derek G. Corneil, Jérémie Dusart, Michel Habib, Antoine Mamcarz, and
Fabien de Montgolfier. A tie-break model for graph search. Discrete Applied
Mathematics, 199:89–100, 2016.

[CFK+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameter-
ized Algorithms. Springer, 2015.

[CHI11] Timothy H. Chung, Geoffrey A. Hollinger, and Volkan Isler. Search and
pursuit-evasion in mobile robotics - A survey. Auton. Robots, 31(4):299–
316, 2011.

[CHM+09] David Coudert, Florian Huc, Dorian Mazauric, Nicolas Nisse, and Jean-
Sébastien Sereni. Reconfiguration of the Routing in WDM Networks with
Two Classes of Services. In Conference on Optical Network Design and
Modeling (ONDM), Braunschweig, Germany, 2009.

[CHM12] David Coudert, Florian Huc, and Dorian Mazauric. A distributed algorithm
for computing the node search number in trees. Algorithmica, 63(1-2):158–
190, 2012.

[CHS07] David Coudert, Florian Huc, and Jean-Sébastien Sereni. Pathwidth of out-
erplanar graphs. Journal of Graph Theory, 55(1):27–41, 2007.

[CK06] L. Sunil Chandran and Telikepalli Kavitha. The treewidth and pathwidth
of hypercubes. Discrete Mathematics, 306(3):359–365, 2006.

[CM93] Bruno Courcelle and Mohamed Mosbah. Monadic second-order evaluations
on tree-decomposable graphs. Theor. Comput. Sci., 109(1&2):49–82, 1993.

[CMN16] David Coudert, Dorian Mazauric, and Nicolas Nisse. Experimental eval-
uation of a branch-and-bound algorithm for computing pathwidth and di-
rected pathwidth. ACM Journal of Experimental Algorithmics, 21(1):1.3:1–
1.3:23, 2016.

[Cou16] David Coudert. A note on Integer Linear Programming formulations for
linear ordering problems on graphs. Research report, Inria ; I3S ; Universite
Nice Sophia Antipolis ; CNRS, February 2016.

[CS11] David Coudert and Jean-Sébastien Sereni. Characterization of graphs
and digraphs with small process numbers. Discrete Applied Mathematics,
159(11):1094–1109, 2011.

[DD13] Dariusz Dereniowski and Danny Dyer. On minimum cost edge searching.
Theor. Comput. Sci., 495:37–49, 2013.

[DDD13] Dariusz Dereniowski, Öznur Yasar Diner, and Danny Dyer. Three-fast-
searchable graphs. Discrete Applied Mathematics, 161(13-14):1950–1958,
2013.

[Der09] Dariusz Dereniowski. Maximum vertex occupation time and inert fugitive:
Recontamination does help. Inf. Process. Lett., 109(9):422–426, 2009.

[Der11] Dariusz Dereniowski. Connected searching of weighted trees. Theor. Com-
put. Sci., 412(41):5700–5713, 2011.

[Der12a] Dariusz Dereniowski. Approximate search strategies for weighted trees.
Theor. Comput. Sci., 463:96–113, 2012.

24

[Der12b] Dariusz Dereniowski. From pathwidth to connected pathwidth. SIAM J.
Discrete Math., 26(4):1709–1732, 2012.

[DFZ10] Yassine Daadaa, Paola Flocchini, and Nejib Zaguia. Network decontami-
nation with temporal immunity by cellular automata. In Proc. of 9th Int.
Conference on Cellular Automata for Research and Industry (ACRI), vol-
ume 6350 of Lecture Notes in Computer Science, pages 287–299. Springer,
2010.

[DH08] Erik D. Demaine and MohammadTaghi Hajiaghayi. The bidimensionality
theory and its algorithmic applications. Comput. J., 51(3):292–302, 2008.

[Die12] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts
in mathematics. Springer, 2012.

[DJS16] Yassine Daadaa, Asif Jamshed, and Mudassir Shabbir. Network decon-
tamination with a single agent. Graphs and Combinatorics, 32(2):559–581,
2016.

[DKL87] Narsingh Deo, Mukkai S. Krishnamoorthy, and Michael A. Langston. Exact
and approximate solutions for the gate matrix layout problem. IEEE Trans.
on CAD of Integrated Circuits and Systems, 6(1):79–84, 1987.

