Nicolas Nisse

Network Decontamination

Keywords: Graph Searching, (Distributed) Graph Algorithms, Computational Complexity

. This chapter consists of an overview of algorithmic results on graph decontamination and graph searching.

Introduction

Network Decontamination is a problem in which a team of mobile agents, called searchers, aims at clearing the links and nodes of an infected network. Alternatively, it can be defined as a pursuit-evasion game between a malicious intruder, called the fugitive, and a team of searchers that must capture the fugitive.

Since its introduction by Breisch [START_REF] Richard | An intuitive approach to speleotopology[END_REF], Parsons [START_REF] Parsons | Pursuit-evasion in a graph[END_REF] and Petrov [START_REF] Petrov | A problem of pursuit in the absence of information on the pursued[END_REF], this field has received a lot of attention due to its numerous applications in network security and distributed computing, in robotics and differential games, and in graph theory. Previous surveys on network decontamination have been proposed [START_REF] Bienstock | Graph searching, path-width, tree-width and related problems (A survey)[END_REF][START_REF] Alspach | Searching and sweeping graphs: a brief survey[END_REF][START_REF] Flocchini | Distributed security algorithms by mobile agents[END_REF][START_REF] Fedor | An annotated bibliography on guaranteed graph searching[END_REF][START_REF] Chung | Search and pursuit-evasion in mobile robotics -A survey[END_REF][START_REF] Breish | Lost in a Cave: applying graph theory to cave exploration[END_REF]. Most of them mainly focus either on a centralized setting or on a distributed setting. This chapter aims at presenting an up-to-date (as exhaustive as possible) overview on graph decontamination both in distributed and centralized settings.

Lost in a cave. In 1967, Breisch opened the field of network decontamination by asking the following question:

"A person is lost in a particular cave and is wandering aimlessly. Is there an efficient way for the rescue party to search for the lost person? What is the minimum number of searchers required to explore a cave so that it is impossible to miss finding the victim if it is in the cave?" [START_REF] Richard | An intuitive approach to speleotopology[END_REF].

Parsons [START_REF] Parsons | Pursuit-evasion in a graph[END_REF] and Petrov [START_REF] Petrov | A problem of pursuit in the absence of information on the pursued[END_REF] independently formalized the problem in a continuous setting where the objective is, for a team of mobile agents, the searchers, to capture an invisible and arbitrarily fast fugitive, in an environment modeled by a continuous embedding of a graph G on a surface. In this model, both the fugitive and the searchers move simultaneously in a continuous way from a point of G (corresponding to a vertex or in the interior of an edge) to another. The searchers capture the fugitive if, at some time, the fugitive occupies the same point as a searcher. We recall this technical definition for completeness. Definition 1. [START_REF] Parsons | Pursuit-evasion in a graph[END_REF] For any k ∈ N * , let C k (G) be the set of families F = {s 1 , • • • , s k } such that, for every 1 ≤ i ≤ k, s i : [0, ∞[→ G is a continuous function. A search plan for G is a family F ∈ C k (G) such that, for every continuous function

f : [0, ∞[→ G, there exists t f ∈ [0, ∞[and i ∈ {1, • • • , k} such that s i (t f) = f (t f).
Intuitively, k represents the number of searchers. A search plan of C k (G) is therefore a set of trajectories determined for each searcher (s i represents the trajectory of searcher i), which ensures that, whatever be the trajectory f of the fugitive in G, there is a searcher that will occupy the same point as the fugitive at some time t f . In other words, a search plan ensures that whatever be the strategy used by the fugitive, it must eventually be captured. Note that, this model of pursuit-evasion game is actually equivalent to the network decontamination problem where a team of searchers must clear an infected network (e.g., a system of tunnels contaminated by some toxic gas, a computer network infected by a virus, etc.).

The continuous model of Parsons and Petrov can equivalently be defined in a discrete setting where environments are modeled by graphs [START_REF] Parsons | The search number of a connected graph[END_REF][START_REF] Golovach | Equivalence of two formalizations of a search problem on a graph[END_REF][START_REF] Golovach | A topological invariant in pursuit problems[END_REF]. This latter formulation (formal definitions and examples are postponed to Section 2.1) is often referred to as Graph Searching1 in the literature. Besides its natural applications in robotics or network security, one of the reasons for the vast literature on graph searching is probably its close relationship with some of the cornerstones of the Graph Minors theory [START_REF] Robertson | Graph minors. I. excluding a forest[END_REF][START_REF] Robertson | Graph minors. XX. wagner's conjecture[END_REF]. Precisely, graph searching provides an algorithmic interpretation of tree-and path-decompositions of graphs [START_REF] Robertson | Graph minors. IV. tree-width and well-quasi-ordering[END_REF] that are very important tools of modern graph algorithmic (see, e.g., [CM93,DH08,BFL + 09,FLS18]). This relationship led to numerous results common to graph searching and graph decompositions (see Sections 2 and 4.1).

Pursuit-evasion games. Before starting our survey on graph searching, let us briefly mention different approaches for studying pursuit-evasion games. Roughly, the field may be divided into two main branches: pursuit-evasion games in continuous environments (polygonal environments, polyhedral surfaces, etc.) or in graphs. For the former approach, in a continuous setting, the reader is invited to see [GLL + 99,CHI11,BKIS12,KS15,ABC + 15] and references therein. In the case of discrete environments (i.e., in graphs), the field of pursuit-evasion games may also be divided into (at least) two different families of problems where results and tools are very different: Cops and robber games (see, e.g., [START_REF] Bonato | The game of Cops and Robber on Graphs[END_REF] and Chapter 1 of [START_REF] Nisse | Algorithmic complexity: Between Structure and Knowledge How Pursuit-evasion Games help[END_REF]) and Graph Searching. The main differences between these two approaches are (1) the different speeds of the fugitive, and (2) that Cops and Robber games are played turn-by-turn by two players while, in graph searching, the searchers and the fugitive move simultaneously. Roughly, Graph Searching is mainly related to graph structural properties while Cops and Robber games also rely on graph metric properties.

In this Chapter, we focus on graph environments, with searchers and an arbitrarily fast fugitive moving simultaneously, i.e., we speak about Graph Searching.

Organization of the chapter. The main graph searching variants are formally defined in Section 2, where relationships with graph decompositions and algorithmic results are presented. In Section 3, we focus on the connected variant of graph searching and on distributed algorithms for graph decontamination. Finally, Section 4 is devoted to the study of several alternative graph searching models. In this paper, the network decontamination terminology will be mainly used in Sections 2 and 3, and the pursuit-evasion terminology is used in Section 4.

We assume that the reader is familiar with graph terminology (see, e.g., [START_REF] Diestel | Graph Theory[END_REF]). In particular, see [START_REF] Brandstädt | Graph Classes: A Survey[END_REF] for the definitions of the graph classes mentioned throughout the chapter.

Graph Searching

This section is devoted to the presentation of the basics of graph searching. We focus on computational complexity, algorithms in a centralized setting, and on the relationship between variants of graph searching and graph parameters and decompositions.

The seminal model: Edge-search

Graph searching aims at clearing the vertices and edges of a graph using a team of mobile agents, called searchers. Let us now formally define the seminal variant of graph searching, a.k.a. edge-searching [START_REF] Parsons | The search number of a connected graph[END_REF].

Network decontamination terminology. Initially all vertices and edges of a graph 2 G = (V, E) are contaminated. A vertex is cleared when it is occupied by a searcher (in particular, initially, no vertices are occupied). Once a vertex has been cleared, it is said clear. An edge e ∈ E is cleared if a searcher slides along e. However, an unoccupied clear vertex is recontaminated as soon as there is a path free of searchers from it to a contaminated vertex. Similarly, an edge is recontaminated as soon as one of its ends is recontaminated.

A strategy consists of a finite sequence of steps, or moves, where each step consists in either sliding a searcher along an edge, or placing a searcher at some vertex of the graph, or removing a searcher from a vertex of G. The number of searchers used by a strategy is the maximum number of searchers present in the graph among all its steps. A strategy is winning if, eventually, it results in a state where all vertices and edges are (simultaneously) clear.

Simple examples. As a warm-up, let us consider the following examples.

