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Abstract—The quantitative validation of reconstruction algo-
rithms requires reliable data. Rasterized simulations are popular
but they are tainted by an aliasing component that impacts the
assessment of the performance of reconstruction. We introduce
analytical simulation tools that are suited to parallel magnetic
resonance imaging and allow one to build realistic phantoms.
The proposed phantoms are composed of ellipses and regions
with piecewise-polynomial boundaries, including spline contours,
Bézier contours, and polygons. In addition, they take the channel
sensitivity into account, for which we investigate two possible
models. Our analytical formulations provide well-defined data in
both the spatial and k-space domains. Our main contribution is
the closed-form determination of the Fourier transforms that are
involved. Experiments validate the proposed implementation. In
a typical parallel MRI reconstruction experiment, we quantify
the bias in the overly optimistic results obtained with rasterized
simulations—the inverse-crime situation. We provide a package
that implements the different simulations and provide tools to
guide the design of realistic phantoms.

Index Terms—MRI, Fourier analytical simulation, Shepp-
Logan, inverse crime

I. INTRODUCTION

An active area of research in magnetic resonance imaging
(MRI) is the development of reconstruction algorithms. In
particular, the inverse-problem approach is getting popular [2],
where one relies on an accurate model of the measurement
process and possibly on additional information about the object
being imaged.

In general, the development of any reconstruction approach
requires that it be evaluated and compared to others. There are
several reasons to rely on simulations in a first step
• saving the costs inherent to getting real scanner data
• testing the suitability of the implemented discrete forward

model
• quantitatively evaluating the performance of the recon-

struction software
• providing reliable ground-truth data to compare with.

However, for the results to be meaningful, simulations must
be accomplished carefully. For instance, the inverse-crime
situation, where exactly the same discrete model is used for
simulation and reconstruction, leads to artificially good results.
In the context of MRI, many developers of algorithms base their
simulations on rasterized images. One should just be aware
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that such testing does not account for the full continuous-
domain reality, because it neglects the aliasing that is inherent
to spatial discretization. More realistic simulations are required
to remove this bias and to ensure that the methods will perform
adequately in practice.

A method to obtain resolution-independent simulations is
to formulate the simulation analytically in the continuous
domain. This approach goes back to Shepp and Logan [3],
who introduced an ellipse-based phantom (SL) for X-ray
tomography. For MRI, several analytical phantoms have been
proposed. The first works, based on the SL phantom, are by
Smith et al. [4], followed by Van de Walle et al. [5]. More
recently, Koay et al. [6] worked out the MR contribution of
an ellipsoid for the 3-D extension of the SL phantom. Gach
et al. [7] adapted these elliptical phantoms specifically for
MRI, introducing realistic physical parameters as well as T1
and T2 relaxation times. The family of analytical phantoms is
extended by two recent works by Greengard and Stucchio [8]
that use Gaussian functions, and Ngo et al. [9] that introduce
3-D polyhedra.

The attractiveness of currently known analytical phantoms
is limited for two reasons. First, the vast majority of currently
available phantoms (except [9]) use ellipses as basic elements.
While such simple shapes have the advantage of mathematical
tractability, they do not lend themselves well to the generation
of images with realistic anatomical features. Secondly, to
the best of our knowledge, no analytical phantom has been
proposed that would take into account MRI receiving-coil
sensitivities in the context of the simulation of parallel MRI
experiments [10].

In this work, we extend the class of available analytical
phantoms by introducing regions parameterized by spline
contours which are general enough to reproduce polygons and
Bézier contours. Our shapes are well suited for the description
of realistic anatomical regions [11]. To accurately simulate
image formation in parallel MRI, we also make use of analytical
models for the coil sensitivity maps. Specifically, we investigate
the use of two classes of basis functions—polynomials [10] and
complex sinusoids—which both have the ability to generate
maps that are physically realistic. These parametric forms are
used to derive closed-form solutions for the MRI coil data. We
have implemented and tested both models. Our conclusion is
that the new sinusoidal one is preferable because it is better
conditioned and robust to roundoff errors, while offering of
the modeling flexibility that is required. The polynomial model
works well with ellipses and polygons, but tends to display
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TABLE I
GLOSSARY

Acronyms
(p)MR(I) (Parallel) magnetic resonance (imaging)
FOV Field of view
ROI Region of interest
S(E)(N)R Signal-to-(error) (noise) ratio
(N)(R)MSE (Normalized) (root-)mean-squared error
(D)FT (Discrete) Fourier transform
SL Shepp-Logan
TV Total variation
EPI Echo planar imaging
Continuous Domain and Functions
r ∈ R2 spatial coordinates (XY plane)
k ∈ R2 k-space coordinates (XY plane)
ω ∈ R2 Fourier angular frequency
ρ(r) ∈ R+ object (proton density) in space
mS(k) ∈ C k-space observation from channel S
S(r) ∈ C spatial sensitivity of the channel
f̂(ω) ∈ C function f in the Fourier domain
1R(r) ∈ {0, 1} characteristic function of a region R
∂R contour of a region R
Jn ∈ RR n-th order Bessel function of the first kind
erf ∈ CC error function of a complex argument
γ(s, z) ∈ CR×C lower incomplete gamma function
Discrete Data and Linear Algebra
XT transpose of the matrix X
x.y ∈ R regular inner product
ei ∈ Rd the canonical vectors such that x.ei = xi
δk,l ∈ {0, 1} Kronecker’s delta (1 if k = l and 0 otherwise)
j ∈ C imaginary unit such that j2 = −1
Multi-Index Notations for α ∈ Nd
zα =

∏
z
αi
i ∈ R

|α| =
∑
αi ∈ N

p! =
∏
pi! ∈ N(p

q

)
=

∏(pi
qi

)
= p!