[DKT97] Nick D. Dendris, Lefteris M. Kirousis, and Dimitrios M. Thilikos. Fugitive-
search games on graphs and related parameters. Theor. Comput. Sci.,
172(1-2):233–254, 1997.

[DKZ15] Dariusz Dereniowski, Wieslaw Kubiak, and Yori Zwols. The complexity of
minimum-length path decompositions. J. Comput. Syst. Sci., 81(8):1715–
1747, 2015.

[DNN17] Gianlorenzo D’Angelo, Alfredo Navarra, and Nicolas Nisse. A unified ap-
proach for gathering and exclusive searching on rings under weak assump-
tions. Distributed Computing, 30(1):17–48, 2017.

[DOR18] Dariusz Dereniowski, Dorota Osula, and Pawél Rzazewski. Finding
small-width connected path decompositions in polynomial time. CoRR,
abs/1802.05501, 2018.

[DSN+15] Gianlorenzo D’Angelo, Gabriele Di Stefano, Alfredo Navarra, Nicolas Nisse,
and Karol Suchan. Computing on rings by oblivious robots: A unified
approach for different tasks. Algorithmica, 72(4):1055–1096, 2015.

[DU16] Dariusz Dereniowski and Dorota Urbanska. Distributed searching of partial
grids. CoRR, abs/1610.01458, 2016.

[DYY08] Danny Dyer, Boting Yang, and Öznur Yasar. On the fast searching problem.
In Proc. of 4th Int. Conference on Algorithmic Aspects in Information and
Management (AAIM), volume 5034 of Lecture Notes in Computer Science,
pages 143–154. Springer, 2008.

[EHS13] William Evans, Paul Hunter, and Mohammad Ali Safari. D-width and cops
and robbers. Research report, 2013. unpublished.

[EM04] John A. Ellis and Minko Markov. Computing the vertex separation of
unicyclic graphs. Inf. Comput., 192(2):123–161, 2004.

[EST87] John A. Ellis, Ivan H. Sudborough, and Jonathan S. Turner. Graph separa-
tion and search number. Technical report, 1987. Report Number: WUCS-
87-11.

[EST94] John A. Ellis, Ivan H. Sudborough, and Jonathan S. Turner. The vertex
separation and search number of a graph. Information and Computation,
113(1):50–79, 1994.

[FFN09] Fedor V. Fomin, Pierre Fraigniaud, and Nicolas Nisse. Nondeterministic
graph searching: From pathwidth to treewidth. Algorithmica, 53(3):358–
373, 2009.

25

[FG00] Fedor V. Fomin and Petr A. Golovach. Graph searching and interval com-
pletion. SIAM J. Discrete Math., 13(4):454–464, 2000.

[FHL07] Paola Flocchini, Miao Jun Huang, and Flaminia L. Luccio. Decontaminat-
ing chordal rings and tori using mobile agents. Int. J. Found. Comput. Sci.,
18(3):547–563, 2007.

[FHL08] Paola Flocchini, Miao Jun Huang, and Flaminia L. Luccio. Decontamina-
tion of hypercubes by mobile agents. Networks, 52(3):167–178, 2008.

[FHM10] Fedor V. Fomin, Pinar Heggernes, and Rodica Mihai. Mixed search number
and linear-width of interval and split graphs. Networks, 56(3):207–214, 2010.

[FHT05] Fedor V. Fomin, Pinar Heggernes, and Jan Arne Telle. Graph search-
ing, elimination trees, and a generalization of bandwidth. Algorithmica,
41(2):73–87, 2005.

[FIP06] Pierre Fraigniaud, David Ilcinkas, and Andrzej Pelc. Oracle size: a new
measure of difficulty for communication tasks. In Proc. of the Twenty-Fifth
Annual ACM Symposium on Principles of Distributed Computing (PODC),
pages 179–187. ACM, 2006.

[FL94] Michael R. Fellows and Michael A. Langston. On search, decision, and the
efficiency of polynomial-time algorithms. J. Comput. Syst. Sci., 49(3):769–
779, 1994.

[FLPS16] Paola Flocchini, Fabrizio Luccio, Linda Pagli, and Nicola Santoro. Net-
work decontamination under m-immunity. Discrete Applied Mathematics,
201:114–129, 2016.

[FLS05] Paola Flocchini, Flaminia L. Luccio, and Lisa Xiuli Song. Size optimal
strategies for capturing an intruder in mesh networks. In Proc. of the
Int. Conference on Communications in Computing (CIC), pages 200–206.
CSREA Press, 2005.