Paths. Let P n be an n-node path. A strategy in P n consists in, first, placing a searcher at one end of P n and, then, sequentially sliding this searcher along every edge until it reaches the other end of P n . It is easy to see that, when the searcher reaches the second end, every node and edge of P n have been cleared and have never been recontaminated. Hence, such a strategy is winning. Cycles. As a second example, let us consider the cycle C n on n ≥ 3 vertices. The first step of any strategy can only consist of placing a searcher at some vertex v ∈ V (C n) which becomes clear. Now, removing this searcher from v would result in the recontamination of v by its neighbors (and so it would result in the initial state). On the other hand, sliding the searcher along an edge from v to one of its neighbors u would result in a symmetrical state where only u is clear and occupied (since v and the edge uv would be recontaminated by the other neighbor of v). Hence, the only meaningful move is to place a second searcher at v (actually we may imagine placing this second searcher at other vertices but it would lead to other recontaminations) and slide it "around" the cycle until it comes back to v. During every sliding step, the searcher at v has guarded the vertex v, preventing the recontamination of all edges traversed by the second searcher. Therefore, the presented strategy using 2 searchers is winning. Universal strategy. The last example is a universal strategy, i.e., which is winning in any (connected) graph G = (V, E) with n vertices. During the n first steps, let us place one searcher at every vertex of G. Let v ∈ V be any vertex of G and consider the searcher A at v. Sequentially, let us slide this searcher A along the edges of G until all edges of G have been traversed at least once. At this step, all edges not incident to v have both their ends occupied and have been cleared by A, therefore they are all clear. Finally, for every neighbor u ∈ N (v)3 of v, let us slide the searcher at u along the edge uv from u to v. Clearly, the presented strategy is winning and uses n searchers.

Search number. As illustrated by the above examples, in any n-node graph, there exists a winning strategy using n searchers. On the other hand, a single searcher may not be sufficient to ensure the existence of a winning strategy (as shown in any cycle). Therefore, a natural optimization problem is to determine what is the minimum number of searchers required to clear a given graph. Precisely, the search number of a graph G, denoted by s(G), is the minimum integer k ≥ 1 such that there is a winning search strategy for G using k searchers [START_REF] Parsons | The search number of a connected graph[END_REF].

Most of the work on graph searching has been dedicated to compute the search number of graphs and to design optimal strategies (i.e., winning strategies using the minimum number of searchers), both in centralized and distributed settings. However, several other objectives (see Sections 3.2 and 4.4) have been considered such as minimizing the cost of a strategy, its "length", the number of moves of the searchers or the number of "rounds" of a strategy, etc.

Monotonicity. Before going further, let us define a crucial notion when dealing with search strategies. A search strategy is monotone if, when following it, no vertices nor edges are recontaminated. Said differently, in a monotone strategy, it is forbidden to remove a searcher from a vertex v if v has at least one incident contaminated edge and no other searcher is occupying v. Moreover, sliding a searcher from a vertex v to one of its neighbors u ∈ N (v) is allowed only: if v is occupied by another searcher; or if all edges incident to v are already clear; or if vu ∈ E is the only edge incident to v that is still contaminated.

One of the first challenges concerning Graph Searching has been to answer the following question: "does recontamination help?". In other words, does there always exist an optimal strategy that is monotone? This latter question was first asked (and conjectured to be true) by Megiddo et al. [MHG + 88]. At a first glance, this question looks "intuitively obviously true" (why would it be useful to let vertices be recontaminated?) but it is actually not obvious at all and, moreover, we will see (Sections 3 and 4.2) that there are variants of graph searching where recontamination actually helps. The conjecture of Megiddo et al. has been first proved by LaPaugh [START_REF] Lapaugh | Recontamination does not help to search a graph[END_REF] and an elegant proof of it by Bienstock and Seymour [START_REF] Bienstock | Monotonicity in graph searching[END_REF] is sketched in the next sub-section.

Theorem 1. [LaP93,BS91] "Recontamination does not help", i.e., in any graph G, there exists a winning monotone strategy using s(G) searchers.

We refer to Theorem 1 by saying that the edge-search variant is monotone. To see the importance of this theorem, let us do the following remarks.

-First, there always exists a winning monotone strategy with a number of steps which is polynomial (actually linear) in the size of the graph (since each edge and vertex is cleared exactly once). Therefore, such a strategy constitutes a polynomial-size certificate for the search number, i.e., given a graph G and an integer k ≥ 1 as inputs, the problem of deciding if s(G) ≤ k is in NP. We are not aware of another method to prove this fact.

-Second, monotone strategies are much easier to imagine and design, and they are much easier to manipulate to prove lower bounds. For instance, the universal strategy presented above allows to show that s(K n) ≤ n where K n is the complete graph with n ≥ 1 vertices. For any n > 3, this result is tight, i.e., s(K n) = n for every n > 3. The general technique to prove such a lower bound is to consider an optimal monotone strategy (which exists by Theorem 1) and assume, for purpose of contradiction, that it uses less than n searchers. Finally, it can be shown that because at most n-1 searchers are used, there must be a step with recontamination, leading to a contradiction. -Last but not least, the monotonicity result allows to establish the equivalence between graph searching and other graph parameters such as graph decompositions that are the corner stone of the Graph Minor theory (see Sections 2.2 and 4.1).

Mixed/Node-search and pathwidth

The edge-search model provides a natural way to describes the initial problems of Breisch [START_REF] Richard | An intuitive approach to speleotopology[END_REF] and Parsons [START_REF] Parsons | Pursuit-evasion in a graph[END_REF] and it is the main model studied in a distributed setting (see Sections 3.2 and 3.3). Variants "close" to edge-search have been proposed because they are somehow easier to work with and, moreover, provide alternative definitions for graph parameters known in other contexts.

Node-search. For its relationship with pebble games, Kirousis and Papadimitriou defined node graph searching [KP85, [START_REF] Lefteris | Searching and pebbling[END_REF][START_REF] Bienstock | Graph searching, path-width, tree-width and related problems (A survey)[END_REF] where a strategy is defined as a sequence of moves like in edge-searching with two main differences: only two moves are allowed: placement/removal of a searcher at/from a vertex (so searchers do not slide along edges), and an edge becomes clear as soon as both its ends are occupied. In this variant, recontamination and monotone strategies are defined as in edge-search. The corresponding graph invariant is the node search number, denoted by ns. For any graph G, ns(G) -1 ≤ s(G) ≤ ns(G) + 1 [START_REF] Lefteris | Searching and pebbling[END_REF]. Moreover, the three cases are possible since s(P n) = 1 < ns(P n) = 2 (where P n is a path on n nodes), s(G) = ns(G) = 2 if G is a star with at least three leaves and s(K 3,3) = 5 > ns(K 3,3) = 4 [START_REF] Lefteris | Searching and pebbling[END_REF]. Simple (and polynomial-time) transformations allow to go from node-search to edge-search and vice versa. Indeed, Kirousis and Papadimitriou proved that, for any graph G, s(G //) = ns(G) + 1 and that s(G) = ns(G ++) -1 where G // (resp., G ++) is obtained from G by replacing each edge by two parallel edges (resp., by three edges in series) [START_REF] Lefteris | Searching and pebbling[END_REF]. As we will see below, the node-search variant is important because monotone node-strategies provide an algorithmic interpretation of path-decompositions of graphs.

Mixed-search. To prove Theorem 1, Bienstock and Seymour defined the notion of mixed-search strategy [START_REF] Bienstock | Monotonicity in graph searching[END_REF] as an edge-search strategy with the difference that an edge is cleared either when it is crossed by a searcher or when both its ends are occupied by a searcher. The corresponding graph invariant is the mixed search number, denoted by mixs. Again, there is a close relationship with edgesearch. Precisely, for any graph G, mixs(G) ≤ ns(G) ≤ mixs(G) + 1 [START_REF] Bienstock | Monotonicity in graph searching[END_REF] and inequalities are tight. Moreover, mixs(G +) = s(G) for any graph G where G + is obtained from G by subdividing each edge once [START_REF] Bienstock | Monotonicity in graph searching[END_REF].

As said above, mixed-searching has been introduced because it allows an elegant proof of Theorem 1. We aim at sketching this (a bit technical) proof because it is instructive since many studies on graph searching use a similar formalism, representing search-strategies by a sequence of tuples of sets of edges or vertices.

