M Guerquin-Kern 
  
L Lejeune 
  
K P Pruessmann 
  
M Unser 
  
Realistic Analytical Phantoms for Parallel Magnetic Resonance Imaging

Keywords: MRI, Fourier analytical simulation, Shepp-Logan, inverse crime

The quantitative validation of reconstruction algorithms requires reliable data. Rasterized simulations are popular but they are tainted by an aliasing component that impacts the assessment of the performance of reconstruction. We introduce analytical simulation tools that are suited to parallel magnetic resonance imaging and allow one to build realistic phantoms. The proposed phantoms are composed of ellipses and regions with piecewise-polynomial boundaries, including spline contours, Bézier contours, and polygons. In addition, they take the channel sensitivity into account, for which we investigate two possible models. Our analytical formulations provide well-defined data in both the spatial and k-space domains. Our main contribution is the closed-form determination of the Fourier transforms that are involved. Experiments validate the proposed implementation. In a typical parallel MRI reconstruction experiment, we quantify the bias in the overly optimistic results obtained with rasterized simulations-the inverse-crime situation. We provide a package that implements the different simulations and provide tools to guide the design of realistic phantoms.

I. INTRODUCTION

An active area of research in magnetic resonance imaging (MRI) is the development of reconstruction algorithms. In particular, the inverse-problem approach is getting popular [START_REF] Ribés | Linear inverse problems in imaging[END_REF], where one relies on an accurate model of the measurement process and possibly on additional information about the object being imaged.

In general, the development of any reconstruction approach requires that it be evaluated and compared to others. There are several reasons to rely on simulations in a first step

• saving the costs inherent to getting real scanner data • testing the suitability of the implemented discrete forward model • quantitatively evaluating the performance of the reconstruction software • providing reliable ground-truth data to compare with. However, for the results to be meaningful, simulations must be accomplished carefully. For instance, the inverse-crime situation, where exactly the same discrete model is used for simulation and reconstruction, leads to artificially good results. In the context of MRI, many developers of algorithms base their simulations on rasterized images. One should just be aware This work was supported by the Swiss National Competence Center in Biomedical Imaging (NCCBI). A preliminary version of this work was presented in [START_REF] Guerquin-Kern | Analytical form of Shepp-Logan phantom for parallel MRI[END_REF]. that such testing does not account for the full continuousdomain reality, because it neglects the aliasing that is inherent to spatial discretization. More realistic simulations are required to remove this bias and to ensure that the methods will perform adequately in practice.

A method to obtain resolution-independent simulations is to formulate the simulation analytically in the continuous domain. This approach goes back to Shepp and Logan [START_REF] Shepp | The Fourier reconstruction of a head section[END_REF], who introduced an ellipse-based phantom (SL) for X-ray tomography. For MRI, several analytical phantoms have been proposed. The first works, based on the SL phantom, are by Smith et al. [START_REF] Smith | Alternatives to the use of the DFT in MRI and spectroscopic reconstructions[END_REF], followed by Van de Walle et al. [START_REF] Van De Walle | Reconstruction of MR images from data acquired on a general nonregular grid by pseudoinverse calculation[END_REF]. More recently, Koay et al. [START_REF] Koay | Three-dimensional analytical magnetic resonance imaging phantom in the Fourier domain[END_REF] worked out the MR contribution of an ellipsoid for the 3-D extension of the SL phantom. Gach et al. [START_REF] Gach | 2D & 3D Shepp-Logan phantom standards for MRI[END_REF] adapted these elliptical phantoms specifically for MRI, introducing realistic physical parameters as well as T 1 and T 2 relaxation times. The family of analytical phantoms is extended by two recent works by Greengard and Stucchio [START_REF] Greengard | Spectral edge detection in two dimensions using wavefronts[END_REF] that use Gaussian functions, and Ngo et al. [START_REF] Ngo | Three dimensional digital polyhedral phantom framework with analytical fourier transform and application in cardiac imaging[END_REF] that introduce 3-D polyhedra.

The attractiveness of currently known analytical phantoms is limited for two reasons. First, the vast majority of currently available phantoms (except [START_REF] Ngo | Three dimensional digital polyhedral phantom framework with analytical fourier transform and application in cardiac imaging[END_REF]) use ellipses as basic elements. While such simple shapes have the advantage of mathematical tractability, they do not lend themselves well to the generation of images with realistic anatomical features. Secondly, to the best of our knowledge, no analytical phantom has been proposed that would take into account MRI receiving-coil sensitivities in the context of the simulation of parallel MRI experiments [START_REF] Pruessmann | SENSE: Sensitivity encoding for fast MRI[END_REF].