[FLS18] Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Excluded grid
minors and efficient polynomial-time approximation schemes. J. ACM,
65(2):10:1–10:44, 2018.

[FMS08] Paola Flocchini, Bernard Mans, and Nicola Santoro. Tree decontamination
with temporary immunity. In Proc. of 19th Int. Symposium on Algorithms
and Computation (ISAAC), volume 5369 of Lecture Notes in Computer
Science, pages 330–341. Springer, 2008.

[FN08] Pierre Fraigniaud and Nicolas Nisse. Monotony properties of connected
visible graph searching. Inf. Comput., 206(12):1383–1393, 2008.

[FNS07] Paola Flocchini, Amiya Nayak, and Arno Schulz. Decontamination of arbi-
trary networks using a team of mobile agents with limited visibility. In 6th
Annual IEEE/ACIS International Conference on Computer and Informa-
tion Science (ICIS, pages 469–474. IEEE Computer Society, 2007.

[Fom98] Fedor V. Fomin. Helicopter search problems, bandwidth and pathwidth.
Discrete Applied Mathematics, 85(1):59–70, 1998.

[Fom99] Fedor V. Fomin. Note on a helicopter search problem on graphs. Discrete
Applied Mathematics, 95(1-3):241–249, 1999.

[Fom04] Fedor V. Fomin. Searching expenditure and interval graphs. Discrete Ap-
plied Mathematics, 135(1-3):97–104, 2004.

[FS06] Paola Flocchini and Nicola Santoro. Distributed security algorithms by
mobile agents. In Distributed Computing and Networking, 8th International
Conference, ICDCN, volume 4308 of Lecture Notes in Computer Science,
pages 1–14. Springer, 2006.

[FT08] Fedor V. Fomin and Dimitrios M. Thilikos. An annotated bibliography on
guaranteed graph searching. Theor. Comput. Sci., 399(3):236–245, 2008.

26

[FTT05] Fedor V. Fomin, Dimitrios M. Thilikos, and Ioan Todinca. Connected graph
searching in outerplanar graphs. Electronic Notes in Discrete Mathematics,
22:213–216, 2005.

[GHK+16] Robert Ganian, Petr Hlinený, Joachim Kneis, Daniel Meister, Jan Ob-
drzálek, Peter Rossmanith, and Somnath Sikdar. Are there any good di-
graph width measures? J. Comb. Theory, Ser. B, 116:250–286, 2016.

[GHM12] Petr A. Golovach, Pinar Heggernes, and Rodica Mihai. Edge search number
of cographs. Discrete Applied Mathematics, 160(6):734–743, 2012.

[GHT12] Archontia C. Giannopoulou, Paul Hunter, and Dimitrios M. Thilikos. Lifo-
search: A min-max theorem and a searching game for cycle-rank and tree-
depth. Discrete Applied Mathematics, 160(15):2089–2097, 2012.

[GLL+99] Leonidas J. Guibas, Jean-Claude Latombe, Steven M. LaValle, David Lin,
and Rajeev Motwani. A visibility-based pursuit-evasion problem. Int. J.
Comput. Geometry Appl., 9(4/5):471–494, 1999.

[Gol89a] Petr A. Golovach. Equivalence of two formalizations of a search problem
on a graph. Vestnik Leningrad Univ. Math, 22:13–19, 1989.

[Gol89b] Petr A. Golovach. A topological invariant in pursuit problems. Differ. Equ.,
25:657–661, 1989.

[Gus93] Jens Gustedt. On the pathwidth of chordal graphs. Discrete Applied Math-
ematics, 45(3):233–248, 1993.

[HK08] Paul Hunter and Stephan Kreutzer. Digraph measures: Kelly decomposi-
tions, games, and orderings. Theoretical Computer Science, 399(3):206–219,
2008.

[HM08] Pinar Heggernes and Rodica Mihai. Mixed search number of permutation
graphs. In Proc. of Second Annual Int. Workshop on Frontiers in Algo-
rithmics FAW, volume 5059 of Lecture Notes in Computer Science, pages
196–207. Springer, 2008.

[INS09] David Ilcinkas, Nicolas Nisse, and David Soguet. The cost of monotonicity
in distributed graph searching. Distributed Computing, 22(2):117–127, 2009.