(p−q)!q!
∈ N∑b

p=a =
∑b1
p1=a1

∑b2
p2=a2

. . .

numerical instabilities with Bézier contours when the order
becomes too high.

This document is organized as follows: in Section II, we
present the different models considered for the parallel MRI
measurement process, the analytical phantom, and the coil
sensitivities. We motivate and compare the polynomial and
the proposed sinusoidal models. In Section III, we propose
the main theoretical elements that make the analytical MRI
simulation possible, deferring the more technical considerations
until Appendices A, B, and C. Finally, we present in Section
IV the experiments that validate our implementation of the
theoretical tools and an application that quantifies the bias of
rasterized simulations on linear and nonlinear reconstructions,
in a typical parallel MRI setup.

II. MODELING

In this section, we present the MRI measurement model and
building blocks that are used to define our phantom. The main
notations adopted are summarized in Table I.

A. Parallel MRI

We use the well-established linear model for parallel MRI
that relates the object ρ to the k-space signal mSn observed
by each receiving coil, via the Fourier integral

mSn
(k) =

∫
Sn(r)ρ(r)ej2πk.rdr, (1)

where Sn accounts for the sensitivity map of the n-th re-
ceiving channel. The sensitivity map is defined as Sn(r) =
Bx(r) − jBy(r), where, by the principle of reciprocity,
B(r) = (Bx(r), By(r), Bz(r)) corresponds to the magnetic
field generated at point r by a unit-value steady current in the
coil. The Biot-Savart law relates this field to the coil geometry
through the relation

B(r) ∝
∮

coil

du× (u− r)

‖u− r‖3
. (2)

B. Analytical Phantom

We mathematically define the phantom ρ as a simple function,
involving R regions Ri of constant intensity ρi

ρ(r) =

R∑
i=1

ρi1Ri
(r). (3)

The term region refers to a connected and bounded set. The
symbol 1R denotes the characteristic function of a region R.
Such a phantom has a limited spatial support (

⋃R
i=1Ri) that

we call a region of interest (ROI).
This model allows us to render realistic phantoms of two

kinds
• piecewise-constant phantoms that mimic segmented data

with sharp contours (e.g., the SL brain phantom)
• textured phantom via a triangular-mesh approach.
We investigate the first approach in this paper. The contours

that are considered are ellipses, polygons, and quadratic-spline
curves. We show in Figure 1 three such phantoms that we use
in our experiments.

C. Sensitivity Models

For computations, we need to parameterize the complex
sensitivity maps. It is commonly admitted that they are smooth
and slowly-varying spatially. It is therefore possible to generate
physically-realistic sensitivity maps using a reasonably small
number of lowpass basis functions. Here, we discuss two
models that are well-suited for this task. They both relate
linearly the parameters to the complex sensitivity values.
Moreover, their corresponding MRI models involve the Fourier
integrals of monomials over the regions of the phantom.

Definition II.1. For α ∈ Nd and R a region of Rd

fαR(ω) =

∫
R
rαe−jω.rdr. (4)

Here, we adopted the multi-index notation rα defined in
Table I.

1) Polynomial Sensitivity: This model, first proposed in [10]
to represent the local behavior of the sensitivity, assumes that
the coil sensitivity S is represented by a polynomial of degree
D inside the ROI as

S(r) =

D∑
d=0

∑
|α|=d

sd,αr
α, ∀r ∈ ROI. (5)

As the degree D increases, the model will reproduce sharper
transitions. The number of polynomial coefficients is Np =
(D + 1)(D + 2)/2.

http://en.wikipedia.org/wiki/Multiindices
http://en.wikipedia.org/wiki/Simple_function
http://en.wikipedia.org/wiki/Connected_set
http://en.wikipedia.org/wiki/Bounded_set
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Fig. 1. Phantoms parameterized by elliptical and Bézier-defined regions. From left to right: rectangle phantom used for validation, the Shepp-Logan phantom,
and a proposed brain phantom. The PDF and SVG versions of these phantoms are available online at http://bigwww.epfl.ch/algorithms/mriphantom/.
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Fig. 2. Grid of the angular frequencies involved in the sinusoidal model.

The corresponding MR response is given by

mS(k) =

R∑
i=1

ρi

D∑
d=0

∑
|α|=d

sd,αf
α
Ri

(−2πk). (6)

2) Sinusoidal Sensitivity: Alternatively, the coil sensitivity
is defined by the linear combination of complex exponentials

S(r) =
∑
v

svejr.v, ∀r ∈ ROI. (7)

We propose to constrain the problem to the angular frequencies
v on a Cartesian grid with spacings that correspond to twice the
considered field of view (FOV). The low-frequency properties
are ensured by only considering the L×L angular frequencies
around the origin (see Figure 2).