In this work, we extend the class of available analytical phantoms by introducing regions parameterized by spline contours which are general enough to reproduce polygons and Bézier contours. Our shapes are well suited for the description of realistic anatomical regions [START_REF] Segars | A realistic spline-based dynamic heart phantom[END_REF]. To accurately simulate image formation in parallel MRI, we also make use of analytical models for the coil sensitivity maps. Specifically, we investigate the use of two classes of basis functions-polynomials [START_REF] Pruessmann | SENSE: Sensitivity encoding for fast MRI[END_REF] and complex sinusoids-which both have the ability to generate maps that are physically realistic. These parametric forms are used to derive closed-form solutions for the MRI coil data. We have implemented and tested both models. Our conclusion is that the new sinusoidal one is preferable because it is better conditioned and robust to roundoff errors, while offering of the modeling flexibility that is required. The polynomial model works well with ellipses and polygons, but tends to display 
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numerical instabilities with Bézier contours when the order becomes too high. This document is organized as follows: in Section II, we present the different models considered for the parallel MRI measurement process, the analytical phantom, and the coil sensitivities. We motivate and compare the polynomial and the proposed sinusoidal models. In Section III, we propose the main theoretical elements that make the analytical MRI simulation possible, deferring the more technical considerations until Appendices A, B, and C. Finally, we present in Section IV the experiments that validate our implementation of the theoretical tools and an application that quantifies the bias of rasterized simulations on linear and nonlinear reconstructions, in a typical parallel MRI setup.

II. MODELING

In this section, we present the MRI measurement model and building blocks that are used to define our phantom. The main notations adopted are summarized in Table I.

A. Parallel MRI

We use the well-established linear model for parallel MRI that relates the object ρ to the k-space signal m Sn observed by each receiving coil, via the Fourier integral m Sn (k) = S n (r)ρ(r)e j2πk.r dr,

where S n accounts for the sensitivity map of the n-th receiving channel. The sensitivity map is defined as S n (r) = B x (r) -jB y (r), where, by the principle of reciprocity, B(r) = (B x (r), B y (r), B z (r)) corresponds to the magnetic field generated at point r by a unit-value steady current in the coil. The Biot-Savart law relates this field to the coil geometry through the relation

B(r) ∝ coil du × (u -r) u -r 3 . (2) 

B. Analytical Phantom

We mathematically define the phantom ρ as a simple function, involving R regions R i of constant intensity ρ i

ρ(r) = R i=1 ρ i 1 Ri (r). (3) 
The term region refers to a connected and bounded set. The symbol 1 R denotes the characteristic function of a region R.

Such a phantom has a limited spatial support ( R i=1 R i ) that we call a region of interest (ROI).

This model allows us to render realistic phantoms of two kinds

• piecewise-constant phantoms that mimic segmented data with sharp contours (e.g., the SL brain phantom) • textured phantom via a triangular-mesh approach. We investigate the first approach in this paper. The contours that are considered are ellipses, polygons, and quadratic-spline curves. We show in Figure 1 three such phantoms that we use in our experiments.

C. Sensitivity Models

For computations, we need to parameterize the complex sensitivity maps. It is commonly admitted that they are smooth and slowly-varying spatially. It is therefore possible to generate physically-realistic sensitivity maps using a reasonably small number of lowpass basis functions. Here, we discuss two models that are well-suited for this task. They both relate linearly the parameters to the complex sensitivity values. Moreover, their corresponding MRI models involve the Fourier integrals of monomials over the regions of the phantom.

Definition II.1. For α ∈ N d and R a region of R d f α R (ω) = R r α e -jω.r dr. (4) 
Here, we adopted the multi-index notation r α defined in Table I.