Sketch of proof of Theorem 1.[BS91] Precisely, a crusade in a graph G = (V, E) is a sequence (E 0 , • • • , E) of subsets of E such that E 0 = ∅, E = E and |E i -E i-1 | ≤ 1 for every 1 ≤ i ≤ . The crusade uses k searchers if |δ(E i)| ≤ k for every 0 ≤ i ≤ , where δ(E i) is the set of vertices incident with an edge in E i and an edge in E \ E i . A crusade is monotone (a.k.a., progressive) if E i-1 ⊆ E i for every 1 ≤ i ≤ .
The proof consists in first easily showing that, if there is a mixed strategy using k searchers, then there is a crusade using at most k searchers. The second easy step of the proof is to show that, if there is a progressive crusade using k searchers, then there is a monotone mixed strategy using at most k searchers. The key of the proof is to prove that if there is a crusade using k searchers then there exists a progressive crusade using at most k searchers. The latter step is proved by considering a crusade C (using k searchers) such that This proves that mixed-searching is monotone. Noticing that the simple transformations presented above preserve monotonicity, this implies that both node-search and edge-search are monotone too.

Additionally, the monotonicity of mixed search allows to prove that, for any graph G, mixs(G) -1 actually equals the proper pathwidth of G [START_REF] Takahashi | Mixed searching and proper-path-width[END_REF].

Path-decomposition and pathwidth. Pathwidth is an important structural measure that appears in the Graph Minor theory [START_REF] Robertson | Graph minors. I. excluding a forest[END_REF][START_REF] Bienstock | Graph searching, path-width, tree-width and related problems (A survey)[END_REF][START_REF] Hans | A partial k -arboretum of graphs with bounded treewidth[END_REF] but also in other domains such as VLSI design

[DKL87,Kin92,FL94]. Given a graph G = (V, E), a path-decomposition is a sequence P = (X 0 , • • • , X) of subsets of vertices of G, called bags, such that (1) 0≤i≤ X i = V ; (2) for every uv ∈ E, there exists 0 ≤ i ≤ with {u, v} ⊆ X i ; and (3) for every 0 ≤ i ≤ j ≤ k ≤ , X i ∩ X k ⊆ X j .
The width of P is the size of its largest bag minus one, and the pathwidth of G, denoted by pw(G), is the minimum width of a path-decomposition of G.

From any path-decomposition P = (X 0 , • • • , X) of a graph G, it is easy to derive a node-search strategy for G: for i from 0 to , sequentially place a searcher at every vertex of X i and then sequentially remove the searchers from the vertices in X i \ X i-1 . From the properties of path-decompositions, for every 0

≤ i < , S = X i ∩X i+1 separates A = 0≤j≤i X j \X i+1 from B = i<j≤ X j \X i [Bod98]
and therefore, the searchers at S preserve A of recontamination from B. Hence, it is easy to see that such a strategy is winning and monotone and that the number of searchers used is the width of P plus one. Reciprocally, from any monotone winning strategy using k searchers, it is easy to derive a path-decomposiition of width k -1 (where each bag corresponds to the set of vertices occupied by a searcher at each step). Therefore, by Theorem 1 (applied to node-search):

Theorem 2. [KP85,KP86,EST94] For any graph G, ns(G) = pw(G) + 1.
Among other important consequences, Theorem 2 allows to transpose the numerous results concerning pathwidth to node-search and, sometimes, to edge-search and mixed-search by using the simple transformations seen above.

Note that pathwidth, and so node-search number, may be equivalently defined in terms of a measure, called vertex-separation, of linear layouts of vertices [START_REF] Kinnersley | The vertex separation number of a graph equals its pathwidth[END_REF]. Similarly, the mixed-search number of a graph G can be defined in terms of linear width (some measure on the linear layouts of the edges) [START_REF] Thilikos | Algorithms and obstructions for linear-width and related search parameters[END_REF].

Complexity and algorithms.

This subsection is devoted to the computational complexity of the edge-, nodeand mixed graph searching problems. Algorithms to compute the search numbers (and corresponding strategies) in general graphs and particular graph classes are also presented.

Hardness. Given an n-node graph G and an integer k ≥ 1 as inputs, the problem of deciding if s(G) ≤ k has first been proved to be NP-hard in [MHG + 88]. Then, Monien and Sudborough proved that this problem is NP-hard in the class of planar graphs with maximum degree 3 [START_REF] Monien | Min cut is np-complete for edge weighted trees[END_REF]. This latter result also holds for both node-search and mixed-search. Later on, Gustedt proved that deciding the pathwidth (and so the node-search number) is NP-hard in the class of chordal graphs [START_REF] Gustedt | On the pathwidth of chordal graphs[END_REF]. Edge-search is also NP-hard in chordal graphs [PTK + 00]. Moreover, assuming the Small Set Expansion Conjecture, the pathwidth is NP-hard to approximate within a constant factor [START_REF] Wu | Inapproximability of treewidth and related problems[END_REF].

Exact generic algorithms. On the positive side, all graph searching variants mentioned so far are closed under taking minor. That is, for any minor4 H of a graph G, s(H) ≤ s(G) (resp., ns(H) ≤ ns(G) and mixs(H) ≤ mixs(G)). Therefore, from the Graph Minor theory [START_REF] Robertson | Graph minors. XX. wagner's conjecture[END_REF][START_REF] Diestel | Graph Theory[END_REF], it follows that, for any fixed k ≥ 1, the set of minimal obstructions for having a search-number at most k is finite, and so each search-number admits a Fixed Parameter Tractable (FPT) algorithm [RS95,CFK + 15] (where the parameter is the size of the solution). In the case of node-search, Ellis et al. first designed an algorithm in time O(n 2k 2 +4k+8) via dynamic programming [START_REF] Ellis | Graph separation and search number[END_REF]. They also gave structural characterizations of graphs with node-search number at most 3 [START_REF] Ellis | The vertex separation and search number of a graph[END_REF].

Then, Bodlaender and Kloks gave the first constructive FPT algorithm for decid-

ing if ns(G) ≤ k in time k O(k 3) n [BK96].
In the case of mixed-search (and linear width), Bodlaender and Thilikos gave a constructive FPT algorithm [START_REF] Hans | Computing small search numbers in linear time[END_REF]. Thilikos also designed a linear-time algorithm to decide whether a graph has mixedsearch (resp., edge-search) number at most two by fully characterizing the set of minimal obstructions [START_REF] Thilikos | Algorithms and obstructions for linear-width and related search parameters[END_REF]. In addition to parameterized algorithms, other algorithms have been proposed to compute the pathwidth of general graphs. The best known exact exponential-time algorithm computing the pathwidth runs in time O(1.89 n) [KKK + 16] (see also [START_REF] Suchan | Computing pathwidth faster than 2 n[END_REF]). Moreover, using the definition(s) of graph searching in terms of vertex-layout, several Integer Linear Programs solving these problems have been formulated [START_REF] Penuel | Integer programming models and algorithms for the graph decontamination problem with mobile agents[END_REF][START_REF] Coudert | Experimental evaluation of a branch-and-bound algorithm for computing pathwidth and directed pathwidth[END_REF][START_REF] Coudert | A note on Integer Linear Programming formulations for linear ordering problems on graphs[END_REF][START_REF] Mallach | Linear ordering based MIP formulations for the vertex separation or pathwidth problem[END_REF].

Graph classes. On the other hand, search problems can be solved in various graph classes in polynomial time. The case of trees has been particularly studied [Par78a,MHG + 88,EST94,PHH + 00]. In particular, Skodinis designed a linear-time algorithm for computing the node-search number of trees and a corresponding strategy [START_REF] Skodinis | Construction of linear tree-layouts which are optimal with respect to vertex separation in linear time[END_REF]. A generic and distributed algorithm for computing, in time O(n log n), any of the search numbers in n-node trees (only the initial setting of the algorithm differ) has been designed in [START_REF] Coudert | A distributed algorithm for computing the node search number in trees[END_REF], where the interesting notion of hierarchical decomposition of trees is introduced. The algorithms for trees are all based on the so-called Parsons' lemma. Since trees are particularly interesting in graph searching, we sketch its proof below. In the following, given a tree T , a vertex v ∈ V (T) and a connected component T of T \ v, let T ∪ v denote the subtree induced by the vertices of T and v.