Similarly to the effect of the polynomial degree D, an
increase in the parameter L allows one to reproduce sharper
transitions. The number of coefficients is given by Ns = L2.
The corresponding MR response is given by

mS(k) =

R∑
i=1

ρi
∑
v

svf
0
Ri

(−2πk− v). (8)

3) Comparison: In order to evaluate and compare the ability
of the two models to describe realistic sensitivity maps, we
considered a 256 × 256 rasterization of the SL phantom
and the 27,648 pixels of its ROI. Using Biot-Savart’s law
(2), we simulated the complex sensitivity maps of a 24-
channel circular head coil array (FOV=28cm, distance to
center=17cm, radius=5cm) distributed around the phantom.
Then, the parameters of the two models where selected to fit
the maps. In Figure 3, the average fitting properties of the two
models are presented as a function of the number of parameters.

We observe that the fitting accuracy of both models rapidly
increases with the number of parameters, with a sensible
advantage for the sinusoidal model. The downside is an
increased condition number for the fitting operations. With
respect to that criterion, the sinusoidal model behaves also
better. The maximal spatial errors are comparable for both
models.

III. ANALYTICAL MRI MEASUREMENTS

A. Overview of Analytical Fourier Computations

In this section, we present the theoretical tools that are
necessary to derive the analytical expression of the MRI
measurements. Proofs and additional calculation details are
provided in Appendices A, B, and C.

The models presented in the previous section allow us to
decompose the analytical MRI measurements into Fourier
integrals of the sensitivity over the regions that compose the
phantom. Depending on the type of region or sensitivity model,
we propose tailored methods to decompose the analytical
response as a sum of special functions that can be computed
accurately and rapidly. In Figure 4, we present the roadmap of
these decompositions that are defined and worked out in the
sequel.

B. Elliptical Regions

Let us consider an elliptical region E parameterized by its
center rc, the angle θ formed between its semimajor axis
A and the abscissa, and its semiminor axis B. The linear
transformation

r 7→ u = D−1RT (r− rc) , (9)

with D = diag(A,B) and R the rotation matrix of angle θ,
maps E into a unit disk, that is to say, E = {u | ‖u‖ ≤ 1}.
The Fourier transform of the unit disk involves the functions

Gn(x) = Jn(‖x‖)/ ‖x‖n , (10)

where Jn denotes the n-th order Bessel function of the first
kind [12].

Using the sinusoidal sensitivity model, the integral f0E can
be worked out [5] as

f0E (ω) = 2π|D|e−jω.rcG1

(
DRTω

)
, (11)

http://bigwww.epfl.ch/algorithms/mriphantom/
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Fig. 3. Fitting properties of the two sensitivity models as a function of the number of parameters. From left to right: approximation signal to error ratio (SER)
in dB, maximal absolute error, and condition number of the fitting matrix.

MRI model
(1)

Sensitivity
• Polynomial
• Sinusoidal

k-space trajectory

Phantom (3)
• Ellipse
• Bézier

Surface Integrals
(6) and (8)

fαR in (4)

Contour Integrals
Thm. III.2

Polygons
and Bézier

Decomposition
(21) and (22)

(15) and (16)

1D Integrals
Prop. III.4

Error and Gamma functions
Appendix B

(23)

Change of Coordinates
(9) and (14)

Ellipse

Partial Derivatives
(12)

Polynomial

Recursion
(13)

Bessel functions
(10)

Sinus.

Fig. 4. Roadmap of analytical Fourier computations.

where |D| represents the absolute value of the determinant of
matrix D.

When considering the polynomial sensitivity model, we
suggest to first consider the change of variables (9), rather than
computing fαE directly. We write that∫
E
uαe−jω.rdr = 2π|D|j|α|e−jω.rc

(
∂|α|G1

∂xα

)(
DRTω

)
.

(12)
The interesting point is that the partial derivatives ∂|α|G1/∂x

α

can be decomposed recursively as a sum of Gn thanks to the
property

∇Gn(x) = −xGn+1(x). (13)

The coefficients of the polynomial in terms of the new
coordinates (9) are required to satisfy

S(r) =

D∑
d=0

∑
|α|=d

sd,αr
α =

D∑
d=0

∑
|α|=d

td,αu
α. (14)

They can be computed by inverting the matrix that relates the
Np coefficients to the sensitivity values at N ≥ Np randomly
chosen points in terms of the new coordinates.

The MR contribution of such an elliptical contour is
presented in Table II.

C. Piecewise-Quadratic Contours

In this section, we first provide relations for the computation
of the d-dimensional Fourier transform of a monomial delimited
by a connected subset B of Rd. With methods that are similar
to the ones used in [13], we show how to decompose the
d-dimensional Fourier integral into a sum of integrals over
the contour ∂B. These summed integrals are of reduced
dimensionality. In a second step, we show how quadratic-spline
curves involve a family of 1-D integrals.

1) Fourier Transform of Monomials over a Connected Set:
We show that the surface integral fαB in (4) can be decomposed
into a sum of contour integrals.

Definition III.1. We define

gαB (0) =

∫
∂B

rα+ek

1 + αk
ek.ndσ, for any k, (15)

gαB (ω) =

∫
∂B

rα
e−jω.r

‖ω‖2
ω.ndσ, ∀ω ∈ Rd \ {0} ,(16)

where n stands for the outward-pointing unit normal of
boundary element dσ. Note that gαB is not continuous at the
origin ω = 0.

Theorem III.2. For ω ∈ Rd \ {0} and α ∈ Nd,

fαB (ω) = j

α∑
m=0

(
−jω

‖ω‖2

)α−m
|α−m|!

(
α

m

)
gmB (ω), (17)

and

fαB (0) = gαB (0). (18)

The consequence of Theorem III.2 is that the d-dimensional
integral fαB can be decomposed into a sum of (d − 1)-
dimensional integrals. By recursion, the fαB can be computed
via 1D integrals. The proof is provided in Appendix A.