1) Polynomial Sensitivity: This model, first proposed in [START_REF] Pruessmann | SENSE: Sensitivity encoding for fast MRI[END_REF] to represent the local behavior of the sensitivity, assumes that the coil sensitivity S is represented by a polynomial of degree D inside the ROI as

S(r) = D d=0 |α|=d s d,α r α , ∀r ∈ ROI. ( 5 
)
As the degree D increases, the model will reproduce sharper transitions. The number of polynomial coefficients is N p = (D + 1)(D + 2)/2. The corresponding MR response is given by

m S (k) = R i=1 ρ i D d=0 |α|=d s d,α f α Ri (-2πk). (6) 
2) Sinusoidal Sensitivity: Alternatively, the coil sensitivity is defined by the linear combination of complex exponentials

S(r) = v s v e jr.v , ∀r ∈ ROI. ( 7 
)
We propose to constrain the problem to the angular frequencies v on a Cartesian grid with spacings that correspond to twice the considered field of view (FOV). The low-frequency properties are ensured by only considering the L × L angular frequencies around the origin (see Figure 2). Similarly to the effect of the polynomial degree D, an increase in the parameter L allows one to reproduce sharper transitions. The number of coefficients is given by N s = L 2 . The corresponding MR response is given by

m S (k) = R i=1 ρ i v s v f 0 Ri (-2πk -v). (8) 
3) Comparison: In order to evaluate and compare the ability of the two models to describe realistic sensitivity maps, we considered a 256 × 256 rasterization of the SL phantom and the 27,648 pixels of its ROI. Using Biot-Savart's law (2), we simulated the complex sensitivity maps of a 24channel circular head coil array (FOV=28cm, distance to center=17cm, radius=5cm) distributed around the phantom. Then, the parameters of the two models where selected to fit the maps. In Figure 3, the average fitting properties of the two models are presented as a function of the number of parameters.

We observe that the fitting accuracy of both models rapidly increases with the number of parameters, with a sensible advantage for the sinusoidal model. The downside is an increased condition number for the fitting operations. With respect to that criterion, the sinusoidal model behaves also better. The maximal spatial errors are comparable for both models.

III. ANALYTICAL MRI MEASUREMENTS

A. Overview of Analytical Fourier Computations

In this section, we present the theoretical tools that are necessary to derive the analytical expression of the MRI measurements. Proofs and additional calculation details are provided in Appendices A, B, and C.

The models presented in the previous section allow us to decompose the analytical MRI measurements into Fourier integrals of the sensitivity over the regions that compose the phantom. Depending on the type of region or sensitivity model, we propose tailored methods to decompose the analytical response as a sum of special functions that can be computed accurately and rapidly. In Figure 4, we present the roadmap of these decompositions that are defined and worked out in the sequel.

B. Elliptical Regions

Let us consider an elliptical region E parameterized by its center r c , the angle θ formed between its semimajor axis A and the abscissa, and its semiminor axis B. The linear transformation

r → u = D -1 R T (r -r c ) , (9) 
with D = diag(A, B) and R the rotation matrix of angle θ, maps E into a unit disk, that is to say,

E = {u | u ≤ 1}.
The Fourier transform of the unit disk involves the functions

G n (x) = J n ( x )/ x n , (10) 
where J n denotes the n-th order Bessel function of the first kind [START_REF] Vembu | Fourier transformation of the n-dimensional radial delta function[END_REF].

Using the sinusoidal sensitivity model, the integral f 0 E can be worked out [START_REF] Van De Walle | Reconstruction of MR images from data acquired on a general nonregular grid by pseudoinverse calculation[END_REF] as 

f 0 E (ω) = 2π|D|e -jω.rc G 1 DR T ω , (11) 
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When considering the polynomial sensitivity model, we suggest to first consider the change of variables [START_REF] Ngo | Three dimensional digital polyhedral phantom framework with analytical fourier transform and application in cardiac imaging[END_REF], rather than computing f α E directly. We write that

E u α e -jω.r dr = 2π|D|j |α| e -jω.rc ∂ |α| G 1 ∂x α DR T ω . ( 12 
)
The interesting point is that the partial derivatives ∂ |α| G 1 /∂x α can be decomposed recursively as a sum of G n thanks to the property

∇G n (x) = -xG n+1 (x). ( 13 
)
The coefficients of the polynomial in terms of the new coordinates (9) are required to satisfy

S(r) = D d=0 |α|=d s d,α r α = D d=0 |α|=d t d,α u α . ( 14 
)
They can be computed by inverting the matrix that relates the N p coefficients to the sensitivity values at N ≥ N p randomly chosen points in terms of the new coordinates.

The MR contribution of such an elliptical contour is presented in Table II.

C. Piecewise-Quadratic Contours

In this section, we first provide relations for the computation of the d-dimensional Fourier transform of a monomial delimited by a connected subset B of R d . With methods that are similar to the ones used in [START_REF] Sorets | Fast fourier transforms of piecewise constant functions[END_REF], we show how to decompose the d-dimensional Fourier integral into a sum of integrals over the contour ∂B. These summed integrals are of reduced dimensionality. In a second step, we show how quadratic-spline curves involve a family of 1-D integrals.