[ISZ07] Navid Imani, Hamid Sarbazi-Azad, and Albert Y. Zomaya. Capturing an
intruder in product networks. J. Parallel Distrib. Comput., 67(9):1018–
1028, 2007.

[ISZ08] Navid Imani, Hamid Sarbazi-Azad, and Albert Y. Zomaya. Intruder captur-
ing in mesh and torus networks. Int. J. Found. Comput. Sci., 19(4):1049–
1071, 2008.

[JRST01] Thor Johnson, Neil Robertson, Paul D. Seymour, and Robin Thomas. Di-
rected tree-width. J. Comb. Theory, Ser. B, 82(1):138–154, 2001.

[Kin92] Nancy G. Kinnersley. The vertex separation number of a graph equals its
pathwidth. Inform. Process. Lett., 1992.

[KKK15] Shiva Kintali, Nishad Kothari, and Akash Kumar. Approximation algo-
rithms for digraph width parameters. Theor. Comput. Sci., 562:365–376,
2015.

[KKK+16] Kenta Kitsunai, Yasuaki Kobayashi, Keita Komuro, Hisao Tamaki, and
Toshihiro Tano. Computing directed pathwidth in o(1.89n) time. Algorith-
mica, 75(1):138–157, 2016.

[KO11] Stephan Kreutzer and Sebastian Ordyniak. Digraph decompositions and
monotonicity in digraph searching. Theor. Comput. Sci., 412(35):4688–
4703, 2011.

[KP85] Lefteris M. Kirousis and Christos H. Papadimitriou. Interval graphs and
searching. Discrete Mathematics, 55(2):181–184, 1985.

27

[KP86] Lefteris M. Kirousis and Christos H. Papadimitriou. Searching and peb-
bling. Theor. Comput. Sci., 47(3):205–218, 1986.

[KP16] William B. Kinnersley and Pawel Pralat. Game brush number. Discrete
Applied Mathematics, 207:1–14, 2016.

[KS15] Kyle Klein and Subhash Suri. Pursuit evasion on polyhedral surfaces. Al-
gorithmica, 73(4):730–747, 2015.

[LaP93] Andrea S. LaPaugh. Recontamination does not help to search a graph. J.
ACM, 40(2):224–245, 1993.

[LPS06] Fabrizio Luccio, Linda Pagli, and Nicola Santoro. Network decontamination
with local immunization. In Proc. of 20th Int. Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2006.

[Luc09] Flaminia L. Luccio. Contiguous search problem in sierpinski graphs. Theory
Comput. Syst., 44(2):186–204, 2009.

[Mal18] Sven Mallach. Linear ordering based MIP formulations for the vertex sepa-
ration or pathwidth problem. In Proc. of 28th Int. Workshop on Combina-
torial Algorithms (IWOCA), volume 10765 of Lecture Notes in Computer
Science, pages 327–340. Springer, 2018.

[MHG+88] Nimrod Megiddo, S. Louis Hakimi, M. R. Garey, David S. Johnson, and
Christos H. Papadimitriou. The complexity of searching a graph. J. ACM,
35(1):18–44, 1988.

[MM09] Rodica Mihai and Morten Mjelde. A self-stabilizing algorithm for graph
searching in trees. In Proc. of 11th Int. Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS), volume 5873 of Lecture Notes
in Computer Science, pages 563–577. Springer, 2009.

[MN08] Frédéric Mazoit and Nicolas Nisse. Monotonicity of non-deterministic graph
searching. Theor. Comput. Sci., 399(3):169–178, 2008.

[MNP08] Margaret-Ellen Messinger, Richard J. Nowakowski, and Pawel Pralat.
Cleaning a network with brushes. Theor. Comput. Sci., 399(3):191–205,
2008.

[MNP17] Euripides Markou, Nicolas Nisse, and Stéphane Pérennes. Exclusive graph
searching vs. pathwidth. Inf. Comput., 252:243–260, 2017.

[MS88] Burkhard Monien and Ivan H. Sudborough. Min cut is np-complete for
edge weighted trees. Theoretical Computer Science, 58(1):209 – 229, 1988.

[MT09] Rodica Mihai and Ioan Todinca. Pathwidth is np-hard for weighted trees.
In Proc. of Third International Workshop on Frontiers in Algorithmics
(FAW), volume 5598 of Lecture Notes in Computer Science, pages 181–195.
Springer, 2009.

[MTV10] Daniel Meister, Jan Arne Telle, and Martin Vatshelle. Recognizing digraphs
of kelly-width 2. Discrete Applied Mathematics, 158(7):741–746, 2010.