Lemma 1 (Parsons' lemma [START_REF] Parsons | The search number of a connected graph[END_REF]). For any k ∈ N * and any tree T , s(T) ≥ k + 1 if and only if T has a vertex v with at least three components

T 1 , T 2 , T 3 of T \ v such that s(T i ∪ v) ≥ k for every i ∈ {1, 2, 3}.

Sketch of proof.

The "if" part follows from monotonicity. Indeed, assume there is a monotone search strategy using at most k searchers in T and let v, T 1 , T 2 , and T 3 be as defined in the lemma. By monotonicity, we may assume that T 1 ∪v, T 2 ∪v and T 3 ∪ v are cleared in this order. However, to clear T 2 ∪ v, there must be a step at which all k searchers are occupying vertices of T 2 , which would imply a recontamination of T 2 ∪ v from T 3 , a contradiction.

On the other hand, if there exists no vertex v as in the lemma, it is possible to find a subpath P , called an avenue, such that, for every connected component T u of T \ P (where u is the unique neighbor of T u in P), s(T u ∪ u) < k. Then, a strategy using k searchers consists in sliding one searcher from one end of P to its other end, while sequentially clearing the components of T \ P using the k -1 remaining searchers. The avenues can be recursively computed by a dynamic programming algorithm.

In contrast, we should mention that graph searching is NP-hard in weighted trees (where weights on vertices represent the number of searchers required to preserve a vertex from recontamination, and edge-weights represent the number of searchers that must simultaneously traverse an edge to clear it) [START_REF] Mihai | Pathwidth is np-hard for weighted trees[END_REF].

The above strategy implies that s(T) = O(log n) in any n-node tree T . Moreover, this bound is tight (consider a rooted tree where all internal vertices have degree 3 and all leaves are at the same distance from the root).

Many other graph classes have been studied. The pathwidth is polynomialtime computable in circular arc graphs (in time O(n 2)) [START_REF] Suchan | Pathwidth of circular-arc graphs[END_REF], unicyclic graphs [EM04,YZC07], biconvex bipartite graphs [START_REF] Peng | On the treewidth and pathwidth of biconvex bipartite graphs[END_REF], in some subclasses of chordal graphs [START_REF] Gustedt | On the pathwidth of chordal graphs[END_REF], in hypercubes [START_REF] Chandran | The treewidth and pathwidth of hypercubes[END_REF], in cographs [START_REF] Hans | The pathwidth and treewidth of cographs[END_REF] (in linear time), etc. The pathwidth can also be computed in time O(n 11) in outerplanar graphs (using the fact that these graphs have bounded treewidth) and 2-approximation algorithms (using the dual of outerplanar graphs) running in time O(n log n) are designed in [START_REF] Hans | Approximation of pathwidth of outerplanar graphs[END_REF][START_REF] Coudert | Pathwidth of outerplanar graphs[END_REF].

The other variants have been studied as well: the mixed search number can be computed in linear time in interval graphs, in polynomial time in split graphs [START_REF] Fedor | Mixed search number and linear-width of interval and split graphs[END_REF], and in linear time in permutation graphs [START_REF] Heggernes | Mixed search number of permutation graphs[END_REF]; the edge search number can be computed in linear time in cographs [START_REF] Golovach | Edge search number of cographs[END_REF] and in polynomial time in split graphs and interval graphs [PTK + 00].

We would like to conclude this section with some intriguing open questions. First, note that there are no known graph classes where the complexity of deciding the edge/node/mixed search number differs. Moreover, for any graph G and any distinct x, y ∈ {s, ns, mixs} as inputs, the complexity of computing x(G) -y(G) is not known.

Connected Graph Searching and distributed setting

In all models defined in Section 2, removing a searcher and placing it at any vertex is allowed. Such a jump may however be unrealistic or even impossible in practical applications. Removing a searcher from a vertex v and placing it at another vertex u may be replaced by a sequence of slides along the edges of a path from v to u. However, this would imply that the searcher travels in an unsafe environment (through a part that is still contaminated) and moreover, it may lead to strategies that are not monotone. To handle this problem, Barriere et al. proposed a new variant, called connected graph searching, where removing a searcher is not allowed and such that, at every step, the subgraph induced by the clear edges and vertices must be connected [START_REF] Barrière | Capture of an intruder by mobile agents[END_REF].

Two main questions were asked with the introduction of connected graph searching in [START_REF] Barrière | Capture of an intruder by mobile agents[END_REF][START_REF] Barrière | Thilikos. Searching is not jumping[END_REF]. First, what is "the cost of connectivity" in terms of the number of searchers? That is, does there exist a constant c such that any graph G admits a connected search strategy using at most c • s(G) searchers? Second, is connected graph searching monotone?

Cost of connectivity

A connected search strategy S in a graph G = (V, E) and using k ≥ 1 searchers can be defined as follows. First, a vertex v 0 ∈ V , called homebase, is chosen and all the k searchers are placed at it. Then, S is a sequence of moves, where each move consists in sliding a searcher at u ∈ V along an edge e = uv ∈ E and such a move is allowed only if, after the sliding, there is path of clear edges from v 0 to v (here we only consider the edge-search variant where an edge is cleared when a searcher slides along it). The connected search number of a graph G, denoted by cs(G), is the smallest k such that there exists a connected search strategy that clears G using k searchers. Clearly, the choice of the homebase has an impact on the number of searchers (e.g., consider a path where the homebase is not one of its ends). Hence, the connected search number is defined with respect to the "best" possible homebase.

(Non) Monotonicity. The previous definition clearly allows recontamination. Monotone connected search strategies are defined in a similar way: first, a vertex v 0 ∈ V is chosen and all the k searchers are placed at it, then, the strategy consists of a sequence of moves, where each move consists in sliding a searcher at u ∈ V along an edge e = uv ∈ E only if either u is still occupied by a searcher after the move, or all incident edges of u but possibly e were already clear before the move. One important and surprising result is that, contrary to the classical graph searching, in the connected variant, recontamination may help [START_REF] Yang | Sweeping graphs with large clique number[END_REF]. It is interesting to mention that their counter-example G has around 400.000 vertices and is such that cs(G) = 281 while any monotone connected strategy requires at least 290 searchers. We are not aware of a smaller example.

Hence, the monotone connected search number of a graph G, denoted by mcs(G), may be strictly larger than its connected search number cs(G). A consequence of this result is that it is not known whether the problem of computing the connected search number of a graph is in NP. As far as we know, there are no lower or (non-trivial) upper bounds on the number of steps of connected search strategies. Another difference between the search number and its (monotone or not) connected counter part is that mcs and cs are not minor-closed. Hence, it is not clear whether the problem of computing the (monotone) connected search number of graphs admits a fixed parameter tractable algorithm (nor even a polynomial-time algorithm when the number k of searchers is fixed). However, both parameters are closed under taking contractions [START_REF] Best | Contraction obstructions for connected graph searching[END_REF].

Recontamination does not help for connected graph searching in trees, i.e., mcs(T) = cs(T) in any tree T [BFFS02,BFF + 12] (proof à la Bienstock and Seymour). Besides, in any n-node tree T and for any homebase v 0 , there exists a monotone connected strategy, starting from v 0 and using at most 1 + cs(T) searchers and, moreover, cs(T) = O(log n) [START_REF] Barrière | Capture of an intruder by mobile agents[END_REF]. In the same paper, it is shown that computing the connected search number can be done in polynomial time in trees. Recently, it has been shown that recontamination does not help in the class of graphs with connected search number at most two [START_REF] Best | Contraction obstructions for connected graph searching[END_REF]. That is, for any graph G, mcs(G) = 2 if and only if cs(G) = 2. The result follows from the characterization of this class of graphs by exhibiting the family of 177 minimal-contraction obstructions.

Cost in number of searchers. Let us start with a simple example. Consider the complete rooted tree T with all internal vertices with degree three and all leaves at distance 3 from the root, it is easy to see that s(T) = 3 < cs(T) = 4. Therefore, connectivity has some price in terms of number of searchers. In any tree T , cs(T) ≤ 2s(T) -2 and this bound is tight [BFST03,BFF + 12]. The proof relies on the fact that cs(T) is closed under taking minors in the class of trees and that cs(T) ≥ k if and only if T contains some specific tree D k as a minor (in contrast with the classical search number, the set of minimal obstructions for connected search number in trees is reduced to a single tree).