Note that the case ω = 0, which corresponds to the
calculation of the moments of the region, has been worked out
first by Jacob et al. in [14] for parametric 2-D spline contours.
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TABLE II
CLOSED-FORM MR CONTRIBUTION OF ELLIPTICAL AND QUADRATIC BÉZIER REGIONS FOR THE PROPOSED SENSITIVITY MODELS.

Sensitivity model Ellipse Quadratic Bézier curve
Sinusoidal (7) 2π|D|ej2πk.rc

∑
v

sve
jv.rcG1 (DR(−θ)(2πk+ v))

∑
v

svf
0
B(−2πk− v)

Polynomial (14) 2π|D|e2πjk.rc
D∑
d=0

∑
|α|=d

j|α|td,α
∂|α|G1

∂xα
(2πDR(−θ)k)

D∑
d=0

∑
|α|=d

sd,αf
α
B (−2πk)

c0
c1

c2

c3

c4c5
r0

r1

r2

r3

r4
r5r′(t)

r(t)

r′⊥(t)

n(t)

Fig. 5. Example of a quadratic-spline-defined region with N = 6 control
points. The boundary is described counter-clockwise and the normal vector is
outward-pointing. The contour is represented piecewise by quadratic Bézier
curves.

2) Parameterization of a Contour in 2-D: The region B is
defined by its boundary, the contour ∂B. In 2-D, a convenient
way to parameterize the contour is by the use of a B-spline
generating function ϕ such that

∀r ∈ ∂B,∃t ∈ R, r(t) =
∑
p∈Z

cpϕ(t− p). (19)

The considered contour is closed. Consequently, the vector-
valued function r must be periodic. In addition, the number
N of coefficients cp that characterize the curve must be finite.
The simplest way to satisfy these constraints is to impose that
the sequence of coefficients cp be N -periodic. This enforces
the N -periodicity of r.

If we note ϕp the N -periodized version of ϕ, the contour
is parameterized either globally as

∀t ∈ [0, N [ , r(t) =

N−1∑
q=0

cqϕp(t− q) (20)

or piecewise, with 0 ≤ t = n+ λ < M , n ∈ 0 . . . N − 1 and
λ ∈ [0, 1[, as

r(λ+ n) =

N−1∑
q=0

cn−qϕp(λ+ q). (21)

3) Decomposition of the Contour Integrals: We introduce the
notation z⊥ for the vector perpendicular to z with same norm
and pointing outwards the region B at the considered point (see
Figure 5). We write r′(t) = ∂r

∂t (t). The piecewise representation
of the contour (21) can be exploited to decompose the contour
integral of interest, for instance (15) or (16), which leads to∫

∂B
F(r).ndσ =

N−1∑
q=0

∫ 1

0

F (r(q + λ)).r′⊥(q + λ)dλ. (22)

4) Quadratic Bézier Curves: In the sequel, we focus on
contours represented by linear and quadratic B-splines. The
former describe polygons while the latter give a piecewise
description of quadratic Bézier curves. Three equivalent piece-
wise representations can be useful and are given in Table III
with their relationships.

Definition III.3.

h(m)(a, b) =

∫ 1

0

λme−jλ(a+λb)dλ. (23)

Proposition III.4. For ω ∈ Rd \ {0} and a contour ∂B
parameterized piecewise by r(λ + n) = rn + λβn + λ2γn,
with n ∈ N and λ ∈ [0, 1], we have that

gαB (ω) =
1

‖ω‖2
N−1∑
n=0

e−jω.rn
2|α|+1∑
i=0

dn,ih
(i)(ω.βn,ω.γn)

(24)
while

gαB (0) =

N−1∑
n=0

2|α|+3∑
i=0

d′n,ih
(i)(0, 0), (25)

where, with the notation σp = |p2| + 2|p3|, the symbol dn,i
stands for∑

p1+p2+p3=α

rp1
n β

p2
n γ

p3
n α!

p1!p2!p3!
ω.
(
β⊥n δσp,i + 2γ⊥n δσp,i−1

)
,

(26)
and d′n,i stands for∑
p1+p2+p3=α+ek

rp1
n β

p2
n γ

p3
n α!

p1!p2!p3!
ek.
(
β⊥n δσp,i + 2γ⊥n δσp,i−1

)
.

(27)

The values h(m)(a, b) follow a three-term recurrence rela-
tion [15]. More details on their numerical computation are
given in Appendix B.

Note that the piecewise parameterization of the contour of
a polygon corresponds to the particular case of a quadratic
parameterization with βn = rn+1 − rn and γn = 0. Such
simpler polygonal models with homogeneous sensitivities have
been considered in prior work [8, Prop. 3.2] using a similar
formulation.

IV. EXPERIMENTS

A. Implementation Details

Our implementation uses Matlab 7.12 (Mathworks, Natick).
The experiments run on a 64-bit 8-core computer, 8GB RAM,
Mac OS X 10.6.7.

We implemented the analytical computations as described
by the scheme in Figure 4, with double float precision. For
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TABLE III
PIECEWISE REPRESENTATIONS OF QUADRATIC-B-SPLINE CONTOURS.