[NdM08] Jaroslav Nesetril and Patrice Ossona de Mendez. Grad and classes with
bounded expansion i. decompositions. Eur. J. Comb., 29(3):760–776, 2008.

[Nis09] Nicolas Nisse. Connected graph searching in chordal graphs. Discrete Ap-
plied Mathematics, 157(12):2603–2610, 2009.

[Nis14] Nicolas Nisse. Algorithmic complexity: Between Structure and Knowl-
edge How Pursuit-evasion Games help. 2014. Habilitation à
Diriger des Recherches, Univ. Nice Sophia-Antipolis, https://tel.archives-
ouvertes.fr/tel-00998854.

[NS09] Nicolas Nisse and David Soguet. Graph searching with advice. Theor.
Comput. Sci., 410(14):1307–1318, 2009.

[NS16] Nicolas Nisse and Ronan Pardo Soares. On the monotonicity of process
number. Discrete Applied Mathematics, 210:103–111, 2016.

28

[Par78a] Torrence D. Parsons. Pursuit-evasion in a graph. In International Confer-
ence on Theory and applications of graphs, pages 426–441. Lecture Notes
in Math., Vol. 642. Springer, Berlin, 1978.

[Par78b] Torrence D. Parsons. The search number of a connected graph. In 9th South-
eastern Conf. on Combinatorics, Graph Theory, and Computing, Congress.
Numer., XXI, pages 549–554. Utilitas Math., 1978.

[Pet82] Nikolai N. Petrov. A problem of pursuit in the absence of information on
the pursued. Differ. Uravn., 18:1345–1352, 1982.

[PHH+00] Sheng-Lung Peng, Chin-Wen Ho, Tsan-sheng Hsu, Ming-Tat Ko, and
Chuan Yi Tang. Edge and node searching problems on trees. Theor. Com-
put. Sci., 240(2):429–446, 2000.

[PSS13] John Penuel, J. Cole Smith, and Siqian Shen. Integer programming models
and algorithms for the graph decontamination problem with mobile agents.
Networks, 61(1):1–19, 2013.

[PTK+00] Sheng-Lung Peng, Chuan Yi Tang, Ming-Tat Ko, Chin-Wen Ho, and Tsan-
sheng Hsu. Graph searching on some subclasses of chordal graphs. Algo-
rithmica, 27(3):395–426, 2000.

[PY07] Sheng-Lung Peng and Yi-Chuan Yang. On the treewidth and pathwidth of
biconvex bipartite graphs. In Proc. of 4th Int. on Theory and Applications of
Models of Computation, volume 4484 of Lecture Notes in Computer Science,
pages 244–255. Springer, 2007.

[RS83] Neil Robertson and Paul D. Seymour. Graph minors. I. excluding a forest.
J. Comb. Theory, Ser. B, 35(1):39–61, 1983.

[RS90] Neil Robertson and Paul D. Seymour. Graph minors. IV. tree-width and
well-quasi-ordering. J. Comb. Theory, Ser. B, 48(2):227–254, 1990.

[RS95] Neil Robertson and Paul D. Seymour. Graph minors XIII. the disjoint paths
problem. J. Comb. Theory, Ser. B, 63(1):65–110, 1995.

[RS04] Neil Robertson and Paul D. Seymour. Graph minors. XX. wagner’s conjec-
ture. J. Comb. Theory, Ser. B, 92(2):325–357, 2004.

[RT11] David Richerby and Dimitrios M. Thilikos. Searching for a visible, lazy
fugitive. SIAM J. Discrete Math., 25(2):497–513, 2011.

[Saf05] Mohammad Ali Safari. D-width: A more natural measure for directed tree
width. In 30th International Symposium on Mathematical Foundations of
Computer Science (MFCS), volume 3618 of Lecture Notes in Computer
Science, pages 745–756. Springer, 2005.

[SIS06] Pooya Shareghi, Navid Imani, and Hamid Sarbazi-Azad. Capturing an
intruder in the pyramid. In Proc. of First Int. Computer Science Symposium
in Russia on Computer Science - Theory and Applications (CSR), volume
3967 of Lecture Notes in Computer Science, pages 580–590. Springer, 2006.

[Sko03] Konstantin Skodinis. Construction of linear tree-layouts which are optimal
with respect to vertex separation in linear time. J. Algorithms, 47(1):40–59,
2003.