Therefore, the question of the cost of connectivity arises naturally: how far the connected search number of a graph is from its pathwidth? In other words, does there exist a constant c ≥ 2 bounding the ratio between connected search number and search number in any graph? Several partial results have been proposed [Nis09,BFF + 12] before Dereniowski closed the question:

Theorem 3. [Der12b] mcs(G) ≤ 2s(G) + 3 in any graph G.
For this purpose, Dereniowski designed a polynomial time algorithm that transforms any monotone search strategy using k searchers into a connected one using at most 2k + 3 searchers. His result also shows that the ratio between monotone connected search number and connected search number is bounded by 2.

Complexity and algorithms. On the complexity point of view, computing cs is NP-hard since cs(G *) = s(G) + 1 for any graph G where G * is obtained from G by adding a universal vertex. Dereniowski proved that weighted connected graph searching is also NP-hard in weighted trees [START_REF] Dereniowski | Connected searching of weighted trees[END_REF]. On the positive side, a polynomial time approximation with approximation ratio 3 is designed for this problem in trees [START_REF] Dereniowski | Approximate search strategies for weighted trees[END_REF]. Similar results were proved while with different terminology (speaking about edge-width instead of weight) [START_REF] Borie | Algorithms and complexity results for graph-based pursuit evasion[END_REF]. The connected search number of outerplanar graphs has been investigated in [START_REF] Fedor | Connected graph searching in outerplanar graphs[END_REF]. Very recently, Dereniowski et al. proved that the problem of deciding if cs(G) ≤ k can be solved in polynomial-time when k is fixed [START_REF] Dereniowski | Finding small-width connected path decompositions in polynomial time[END_REF].

Internal Graph Searching. To conclude this subsection, let us mention internal graph searching that can be defined as monotone connected graph searching but where there may be several homebases. That is, initially, one or more vertices are chosen and some searchers are placed at them. Then, the only allowed moves are to slide searchers if it does not create recontamination. This variant has been first introduced in [BFST03] and an interesting heuristic has been proposed in [START_REF] Flocchini | Decontamination of arbitrary networks using a team of mobile agents with limited visibility[END_REF]. In this paper, the initial vertices (the homebases) are chosen randomly and then the searchers grow the cleared part around these vertices in a BFS manner, then the best obtained strategies are used to generate next generations of strategies using a classical genetic algorithm.

Distributed (Monotone) Connected Graph Searching

A major reason for which the connectivity constraint has been introduced is that it ensures safe communications between the searchers during the execution of the strategy. For instance, when the searchers have to coordinate themselves but have no way to communicate when they are far from each other, possible solutions would be either to leave some messages on the vertices or to use a searcher for carrying instructions between other searchers. In both cases, the connectivity constraint helps since it allows to avoid that messages are left on contaminated vertices that the searcher crosses when moving in the contaminated area to transfer instructions.

In this subsection, we study the clearing of graphs in such an environment where the searchers have only a local vision of their environment and must communicate to coordinate the clearing.

Distributed model. More precisely, the k searchers are modeled by synchronous autonomous mobile computing entities (automata) with distinct IDs from 1 to k. Otherwise searchers are all identical, run the same program, and use at most O(log n) bits of memory, where n is the number of vertices of the network. A network is modeled by an undirected connected graph G. A priori, the network is asynchronous. However, as explained below, any synchronous algorithm can be transposed into an asynchronous environment by adding an extra searcher traveling in the (connected) clear part of the graph to synchronize the moves of all searchers. Moreover, the network is anonymous, that is, the vertices are not labelled. The edges incident to any vertex u are labeled from 1 to its degree, so that the searchers can distinguish the different edges incident to a vertex. Every vertex of the network has a zone of local memory, the whiteboard in which searchers can read, erase, and write symbols (unless stated otherwise, whiteboards have size O(log n) bits and are only used for face-to-face communication between searchers occupying a same vertex). It is moreover assumed that searchers can access these whiteboards in fair mutual exclusion. The goal is then to design an algorithm, called a search protocol, such that the fewest number of searchers running this algorithm achieves the clearing of the graph in a connected way.

Universal algorithms. In this section, we present several search protocols that have been designed to clear any graph G = (V, E). In this setting, the searchers do not know in advance in which graph they are launched. That is, when occupying some vertex u, a searcher executes the algorithm only based on its current state (the memory of the searcher), on the content of the whiteboard at u, and on the degree of u. [BFNV08] designed a general algorithm allowing mcs(G) + 1 searchers to connectedly clear any graph G. Since the extra searcher (compared to the centralized case) cannot be avoided due to the asynchronicity of the network, this is optimal. Roughly, this algorithm orders all possible sequences of moves in some well-suited lexicographical order and tries them one after the other (sequentially increasing the number of searchers that are used) until the graph is clear. For this purpose, the searchers uses whiteboards of size O(|E| log |V |) bits where they write all their moves. At the end, a description of the strategy is then stored in a distributed way on the whiteboards. This algorithm has however two drawbacks: it takes an exponential amount of time (which cannot be avoided unless P = N P) and the clearing is not monotone.

To deal with monotonicity, [START_REF] Nisse | Graph searching with advice[END_REF] proposed to address the problem by providing a small amount of information to the searchers, following the framework of [START_REF] Fraigniaud | Oracle size: a new measure of difficulty for communication tasks[END_REF]. Precisely, it is shown that the minimum number of bits of information that must a priori be distributed in an n-node graph G in order to clear it monotoneously with the optimal number of searchers is Θ(n log n) [START_REF] Nisse | Graph searching with advice[END_REF]. Roughly, this peace of information encodes a spanning tree "along which" the clearing must be performed.

Another approach to handle monotonicity is to allow the use of more searchers. More precisely, the cost of a search protocol P in a graph G with homebase v 0 is measured by the ratio between the number of searchers it uses to clear G and the search number mcs(G) of G. This ratio, maximized over all graphs and all starting vertices, is called the competitive ratio of the protocol P. [START_REF] Ilcinkas | The cost of monotonicity in distributed graph searching[END_REF] proved that monotonicity has an important cost (in terms of number of searchers) in a distributed setting since any search protocol (clearing any graph in a monotone connected way) has competitive ratio Ω(n log n) and that this lower bound holds in the class of trees with maximum degree 3. On the positive side, this bound is tight: there exists a search protocol with competitive ratio O(n log n) [START_REF] Ilcinkas | The cost of monotonicity in distributed graph searching[END_REF]. The idea behind the algorithm is to "control" a (partial) spanning tree of the clear part and to determine the next edge to be cleared according to it: in such a way that this tree does not contain a "high" ternary tree as a minor (since such a minor would lead to the use of many searchers). Specific topologies. Many distributed search protocols specialized for particular graph classes have also been designed. A distributed algorithm that computes the connected search number of trees has been proposed in [BFFS02,BFF + 12]. Then, a self-stabilizing algorithm for clearing trees has been designed [START_REF] Mihai | A self-stabilizing algorithm for graph searching in trees[END_REF] and further improved in [START_REF] Jean | Efficient self-stabilizing graph searching in tree networks[END_REF]. The latter algorithm allows 1+log n searchers to clear any n-node tree and stabilizes in O(n log n) moves after initialization. Moreover, it is a non-silent algorithm, meaning that it continues to clear the tree indefinitely.

Then, topologies that are commonly used for interconnection networks have been studied. Precisely, the following topologies have been considered: grids [START_REF] Flocchini | Size optimal strategies for capturing an intruder in mesh networks[END_REF], chordal rings and tori [START_REF] Flocchini | Decontaminating chordal rings and tori using mobile agents[END_REF], hypercubes [START_REF] Flocchini | Decontamination of hypercubes by mobile agents[END_REF], and Sierpiński graphs [START_REF] Flaminia | Contiguous search problem in sierpinski graphs[END_REF]. In this setting, the authors compare the number of searchers, moves, and the number of rounds of their algorithms in two models. In the first model, a particular searcher is used to coordinate the clearing while, in the latter one, the searchers are endowed with some visibility ability: they can see whether their neighbors are clear or contaminated, empty or occupied. All designed algorithms use the fact that all these graph classes admit relatively well-structured centralized strategies and, moreover, the symmetries of these topologies allow the searchers to benefit from some sense of direction (for instance, clockwise orientation in chordal rings or standard compass-labelling in grids). For instance, in a grid starting from one of its corners, the strategy first makes the searchers occupy all vertices of the first column and then move "in parallel" from one column to the next one until the grid is clear. In the case with visibility, the searchers can locally decide when they have to go to the next column without recontamination. Table 1 summarizes the obtained results (note that these results consider the clearing of vertices only or, said differently, an edge is cleared in the same way as in node-search). The studies of the tradeoffs between the number of searchers, moves, and time steps are left as open problems.