Representation r(t) = r(λ+ n) with n ∈ N and λ ∈ [0, 1] Relations

B-spline (global) λ2

2
cn +

(
1
2
+ λ− λ2

)
cn−1 + 1

2
(1− λ)2 cn−2 rn = 1

2
(cn−1 + cn−2)

Polynomial (piecewise) rn + λβn + λ2γn βn = 2 (cn−1 − rn)
Bézier curve (design) (1− λ)2rn + 2λ(1− λ)cn−1 + λ2rn+1 γn = rn+1 + rn − 2cn−1

efficient computations of the error function of a complex
variable, we coded the critical parts of erfz in C++/MEX,
with POSIX multithreading, following Marcel Leutenegger’s
recommendations1. The code implementing Theorem III.2
utilizes Matt Fig’s npermutek2. The rasterization of spline-
defined regions, which is performed without approximation,
partly relies on Bruno Luong’s fast MEX implementation of
insidepoly3. Our package also includes graphical tools to
design the analytical phantoms. For purposes of adequate visu-
alization, export to the popular vector-graphics formats SVG 1.1
and PDF (via the PGF/Tikz LATEX package) is supported. The
package is distributed4 in order to provide sensitivity fitting,
phantom-design interface, analytical simulation tools, and to
allow replication of the experiments of this section.

Unlike the sinusoidal model which is very robust to nu-
merical errors, our current implementation of the three-term
recurrence relation (see Appendix B) leads to instabilities
when using the polynomial model. The theoretical relation
|h(m)(a, b)| ≤ 1/(m + 1) is sometimes violated for orders
m ≥ 2 and large values of the first argument. This prevented
us to present valid simulations of piecewise quadratic contours
combined with a polynomial sensitivity. Given the comparison
of the two models in Section II-C3, we considered the
sinusoidal model with parameter L = 7, that is Ns = 49
in Figure 3, which lead to accurate representations of the
physical sensitivities and numerically tractable inversions.

As an alternative to our analytical method, we consider the
traditional simulation procedure that consists in i) sampling
the phantom with a grid of a given size and ii) resampling the
DFT of this discrete image according to the desired k-space
trajectory. We call this procedure a rasterized simulation. It
is expected to be consistent with our analytical method only
when considering an infinitely dense sampling.

For reconstructions, we consider an optimization problem
of the form

x? = arg min
x
‖m−Ex‖22 + λP(x), (28)

where x represents an image, x? is the reconstructed one, m is
the concatenated scanner data vector, E is the encoding matrix,
and P is a regularization function. With N receiving channels
and M k-space measurements at positions {km}m=1..M , the
MRI encoding matrix E is formed as

E = (In ⊗E0) [diag (s1) , . . . ,diag (sN )]
T
, (29)

1available online at https://documents.epfl.ch/users/l/le/leuteneg/www/
2available at http://www.mathworks.com/matlabcentral/fileexchange/

11462-npermutek/
3available at http://www.mathworks.com/matlabcentral/fileexchange/

27840-2d-polygon-interior-detection/
4available online at http://bigwww.epfl.ch/algorithms/mriphantom/

TABLE IV
ERRORS OF OUR ANALYTICAL SIMULATIONS FOR THE RECTANGLE.

NRMSE 1.5e-15
max. error in k-space 2.8e-16
max. error inverse DFT 7.0e-15

with In representing the n× n identity matrix, the symbol ⊗
standing for the Kronecker product, and sn being the nth coil
sensitivity map vector in the same way as x. The encoding
matrix E0 corresponds to the same MRI scan with a single
homogeneous receiving coil and is defined as

E0 = [v1, . . . ,vM ]
T
. (30)

There, vm are vectors such that, for a pixel of coordinates p,
(vm)p = exp (−2jπkm.p).

We used two types of regularizations in our experiments
• P(x) = ‖x‖22 corresponds to a Tikhonov regularization,

which leads to linear reconstructions that we implemented
with the conjugate-gradient method.

• P(x) = ‖x‖TV is the isotropic total-variation pseudo-
norm, which leads to a nonlinear reconstruction problem.
This reconstruction scheme is often used in compressed-
sensing research and is particularly suited for dealing
with piecewise-constant images such as our phantoms.
We implemented it using the iteratively reweighted least-
squares algorithm, also known as the additive form of the
half-quadratic minimization [16], [17].

B. Validation of the Implementation

1) Simple Example with Homogeneous Sensitivity: As first
validation, we consider the simple phantom composed of a
rectangular region that is represented in Figure 1. Under a
proper change of variables, it yields a square and its Fourier
transform is given by a product of sinc functions. This phantom
is composed of a polygon and consequently falls in the category
of the spline-defined contours. We test the accuracy of our
proposed simulation method and of the rasterized approach
against the closed-form solution. To do so, we consider the
MR response associated with a homogeneous receiving coil
sensitivity and a 256× 256 Cartesian k-space sampling. The
simulation errors are reported in Tables IV and V.

As expected, the error of rasterized simulations decreases
when the sampling density increases. Meanwhile, the accuracy
of our analytical implementation is as good as the machine
double float precision would allow. Thus, we conclude
that we can indistinctly use the closed-form ground truth or
our proposed analytical model in the conditions of Section
IV-B1.

http://en.wikipedia.org/wiki/B�zier_curve#Quadratic_B.C3.A9zier_curves
https://documents.epfl.ch/users/l/le/leuteneg/www/
http://www.mathworks.com/matlabcentral/fileexchange/11462-npermutek/
http://www.mathworks.com/matlabcentral/fileexchange/11462-npermutek/
http://www.mathworks.com/matlabcentral/fileexchange/27840-2d-polygon-interior-detection/
http://www.mathworks.com/matlabcentral/fileexchange/27840-2d-polygon-interior-detection/
http://bigwww.epfl.ch/algorithms/mriphantom/
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TABLE V
ERRORS OF THE RASTERIZED SIMULATIONS FOR THE RECTANGLE PHANTOM.