[ST93] Paul D. Seymour and Robin Thomas. Graph searching and a min-max
theorem for tree-width. J. Comb. Theory, Ser. B, 58(1):22–33, 1993.

[ST07] Karol Suchan and Ioan Todinca. Pathwidth of circular-arc graphs. In 33rd
International Workshop on Graph-Theoretic Concepts in Computer Science
(WG), volume 4769 of Lecture Notes in Computer Science, pages 258–269.
Springer, 2007.

[SV09] Karol Suchan and Yngve Villanger. Computing pathwidth faster than 2n .
In Proc. of 4th Int. Workshop on Parameterized and Exact Computation

29

(IWPEC), volume 5917 of Lecture Notes in Computer Science, pages 324–
335. Springer, 2009.

[SY09] Donald Stanley and Boting Yang. Lower bounds on fast searching. In Proc.
of 20th Int. Symposium on Algorithms and Computation (ISAAC), volume
5878 of Lecture Notes in Computer Science, pages 964–973. Springer, 2009.

[SY11] Donald Stanley and Boting Yang. Fast searching games on graphs. J.
Comb. Optim., 22(4):763–777, 2011.

[Thi00] Dimitrios M. Thilikos. Algorithms and obstructions for linear-width and
related search parameters. Discrete Applied Mathematics, 105(1-3):239–271,
2000.

[TUK95] Atsushi Takahashi, Shuichi Ueno, and Yoji Kajitani. Mixed searching and
proper-path-width. Theor. Comput. Sci., 137(2):253–268, 1995.

[WAPL14] Yu Wu, Per Austrin, Toniann Pitassi, and David Liu. Inapproximability of
treewidth and related problems. J. Artif. Intell. Res., 49:569–600, 2014.

[XY17] Yuan Xue and Boting Yang. The fast search number of a cartesian product
of graphs. Discrete Applied Mathematics, 224:106–119, 2017.

[XYZZ16] Yuan Xue, Boting Yang, Farong Zhong, and Sandra Zilles. Fast searching
on complete k-partite graphs. In Proc. of 10th Int. Conference on Combi-
natorial Optimization and Applications (COCOA), volume 10043 of Lecture
Notes in Computer Science, pages 159–174. Springer, 2016.

[Yan07] Boting Yang. Strong-mixed searching and pathwidth. J. Comb. Optim.,
13(1):47–59, 2007.

[Yan11] Boting Yang. Fast edge searching and fast searching on graphs. Theor.
Comput. Sci., 412(12-14):1208–1219, 2011.

[Yan13] Boting Yang. Fast-mixed searching and related problems on graphs. Theor.
Comput. Sci., 507:100–113, 2013.

[YC07a] Boting Yang and Yi Cao. Directed searching digraphs: Monotonicity and
complexity. In Proc. of 4th International Conference Theory and Applica-
tions of Models of Computation (TAMC), volume 4484 of Lecture Notes in
Computer Science, pages 136–147. Springer, 2007.

[YC07b] Boting Yang and Yi Cao. Monotonicity of strong searching on digraphs. J.
Comb. Optim., 14(4):411–425, 2007.

[YC08a] Boting Yang and Yi Cao. Digraph searching, directed vertex separation
and directed pathwidth. Discrete Applied Mathematics, 156(10):1822–1837,
2008.

[YC08b] Boting Yang and Yi Cao. Monotonicity in digraph search problems. Theor.
Comput. Sci., 407(1-3):532–544, 2008.

[YC08c] Boting Yang and Yi Cao. On the monotonicity of weak searching. In
Proc. of 14th Annual Int. Conference on Computing and Combinatorics
(COCOON), volume 5092 of Lecture Notes in Computer Science, pages 52–
61. Springer, 2008.

[YC09] Boting Yang and Yi Cao. Standard directed search strategies and their
applications. J. Comb. Optim., 17(4):378–399, 2009.

[YDA09] Boting Yang, Danny Dyer, and Brian Alspach. Sweeping graphs with large
clique number. Discrete Mathematics, 309(18):5770–5780, 2009.

[YZC07] Boting Yang, Runtao Zhang, and Yi Cao. Searching cycle-disjoint graphs.
In Proc of first int. Conference on Combinatorial Optimization and Ap-
plications (COCOA), volume 4616 of Lecture Notes in Computer Science,
pages 32–43. Springer, 2007.

30