1) Fourier Transform of Monomials over a Connected Set: We show that the surface integral f α B in (4) can be decomposed into a sum of contour integrals.

Definition III.1. We define

g α B (0) = ∂B r α+e k 1 + α k e k .ndσ, for any k, (15) 
g α B (ω) = ∂B r α e -jω.r ω 2 ω.ndσ, ∀ω ∈ R d \ {0} ,( 16 
)
where n stands for the outward-pointing unit normal of boundary element dσ. Note that g α B is not continuous at the origin ω = 0.

Theorem III.2. For ω ∈ R d \ {0} and α ∈ N d , f α B (ω) = j α m=0 -jω ω 2 α-m |α -m|! α m g m B (ω), (17) 
and

f α B (0) = g α B (0). ( 18 
)
The consequence of Theorem III.2 is that the d-dimensional integral f α B can be decomposed into a sum of (d -1)dimensional integrals. By recursion, the f α B can be computed via 1D integrals. The proof is provided in Appendix A.

Note that the case ω = 0, which corresponds to the calculation of the moments of the region, has been worked out first by Jacob et al. in [START_REF] Jacob | An exact method for computing the area moments of wavelet and spline curves[END_REF] for parametric 2-D spline contours. 
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Fig. 5. Example of a quadratic-spline-defined region with N = 6 control points. The boundary is described counter-clockwise and the normal vector is outward-pointing. The contour is represented piecewise by quadratic Bézier curves.

2) Parameterization of a Contour in 2-D: The region B is defined by its boundary, the contour ∂B. In 2-D, a convenient way to parameterize the contour is by the use of a B-spline generating function ϕ such that

∀r ∈ ∂B, ∃t ∈ R, r(t) = p∈Z c p ϕ(t -p). (19) 
The considered contour is closed. Consequently, the vectorvalued function r must be periodic. In addition, the number N of coefficients c p that characterize the curve must be finite. The simplest way to satisfy these constraints is to impose that the sequence of coefficients c p be N -periodic. This enforces the N -periodicity of r.

If we note ϕ p the N -periodized version of ϕ, the contour is parameterized either globally as

∀t ∈ [0, N [ , r(t) = N -1 q=0 c q ϕ p (t -q) (20) 
or piecewise, with

0 ≤ t = n + λ < M , n ∈ 0 . . . N -1 and λ ∈ [0, 1[, as r(λ + n) = N -1 q=0 c n-q ϕ p (λ + q). (21) 
3) Decomposition of the Contour Integrals: We introduce the notation z ⊥ for the vector perpendicular to z with same norm and pointing outwards the region B at the considered point (see Figure 5). We write r (t) = ∂r ∂t (t). The piecewise representation of the contour (21) can be exploited to decompose the contour integral of interest, for instance [START_REF] Gautschi | Computational aspects of three-term recurrence relations[END_REF] or [START_REF] Geman | Nonlinear image recovery with half-quadratic regularization[END_REF], which leads to ∂B F(r).ndσ = N -1 q=0 1 0 F (r(q + λ)).r ⊥ (q + λ)dλ. [START_REF] Wilm | Higher order reconstruction for mri in the presence of spatiotemporal field perturbations[END_REF] 4) Quadratic Bézier Curves: In the sequel, we focus on contours represented by linear and quadratic B-splines. The former describe polygons while the latter give a piecewise description of quadratic Bézier curves. Three equivalent piecewise representations can be useful and are given in Table III with their relationships.

Definition III.3.

h (m) (a, b) = 1 0
λ m e -jλ(a+λb) dλ.

(

) 23 
Proposition III.4. For ω ∈ R d \ {0} and a contour ∂B parameterized piecewise by r(λ + n) = r n + λβ n + λ 2 γ n , with n ∈ N and λ ∈ [0, 1], we have that

g α B (ω) = 1 ω 2 N -1 n=0 e -jω.rn 2|α|+1 i=0 d n,i h (i) (ω.β n , ω.γ n ) (24) while g α B (0) = N -1 n=0 2|α|+3 i=0 d n,i h (i) (0, 0), (25) 
where, with the notation

σ p = |p 2 | + 2|p 3 |, the symbol d n,i stands for p1+p2+p3=α r p1 n β p2 n γ p3 n α! p 1 !p 2 !p 3 ! ω. β ⊥ n δ σp,i + 2γ ⊥ n δ σp,i-1 ,
(26) and d n,i stands for

p1+p2+p3=α+e k r p1 n β p2 n γ p3 n α! p 1 !p 2 !p 3 ! e k . β ⊥ n δ σp,i + 2γ ⊥ n δ σp,i-1 . (27) 
The values h (m) (a, b) follow a three-term recurrence relation [START_REF] Gautschi | Computational aspects of three-term recurrence relations[END_REF]. More details on their numerical computation are given in Appendix B.