Sampling density 256 352 400 512 704 800 1024 1408 1600 2048
NRMSE 5.58e-02 2.51e-02 2.01e-02 1.25e-02 7.45e-03 6.04e-03 3.85e-03 1.59e-03 1.27e-03 8.32e-04
max. error in k-space 5.5e-03 2.0e-03 1.5e-03 1.1e-03 5.5e-04 5.3e-04 3.6e-04 1.2e-04 1.0e-04 5.8e-05
max. error inverse DFT 5.5e-01 1.9e-01 1.6e-01 1.0e-01 6.2e-02 5.4e-02 3.9e-02 1.5e-02 1.2e-02 6.7e-03

2) Validation with non-Homogeneous Sensitivity: We now
use our analytical phantom as a gold standard to evaluate
the accuracy the measurements obtained from rasterized
simulations. We consider the SL and brain phantoms. The
single sensitivity map is computed using Biot-Savart’s law
and is approximated on the support of each phantom with the
sinusoidal model. The k-space is on a 128 × 128 Cartesian
grid. Errors are reported in Table VI.

We observe that the errors decrease with the same trend as
in the rectangle case, which strongly suggests that our gold
standard is accurate. Meanwhile, for a given sampling density,
the errors occurring with the SL phantom are consistently
larger than the ones corresponding to the brain phantom. This
is explained by the fact that the SL phantom presents edge
transitions of larger intensity.

C. Applications

1) Investigation of Aliasing Artifacts: Let us consider the
function f(u) = Sρ(Mu) which depends on the spatial
sampling step matrix M. According to (1), the analytical MR
data are given by mS(k) = |M|f̂ (−Mk).

When the benefits of an analytical model are forsaken,
the MRI data are generated from a rasterized version of the
phantom and the sensitivity, using the (non-necessarily uniform)
discrete Fourier transform (DFT)

mM(k) = |M|F
(
e−2πjMk

)
, (31)

with ‖Mk‖∞ ≤ 1/2 and

F
(
e2jπν

)
=
∑
p∈Z2

f(p)e−2jπp.ν =
∑
q∈Z2

f̂ (ν + q) . (32)

The right-hand side of (32) can be worked out using Poisson’s
summation formula. The terms with q 6= 0 represent the
aliasing that occurs with rasterized simulations. Due to the
intrinsically discontinuous nature of the phantom ρ, the
Fourier transform f̂ decreases slowly, leading to significant
aliasing artifacts. However, as the sampling density increases
(Tr
(
M
)
→ 0), the impact of aliasing is reduced, as we saw

in Section IV-B.
Let us define an ideal anti-aliasing filter h in the Fourier

domain as

ĥ(ν) =

{
1 if ‖ν‖∞ ≤ 1/2,

0 otherwise.
(33)

For normalized frequencies ν such that ‖ν‖∞ ≤ 1/2, the
analytical simulation (unaliased) is characterized as the DFT
of the samples of the lowpass-filtered continuous signal

f̂ (ν) =
∑
p∈Z2

(h ∗ f) (p)e−2jπp.ν , (34)

where (h ∗ f) represents the spatial continuous convolution of
h and f .

When using a full Cartesian k-space sampling, the classical
approach to reconstruction is to perform an inverse DFT. In this
case, the samples of the signal f will be perfectly recovered out
of the rasterized simulation (32) which is not desired because
it conceals the existence of the Gibbs phenomenon due to the
antialiasing filter (see, for instance, [18]). By contrast, the data
provided by our analytical model lead to a fairer reconstruction
where the Gibbs phenomenon appears. This effect is illustrated
in Figure 6.

Counterintuitively, the reconstructions out of rasterized
simulations lead to aliasing effects that have a positive impact
on visual quality. This situation, which occurs when the
same model is used for both simulation and reconstruction, is
sometimes referred to as “inverse crime”. It arises because of
the artificially imposed consistency between the computational
forward models used for simulation and reconstruction. In
such an inverse-crime situation, the continuous nature of the
underlying physical model is not taken into account.

2) Impact of Rasterized Simulations on Reconstruction:
We consider a plausible pMRI setup. It involves an array of 8
receiver coils that are uniformly distributed around the phantom.
The corresponding sensitivity maps are computed according
to Biot-Savart’s law. Spiral and EPI k-space trajectories are
considered, both supporting a 256× 256 image with reduction
factor R = 4. The simulated raw data are generated using
our analytical method as well as 256 × 256 and 512 × 512
rasterized simulations (see Section IV-C1). The same realization
of complex Gaussian noise is added to the simulated data
with different intensities, according to three scenarios: very
low noise (40dB SNR), normal data (30dB SNR), and very
noisy data (20dB SNR). Reconstructions are performed using
quadratic (Tikhonov linear solution) and TV regularizations.
The reconstruction algorithms use the same forward model, in
the form of the same encoding matrix E. The experiments only
differ in terms of the input data. The regularization parameter
is tuned to optimize the SER with respect to the ground-truth
phantom (256× 256 rasterization of the phantom). We report
our results in Table VII for the spiral trajectory and in Table
VIII for the EPI experiments. Reconstructed images are shown
in Figures 7 and 8, together with their error maps, in order to
illustrate the impact of the inverse-crime situation (the 256×256
rasterized simulation) in the different scenarios.