Topology

Model # of searchers # of moves # time steps

m × n Grids [FLS05] coordinator m + 1 * m 2 +4mn-5m-2 2 mn -2 (m ≤ n) visibility m * m 2 +2mn-3m 2 m + n -2 * m × n Tori [FHL07] coord. 2m + 1 * 2mn -4m -1 mn -2m (m ≤ n) vis. 2m * mn -2m n -2 n-node Chordal rings [FHL07] coord. 2 + 1 * 4n -6 -1 3n -4 -1 with largest chord of length vis. 2 * n -2 n-2 2(-)
and second largest chord

Hypercubes [FHL08] coord. Θ(n √ log n) * O(n log n) O(n log n) (dimension n) vis. n/2 O(n log n) O(log n) * Sierpiński graphs [Luc09] coord. n + 1 * O(n3 n), Ω(3 n) O(3 n), Ω(3 n /n) built by n iterations vis. n + 2 - -
Table 1: Monotone connected search in specific topologies. Results marked with a star are known to be optimal.

A search protocol has also been designed for partial grids (i.e., connected subgraphs of n × n grids) that uses O(√ n) searchers [START_REF] Dereniowski | Distributed searching of partial grids[END_REF]. The algorithm strongly uses sense of direction and the algorithm in [START_REF] Borowiecki | Distributed graph searching with a sense of direction[END_REF] as a subprocedure. The algorithm is optimal since some partial grids require this amount of searchers and moreover, the authors prove that, for any search protocol, there are partial grids (with search number O(log n)) that force the algorithm to use Ω(√ n) searchers [START_REF] Dereniowski | Distributed searching of partial grids[END_REF].

To conclude this subsection, let us mention the cloning variant proposed in [START_REF] Flocchini | Decontamination of hypercubes by mobile agents[END_REF]. In this model, the searchers may clone themselves, i.e., the searchers are not restricted to appear at the homebase but, at any step, a searcher at v may create new searchers at v (this essentially allows to decrease the number of moves and time steps). Various topologies have been studied in this setting: hypercubes [START_REF] Flocchini | Decontamination of hypercubes by mobile agents[END_REF], graph products [START_REF] Imani | Capturing an intruder in product networks[END_REF], grids and tori [START_REF] Imani | Intruder capturing in mesh and torus networks[END_REF], and pyramids [START_REF] Shareghi | Capturing an intruder in the pyramid[END_REF].

Exclusive Graph Searching and Look/Compute/Move

Exclusive graph searching is defined as mixed graph searching with the extra exclusivity constraint (each vertex can be occupied by at most one searcher at a time) and such that searchers cannot jump from one vertex to another one, i.e., searchers can only slide along edges [START_REF] Blin | Exclusive graph searching[END_REF].

Exclusive graph searching addresses two limitations of classical variants as far as practical applications are concerned. First, as in internal graph searching, the unrealistic assumption that searchers may jump is got rid of. Second, classical variants assume that any vertex can be simultaneously occupied by several searchers. This assumption may be unrealistic in several contexts. Typically, placing several searchers at the same vertex may simply be impossible in a physical environment in which, e.g., the searchers are modeling physical searchers moving in a network of pipes. In the case of software agents deployed in a computer network, maintaining several searchers at the same node may consume local resources (e.g., memory, computation cycles, etc.). The exclusivity constraint aims at dealing with this problem.

More formally, given a connected n-node graph G, an exclusive search strategy in G, using k ≤ n searchers consists in (1) placing the k searchers at k different vertices of G, and (2) performing a sequence of slidings ensuring the exclusivity property. An edge becomes clear whenever either a searcher slides along it, or one searcher is placed at each of its extremities (as in mixed-search). The exclusivesearch number of G, denoted by xs(G) is the smallest k for which there exists a winning search strategy in G. Exclusive graph searching somehow behaves very differently from classical variants. For instance, xs(S n) = n -1 for any star S n with n ≥ 3 leaves. More important, it is not monotone even in trees and it is not closed under taking subgraphs [START_REF] Blin | Exclusive graph searching[END_REF]. It has been proved that, for any graph G with maximum degree ∆, ns(G) ≤ xs(G) ≤ (∆ -1)(ns(G) + 1) [START_REF] Blin | Exclusive graph searching[END_REF]. Surprisingly, computing the monotone exclusive search number is NP-hard in split graphs (where pathwidth can be polynomially computed) and can be solved in polynomial time in a subclass of star-like graphs (where pathwidth is NPhard) [START_REF] Markou | Exclusive graph searching vs[END_REF]. A polynomial-time algorithm that computes the monotone exclusive search number of trees has been designed in [START_REF] Blin | Exclusive graph searching[END_REF]. It is based on a lemma in the same vein as Parsons' lemma (while more technical) and then follows the same principles as the algorithm of Ellis et al. for edge-search (see Lemma 1) but the proof is more technical due to the non-closedness under subgraph.

Distributed exclusive graph searching has been studied in the Look-Compute-Move model where searchers have very weak abilities (they are anonymous and oblivious) but can "see" the whole network (see Chapter ?? for more details). Algorithms for paths and trees, using the optimal number of searchers (or more), have been designed in [START_REF] Blin | Brief announcement: Distributed exclusive and perpetual tree searching[END_REF] and the case of cycles is studied in [DSN + 15,DNN17]. The algorithm in cycles relies on a subprocedure that places the searchers in an adequate configuration that can also be used to solve other coordination problems such as gathering and perpetual exploration. One intriguing remaining question in the cycle is whether 4 searchers can exclusively clear any cycle with at least 10 vertices in the Look-Compute-Move model. Indeed, for any n-node cycle with n > 10, it is possible to clear it with k ∈ {5, • • • , n -3} ∪ {n} searchers and not possible with ≤ 3 searchers or k ∈ {n -2; n -1} searchers [DSN + 15].

Plethora of alternative models

Recall that, in the Introduction, it was said that the network decontamination problem can be equivalently seen as a pursuit-evasion game between a team of searchers and a fugitive (an intruder in the network, a lost spelunker...). Variants of graph searching that have been described so far can all be stated in terms of capturing a lucky invisible and arbitrarily fast fugitive in a graph. By "lucky" (or "omniscient"), we mean that the objective is the design of a strategy that captures the fugitive in the worst case, i.e., whatever be the behavior of the fugitive. From now on, we use the pursuit-evasion terminology (except in Subsection 4.3) because it fits the proposed models better.

Visible/Inert fugitive and Tree-like structures

Visible fugitive. A first natural extension of node-search concerns the case of a visible fugitive. In this variant, the fugitive occupies a vertex that is known by the searchers but may move at any step to another (known) vertex. In particular, if a step of a strategy consists of placing a searcher at the vertex occupied by the fugitive, the latter may simultaneously (before the searcher "lands") move to any vertex it can access (through a path free of searchers). The visible search number of a graph G, denoted by vns(G), is the minimum number of searchers required to catch a visible fugitive in this setting. The visible search number shares a relationship with treewidth5 , denoted by tw(G), that is similar to the relationship between pathwidth and node-search number. Precisely: Theorem 4. [START_REF] Seymour | Graph searching and a min-max theorem for tree-width[END_REF] For any graph G, vns(G) = tw(G) + 1.