The reconstructions in the spiral experiment are penalized
compared to the EPI ones, in the sense that the high-frequency
corners of the k-space are not sampled which leads to slightly
inferior resolution. This explains that, all other parameters
remaining constant, the EPI reconstructions outperform the
spiral ones qualitatively and quantitatively.
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TABLE VI
ERRORS OF THE RASTERIZED SIMULATIONS FOR THE BRAIN AND SL PHANTOMS VERSUS OUR ANALYTICAL SIMULATIONS.

Sampling density 128 176 256 352 512 704 1024 1408 2048 2816
NRMSE 1.45e-01 9.26e-02 5.45e-02 3.48e-02 2.13e-02 1.02e-02 6.70e-03 4.06e-03 2.03e-03 1.49e-03

Brain max. err. k-space 1.1e-02 5.7e-03 3.3e-03 2.6e-03 1.4e-03 6.6e-04 4.1e-04 2.4e-04 1.5e-04 9.5e-05
max. err. inverse DFT 2.3e-01 1.4e-01 1.1e-01 7.9e-02 5.1e-02 2.0e-02 2.1e-02 1.4e-02 4.8e-03 5.6e-03

NRMSE 2.76e-01 1.79e-01 9.74e-02 5.38e-02 2.85e-02 2.01e-02 1.28e-02 6.23e-03 3.34e-03 2.03e-03
SL max. err. k-space 2.9e-02 1.6e-02 8.8e-03 4.9e-03 2.6e-03 1.7e-03 1.0e-03 6.1e-04 3.0e-04 1.7e-04

max. err. inverse DFT 4.7e-01 3.0e-01 1.6e-01 1.1e-01 6.5e-02 3.9e-02 3.3e-02 1.3e-02 7.0e-03 5.0e-03
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Fig. 6. 64× 64 SL full Cartesian sampling reconstructions. From left to right: analytical simulation, rasterized “inverse crime” simulation, and corresponding
line profiles.

TABLE VII
RECONSTRUCTION BIAS OF RASTERIZED SIMULATIONS ON QUADRATIC AND TV REGULARIZATION RECONSTRUCTIONS OF THE BRAIN PHANTOM FOR THE

SPIRAL SENSE EXPERIMENT. OPTIMIZED SER AND CORRESPONDING BIAS ARE SHOWN IN DB.

Channel data SNR 40dB 30dB 20dB
Sampling density 256 512 256 512 256 512

Linear SER 24.61 19.92 20.31 17.99 14.09 13.45
Bias 5.07 0.37 2.56 0.24 0.75 0.11

TV SER 33.75 20.80 27.60 20.26 19.61 17.72
Bias 13.45 0.49 7.75 0.42 2.43 0.54

TABLE VIII
RECONSTRUCTION BIAS OF RASTERIZED SIMULATIONS ON QUADRATIC AND TV REGULARIZATION RECONSTRUCTIONS OF THE BRAIN PHANTOM FOR THE

EPI SENSE EXPERIMENT. OPTIMIZED SER AND CORRESPONDING BIAS ARE SHOWN IN DB.

Channel data SNR 40dB 30dB 20dB
Sampling density 256 512 256 512 256 512

Linear SER 36.25 20.77 26.30 19.79 16.73 15.31
Bias 16.02 0.54 6.95 0.44 1.61 0.19

TV SER 42.25 20.98 32.75 20.73 23.92 19.29
Bias 21.85 0.58 12.57 0.55 5.02 0.39

We observe that the reconstructions from rasterized simula-
tions consistently outperform the ones obtained from analytical
measurements. While large differences can occur between the
inverse-crime scenario (the 256× 256 rasterized simulations)
and the analytical simulation data, the 512× 512 simulations
yield much closer performance, with at most a 0.6 dB SER
difference. This is explained by the reduced aliasing artifacts
when doubling the sampling density (see Section IV-C1). As
expected for this type of piecewise-constant phantom, the
TV reconstructions consistently outperform the linear ones.
Whatever the simulation method is, TV brings a significant
improvement in the very noisy scenario. However, for the
other scenarios (SNR 30dB and 40dB), the improvement
over linear reconstruction is modest when using the analytic
measurements, whereas it is artificially spectacular using the

256× 256 rasterized simulations. We believe that our quality
assessment, obtained analytically, offers fairer predictions of
the practical worth of a reconstruction method than its overly
optimistic rasterized version.

V. CONCLUSION

We proposed a method to develop realistic analytical
phantoms for parallel MRI. Our analytical phantom approach
offers strong advantages for the quantitative validation of MRI
and pMRI reconstruction softwares: it is flexible enough to
represent general imaging targets, it provides highly accurate
representation of the physical continuous model and avoids
overly optimistic reconstructions. This kind of framework is
also applicable to the assessment of advanced MRI recon-
struction methods such as autocalibrating parallel imaging, B0
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Fig. 7. Reconstructed Brain phantoms and error maps for the spiral SENSE experiment.

correction [19], motion correction [20], [21], or higher order
field imaging [22].

Implementations of the phantom are made available to the
community.
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APPENDIX

A. Proof of Theorem III.2
First, we consider the case ω = 0.

Proof: Take ψ(r) = rα and ϕ(r) = (ek.r)2/2 = r2k/2.
Then, ∇ (rα).ek = αkr

α−ek , ∇ϕ = rkek, and ∆ϕ =
1. Using Green’s first identity yields (1 + αk)fαB (0) =∫
∂B r

α+ekek.ndσ.
For the case ω 6= 0, we need an intermediate result.

Lemma A.1. For ω ∈ Rd \ {0} and α ∈ Nd,

fαB (ω) = jgαB (ω) +
∑
i

(
−jωi

‖ω‖2

)
αif

α−ei

B (ω). (35)

Proof: Use Green’s first identity with ψ(r) = rα, ϕ(r) =
−e−jω.r, and the fact that x.∇rα =

∑
i xiαir

α−ei .
Let us continue the proof of Theorem III.2 by mathematical

induction on n = |α|. For n = 0, α = 0 and the result
holds true according to Lemma A.1. When considering n = 1,
α = ei, and Lemma A.1, we obtain fei

B (ω) = jgei

B (ω) +
ωi

‖ω‖2 g
0
B(ω). This is true for all i, hence the result holds true

for n = 1. Now, we suppose the result holds true at order
n and we consider α such that |α| = n + 1. From Lemma
A.1, we have that fαB (ω) = jgαB (ω)+

∑
i

(
−jωi

‖ω‖2

)
αif

α−ei

B (ω).

Since |α− ei| = n, we substitute fα−ei

B using the induction
hypothesis and, after simplifications, we obtain

fαB (ω) = jgαB (ω) + j
∑
i

α∑
m=0

(
−jω

‖ω‖2

)α−m
× |α−m|!di(α−m)

(
α

m

)
gmB (ω)

with di(x) = xi/|x| for x 6= 0 and di(0) = 0. By permutation
of the sums and noting that

∑
i di(x) = 1 for x 6= 0 and∑

i di(0) = 0, we get

fαB (ω) = j

α∑
m=0

(
−jω

‖ω‖2

)α−m
|α−m|!

(
α

m

)
gmB (ω).

http://en.wikipedia.org/wiki/Green's_identities#Green.27s_first_identity
http://en.wikipedia.org/wiki/Green's_identities#Green.27s_first_identity
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Fig. 8. Reconstructed Brain phantoms and error maps for the EPI SENSE experiment.

This is valid for all α such that |α| = n + 1. Hence, the
induction hypothesis was proved at order n + 1 assuming it
holds true at order n.

B. Characterization and Computations of a Family of 1-D
Integrals

Proposition A.2. For m ∈ N, h(m) follows the recursion rule

2jbh(m+1)(a, b)+jah(m)(a, b)−mh(m−1)(a, b)+e−j(a+b) = δm.

Proof: Integrate
∫ 1

0
−j(a+ 2bλ)λme−jλ(a+λb)dλ by parts

and identify h(m+1), h(m) and h(m−1) if m > 0.

Corollary A.3. For small values of a and b, one can rely on
the backward iteration starting from a higher order M > m
to get accurate results
• h̃(M+1)(a, b) = h̃(M)(a, b) = 0

• h̃(m)(a, b) = 2jbh̃(m+2)(a,b)+jah̃(m+1)(a,b)+e−j(a+b)

m+1 .

Proposition A.4. For b nonzero and m ≥ 1, the forward
iteration is used

• h(0)(a, b) =
√
πe

ja2

4b

2
√
jb

[
erf
(

(a+2b)
√
j

2
√
b

)
− erf

(
a
√
j

2
√
b

)]
• h(m+1)(a, b) = mh(m−1)(a,b)−jah(m)(a,b)+e−j(a+b)

2jb .

with erf(z) = 2z√
π

∫ 1

0
e−z

2t2dt.

Proof: From Proposition A.2 with m = 0 and b =
0, we get h(0)(a, 0) = e−ja/2sinc(a/(2π)). In the case
b 6= 0, we define t = λ + a

2b such that λ(a + bλ) =
a2

4b − bt2. By Definition (23), we get e−j
a2

4b

∫ 1

0
e−jbt

2

dλ.
By a change of variable and splitting the integral, we ob-
tain ej

a2

4b

(∫ a
2b+1

0
e−jbt

2

dt−
∫ a

2b

0
e−jbt

2

dt
)

. The result follows
from normalizing the integration intervals.

Proposition A.5. For b small, the truncated Taylor series in
b = 0 provides accurate results

h(m)(a, b) =

∞∑
n=0

(−jb)nγ(m+ 2n+ 1, ja)

n!(ja)m+2n+1
, (36)

where the lower incomplete gamma function is defined as
γ(s, z) = zs

∫ 1

0
λs−1e−λzdλ.

Proof: Note that e−jλ(a+λb) = e−jλa
∑∞
n=0(−jλ2b)n/n!.

By virtue of Fubini’s theorem, we get

h(m)(a, b) =

∞∑
n=0

(−jb)nh(m+2n)(a, 0)/n!.

Identify γ(m+ 2n+ 1, ja) to (ja)m+2n+1h(m+2n)(a, 0).
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C. Proof of Proposition III.4

Proof: We rewrite gαB using Characterization (22) with
F (r) = rαe−jω.r

‖ω‖2 ω for ω 6= 0 and F (r) = rα+ek

1+αk
ek for ω = 0.

The piecewise parameterization of the contour (Table III) is
then used, and by virtue of the multinomial theorem, we expand
the terms rα and rα+ek .
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