As in the case of pathwidth and node-search, it is easy to show that monotone visible node-search strategies are equivalent to tree-decompositions. Again, the difficulty is to prove that there always exists an optimal strategy that is monotone. Seymour and Thomas proved the monotonicity of visible graph searching by defining a dual structure for the tree-decompositions, namely the brambles (initially called screens), [START_REF] Seymour | Graph searching and a min-max theorem for tree-width[END_REF] that actually corresponds to a winning strategy for the fugitive. Given a graph G = (V, E), a bramble is a family B = (B i) 0≤i≤ of subsets of vertices such that (1) B i induces a connected subgraph of G for each i and (2) the sets B i are pairwise touching (i.e., any two sets intersect or there exists an edge linking them). The order of B is the minimum size of a hitting set, i.e., the smallest number of vertices in V that intersect each set in B. The treewidth of a graph G is at most k -1 ∈ N (and so vns(G) ≤ k) if and only if the maximum order of a bramble of G is k [START_REF] Seymour | Graph searching and a min-max theorem for tree-width[END_REF]. Given a graph G with a bramble B of order k + 1, it is easy to describe a winning strategy for the fugitive against ≤ k searchers. Indeed, at every step, the fugitive can move (since the sets are connected and pairwise touching) to a set of B whose no vertices are occupied by a searcher. The notion of bramble is very useful to prove lower bounds on the visible search number of graphs. For instance, it is easy to show that vns(G n×n) ≤ n + 1 in any n × n grid G n×n and a bramble of order n in G n×n can also easily be found. Altogether, this proves that vns(G n×n) = n + 1 (such a result is rather technical without the help of brambles).

The connected capture of a visible fugitive has been studied in [START_REF] Fraigniaud | Monotony properties of connected visible graph searching[END_REF]. As its invisible counterpart, it is not monotone. However, in contrast with the invisible case (Theorem 3), this variant may require Ω(log n * vns(G)) searchers in some n-node graphs G and this is asymptotically tight [START_REF] Fraigniaud | Monotony properties of connected visible graph searching[END_REF].

Non-deterministic Graph Searching. Non-deterministic graph searching generalizes both node-search and visible node-search [START_REF] Fedor | Nondeterministic graph searching: From pathwidth to treewidth[END_REF]. Given a fixed integer q ≥ 0, a non-deterministic strategy aims at catching an invisible fugitive with the additional ability that the fugitive is visible during at most q steps of the game (the choice of when to see the fugitive is left to the searchers dynamically during the strategy). The minimum number of searchers required to catch the fugitive in this setting is denoted by ns q (G). By definition, ns 0 (G) = ns(G) (the fugitive is always invisible) and ns ∞ (G) = vns(G) (the fugitive is always visible). Computing ns q (G) is NP-hard for any q ≥ 0 and an exponential-time algorithm to compute it is presented in [START_REF] Fedor | Nondeterministic graph searching: From pathwidth to treewidth[END_REF], the monotonicity of this variant is proved in [START_REF] Mazoit | Monotonicity of non-deterministic graph searching[END_REF] and a constructive FPT algorithm is designed in [BBM + 13]. A polynomial-time dynamic programming algorithm to compute a 2-approximation of ns q (T) in the class of trees T (exact for q ≤ 1) is designed in [START_REF] Amini | Non-deterministic graph searching in trees[END_REF]. The existence of an exact polynomial-time algorithm that computes ns q (T) in any tree T and for any q > 1 is still open. Another interesting open question is the definition of a dual structure (similar to brambles for visible node-search [START_REF] Seymour | Graph searching and a min-max theorem for tree-width[END_REF] or to blockage for node-search [START_REF] Bienstock | Quickly excluding a forest[END_REF]) for non-deterministic graph searching.

Inert fugitive. Another variant of node-search is related to tree-decompositions. A fugitive is inert (a.k.a., lazy) if it is invisible but can only move if a searcher is landing at the vertex it is currently occupying. In any graph G, the minimum number of searchers required to catch the fugitive in this setting also equals the treewidth of G plus one [START_REF] Richerby | Searching for a visible, lazy fugitive[END_REF]. LIFO-search. Last but not least, let us mention a variant of graph searching related to another tree-like parameter of graphs. Namely, LIFO-search is a variant of node-search where the searchers are labeled with distinct integers and with the extra constraint that a searcher can be removed only if no searcher with smaller label is present in the graph [START_REF] Archontia | Lifosearch: A min-max theorem and a searching game for cycle-rank and treedepth[END_REF]. In [START_REF] Archontia | Lifosearch: A min-max theorem and a searching game for cycle-rank and treedepth[END_REF], this variant is proved to be monotone and equivalent to the tree-depth of graphs [START_REF] Nesetril | Grad and classes with bounded expansion i. decompositions[END_REF].

Directed graphs

During the last decade, several digraph decompositions have been proposed in order to try to bring to directed graphs the same algorithmic power as treedecompositions provide in undirected graphs [GHK + 16]. Interestingly, most of these attempts have been defined through graph searching games. An important difference between directed graph searching games and undirected ones arises via the notion of monotonicity. In the directed case, there are two distinct definitions of monotonicity: a game is cop-monotone if each vertex is occupied at most once by a searcher, it is robber-monotone if the area reachable by the fugitive never increases. Clearly a cop-monotone game is robber-monotone. However, as shown below, the converse is not always true.

Johnson et al. first defined the directed tree-decomposition which roughly "translates" the connectivity properties of tree-decomposition into strong connectivity properties in directed graphs [START_REF] Johnson | Directed tree-width[END_REF]. Their variant is closely related to the graph searching game where a visible fugitive has the extra constraint that it can move only in strongly connected components free of searchers. That is, the fugitive can go from vertices u to v if there is a directed path from u to v free of searchers and a directed path from v to u free of searchers. It has been shown that, in this game, the non-monotone, the cop-monotone and the robber-monotone variants may differ [START_REF] Johnson | Directed tree-width[END_REF][START_REF] Adler | Directed tree-width examples[END_REF]. Because of the nonmonotonicity result, no min-max theorem can be expected via graph searching. However, [START_REF] Johnson | Directed tree-width[END_REF] proved a weaker result: if k searchers have a winning strategy in a digraph D, then 3k -1 searchers have a robber-monotone winning strategy in D, which leads to a min-max theorem up to a constant ratio between directed treewidth and so-called havens [START_REF] Johnson | Directed tree-width[END_REF]. In [START_REF] Evans | D-width and cops and robbers[END_REF], it is proved that the copmonotone version of this game is actually equivalent to the D-width defined by Safari [START_REF] Ali | D-width: A more natural measure for directed tree width[END_REF] leading to an exact algorithm for computing this variant. Moreover, [START_REF] Evans | D-width and cops and robbers[END_REF] showed that D-width and directed treewidth are actually equivalent (in the sense that one is bounded if and only if the other is bounded).

The DAG-decomposition is weaker than directed tree-decomposition (bounded DAG-width implies bounded directed treewidth) [BDH + 12]. It corresponds to the cop-monotone version of the game where the visible fugitive is constrained to follow the direction of arcs. While robber-monotone and cop-monotone variants coincide [BDH + 12], this game is not monotone [START_REF] Kreutzer | Digraph decompositions and monotonicity in digraph searching[END_REF]. However, a drawback of DAG-decomposition is that the best known upper bound of the size of such a decomposition with width k in an n-node digraph is O(n k) and that the corresponding optimization problem is PSPACE-complete [START_REF] Saeed Akhoondian Amiri | Dagwidth is pspace-complete[END_REF]. Another decomposition weaker than directed tree-decomposition is the Kelly-decomposition that corresponds to the robber-monotone variant of the the game where an inert fugitive is forced to follow the arcs [START_REF] Hunter | Digraph measures: Kelly decompositions, games, and orderings[END_REF]. Again, this game is not monotone [START_REF] Kreutzer | Digraph decompositions and monotonicity in digraph searching[END_REF]. A polynomial-time algorithm to recognize digraphs with Kellywidth at most 2 is given in [START_REF] Meister | Recognizing digraphs of kelly-width 2[END_REF]. Approximation algorithms for computing directed treewidth, Dag-and Kelly-width, with approximation ratio O(log 3/2 n) have been designed in [START_REF] Kintali | Approximation algorithms for digraph width parameters[END_REF].

To conclude, let us mention that several directed path-decompositions and directed invisible graph searching have also been proposed. These variants mainly differ (1) in the abilities of the searchers and the fugitive: either both have to follow the direction of arcs, or only one of them, and (2) in the variant of graph searching that is considered: edge/node or mixed. More details can be found in [Bar06,YC07b,ADHY07,YC07a,Yan07,YC08c,YC08b,YC08a,YC09]. Contrary to their visible counterparts, all these directed variants are monotone.

Recontamination alternatives

In classical graph searching, a vertex is recontaminated instantaneously if it is not occupied and adjacent to a contaminated vertex. Flocchini et al. proposed several alternative definitions for recontamination. In a first variant, with threshold immunity or local immunity, a vertex can be recontaminated only if a sufficient number of its neighbors are contaminated [START_REF] Luccio | Network decontamination with local immunization[END_REF]. In a second model, with temporal immunity, a vertex can be recontaminated only t steps after it has been left by a searcher, where t ≥ 0 is a parameter [START_REF] Flocchini | Tree decontamination with temporary immunity[END_REF].

Local immunity. In [START_REF] Luccio | Network decontamination with local immunization[END_REF], a clear (and unoccupied) vertex is recontaminated if more than half of its neighbors are contaminated. In this setting, any graph with maximum degree three can be cleared by at most 2 searchers and by a single one if moreover there is a pendant vertex. [START_REF] Luccio | Network decontamination with local immunization[END_REF] gave search protocols for tori that are optimal in terms of number of searchers and asymptotically tight for the number of moves. They also considered the case of trees. Their results have been extended by the generalization proposed in [START_REF] Flocchini | Network decontamination under m-immunity[END_REF].

In [START_REF] Flocchini | Network decontamination under m-immunity[END_REF], the parameterized version of this problem is considered where the parameter m ≥ 1 represents the minimum number of neighbors of a vertex v that must be contaminated to recontaminate v. In Finally, a dynamic programming algorithm that computes optimal monotone search strategies in trees has also been designed [START_REF] Flocchini | Network decontamination under m-immunity[END_REF].

Temporal immunity. A graph G has temporal immunity t ≥ 0 if a vertex becomes recontaminated after having been exposed (i.e., unoccupied and with a contaminated neighbor) during more than t steps [START_REF] Flocchini | Tree decontamination with temporary immunity[END_REF]. As an example, assume that t = 2, then an n-node cycle can be cleared by a single searcher moving clockwise during 2n steps (note that the strategy is not monotone).

[DJS16] defined the immunity number ι k (G) of G as the minimum integer t ≥ 0 such that k ≥ 1 searchers can clear G with temporal immunity t.

A distributed algorithm for computing the minimum number of searchers needed to clear a tree with temporal immunity t ≥ 0 has been designed and a structural characterization of trees with ι k (T) = t is provided [START_REF] Flocchini | Tree decontamination with temporary immunity[END_REF]. Roughly, ι k (T) = t if and only if T does not contain a subtree obtained from the complete ternary tree of height k whose all edges have been subdivided t 2 + 1 times. Finally, an algorithm for clearing any tree of height at most h with 2h t+2 searchers is presented in [START_REF] Flocchini | Tree decontamination with temporary immunity[END_REF].

For any k ∈ {1, 2, 4}, any n × n grid with temporal immunity ≥ (4 -k)(n -1) -1 can be cleared by k searchers [START_REF] Daadaa | Network decontamination with temporal immunity by cellular automata[END_REF], no results for other number of searchers are known. In the case of strong grids, k searchers are sufficient to clear them when the immunity is ≥ 2(2n-1) k [START_REF] Daadaa | Network decontamination with temporal immunity by cellular automata[END_REF]. Finally, ι 1 (G) has been studied in several classes of graphs [START_REF] Daadaa | Network decontamination with a single agent[END_REF] such as paths: ι 1 (P n) = 0 for every n; cycles: ι 1 (C n) = 2 for every n, and goes to n -1 if monotonicity is required; complete graphs: ι 1 (K n) = n -1 for every n; complete bipartite graphs: ι 1 (K n,m) = 2m-1 for 3 ≤ m ≤ n; n-node trees: ι 1 (T) ≤ 30 √ n; p × q grids: p/2 ≤ ι 1 ≤ p for p ≤ q, etc. It can be shown that there are n-node trees T for which ι 1 (T) = Ω(n 1/3+) for some constant > 0 [DJS16] and a challenge would be to close the gap with the upper bound 30 √ n. The question of general planar graphs is also open.

Other models and objectives

To conclude this chapter, we would like to mention some variants of graph searching that differ from previous ones by: the objective that must be optimized, the way the fugitive is captured, the speed of the fugitive, etc. We only mention some of these variants, others may be found in [START_REF] Fedor | An annotated bibliography on guaranteed graph searching[END_REF].

Different objectives. The cost of a strategy is the sum of the number of occupied vertices over all steps of a strategy. This parameter (in the node-search variant) appears to equal the profile of the graph G (minimum number of edges of an interval supergraph of G) [FG00,Fom04], while, in the visible (or inert) variant, it equals the minimum fill in of G (minimum number of edges of a chordal supergraph). The cost in the case of edge-search has been studied in [START_REF] Dereniowski | On minimum cost edge searching[END_REF]. The maximum occupation time is the maximum over all vertices of the number of steps during which a vertex is occupied. This parameter coincides with the bandwidth of graphs [START_REF] Fedor | Graph searching, elimination trees, and a generalization of bandwidth[END_REF][START_REF] Dereniowski | Maximum vertex occupation time and inert fugitive: Recontamination does help[END_REF]. The capture time (minimum number of bags of a path-decomposition with a given width) has also been considered in [START_REF] Brandenburg | Graph searching and search time[END_REF][START_REF] Dereniowski | The complexity of minimum-length path decompositions[END_REF].

Different speeds. The case of a fugitive with bounded speed (the fugitive has speed s if, at every step, it can move through a path of length at most s) has been considered in [START_REF] Fedor | Helicopter search problems, bandwidth and pathwidth[END_REF][START_REF] Fedor | Note on a helicopter search problem on graphs[END_REF], and the case of an inert fugitive with bounded speed is considered in [START_REF] Dendris | Fugitivesearch games on graphs and related parameters[END_REF]. Different rules. [START_REF] Dyer | On the fast searching problem[END_REF] introduced the fast searching game in which the searchers cannot be removed and every edge can be traversed only once. This variant has been studied in [SY09,Yan11,SY11,Yan13,DDD13,XYZZ16,XY17]. See also [START_REF] Messinger | Cleaning a network with brushes[END_REF][START_REF] Kinnersley | Game brush number[END_REF] (and references therein) for the so-called brush game.

Different applications. Surprisingly, a variant of graph searching has been defined to model the problem of routing reconfiguration in optical (WDM) networks [CHM + 09]. In this variant, an invisible fugitive is moving following the orientation of the arcs in a directed graph and it is captured as soon as the searchers limit its moves to a component that is not strongly connected. Monotonicity [START_REF] Nisse | On the monotonicity of process number[END_REF], computational complexity [START_REF] Coudert | Characterization of graphs and digraphs with small process numbers[END_REF][START_REF] Coudert | A distributed algorithm for computing the node search number in trees[END_REF] as well as tradeoff between the number of searchers and the cost of strategies [CCM + 11] have been studied.

0≤i≤(

 |δ(E i)|+1) is minimum and, under the previous assumption, 0≤i≤ |E i | is minimum. Then, using the submodularity of the function δ (i.e., for every A, B ⊆ E, |δ(A ∪ B)| + |δ(A ∩ B)| ≤ |δ(A)| + |δ(B)|), it can be shown that C is progressive.

 n 1 × • • • × n d d-dimensional grids, one searcher is sufficient for any m ≥ d, n 1 * • • • * n d-m searchers are sufficient otherwise. In the case of the n 1 × • • • × n d d-dimensional torus, 2 d * n 1 * • • • * n d-m searchers are sufficient for m ≤ d -1 and 2 2d-m searchers are sufficient for d ≤ m ≤ 2d. It is not known whether these upper bounds are tight.

This work has been partially supported by ANR program "Investments for the Future" under reference ANR-11-LABX-0031-01, the Inria Associated Team AlDyNet.

We should emphasize that there is another different topic of graph theory, related to Depth/Breadth First Search, called Graph Searching, a.k.a. Graph Traversals (e.g. [CDH + 16]).

Unless stated otherwise, all graphs considered in this chapter are simple, undirected, and connected.

Given a graph G = (V, E) and v ∈ V , N (v) denotes the set of neighbors of v, i.e., N (v) = {u ∈ V | uv ∈ E}.

A minor of a graph G is any subgraph of any graph obtained from G by contracting some edges.

Due to the huge number of works on treewidth, we have decided not to detail them (nor the definition of treewidth) and refer the reader to [Bod98,Die12,CFK + 15].