Note that the piecewise parameterization of the contour of a polygon corresponds to the particular case of a quadratic parameterization with β n = r n+1 -r n and γ n = 0. Such simpler polygonal models with homogeneous sensitivities have been considered in prior work [8, Prop. 3.2] using a similar formulation.

IV. EXPERIMENTS A. Implementation Details

Our implementation uses Matlab 7.12 (Mathworks, Natick). The experiments run on a 64-bit 8-core computer, 8GB RAM, Mac OS X 10.6.7.

We implemented the analytical computations as described by the scheme in Figure 4, with double float precision. For 
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) is sometimes violated for orders m ≥ 2 and large values of the first argument. This prevented us to present valid simulations of piecewise quadratic contours combined with a polynomial sensitivity. Given the comparison of the two models in Section II-C3, we considered the sinusoidal model with parameter L = 7, that is N s = 49 in Figure 3, which lead to accurate representations of the physical sensitivities and numerically tractable inversions.

As an alternative to our analytical method, we consider the traditional simulation procedure that consists in i) sampling the phantom with a grid of a given size and ii) resampling the DFT of this discrete image according to the desired k-space trajectory. We call this procedure a rasterized simulation. It is expected to be consistent with our analytical method only when considering an infinitely dense sampling.

For reconstructions, we consider an optimization problem of the form

x = arg min x m -Ex 2 2 + λP(x), (28) 
where x represents an image, x is the reconstructed one, m is the concatenated scanner data vector, E is the encoding matrix, and P is a regularization function. With N receiving channels and M k-space measurements at positions {k m } m=1..M , the MRI encoding matrix E is formed as with I n representing the n × n identity matrix, the symbol ⊗ standing for the Kronecker product, and s n being the nth coil sensitivity map vector in the same way as x. The encoding matrix E 0 corresponds to the same MRI scan with a single homogeneous receiving coil and is defined as

E = (I n ⊗ E 0 ) [diag (s 1 ) , . . . , diag (s N )] T , (29) 
E 0 = [v 1 , . . . , v M ] T . ( 30 
)
There, v m are vectors such that, for a pixel of coordinates p, (v m ) p = exp (-2jπk m .p).

We used two types of regularizations in our experiments

• P(x) = x 2 2
corresponds to a Tikhonov regularization, which leads to linear reconstructions that we implemented with the conjugate-gradient method.

• P(x) = x TV is the isotropic total-variation pseudonorm, which leads to a nonlinear reconstruction problem. This reconstruction scheme is often used in compressedsensing research and is particularly suited for dealing with piecewise-constant images such as our phantoms. We implemented it using the iteratively reweighted leastsquares algorithm, also known as the additive form of the half-quadratic minimization [START_REF] Geman | Nonlinear image recovery with half-quadratic regularization[END_REF], [START_REF] Champagnat | A connection between half-quadratic criteria and EM algorithms[END_REF].

B. Validation of the Implementation 1) Simple Example with Homogeneous Sensitivity:

As first validation, we consider the simple phantom composed of a rectangular region that is represented in Figure 1. Under a proper change of variables, it yields a square and its Fourier transform is given by a product of sinc functions. This phantom is composed of a polygon and consequently falls in the category of the spline-defined contours. We test the accuracy of our proposed simulation method and of the rasterized approach against the closed-form solution. To do so, we consider the MR response associated with a homogeneous receiving coil sensitivity and a 256 × 256 Cartesian k-space sampling. The simulation errors are reported in Tables IV andV.

As expected, the error of rasterized simulations decreases when the sampling density increases. Meanwhile, the accuracy of our analytical implementation is as good as the machine double float precision would allow. Thus, we conclude that we can indistinctly use the closed-form ground truth or our proposed analytical model in the conditions of Section IV-B1. 2) Validation with non-Homogeneous Sensitivity: We now use our analytical phantom as a gold standard to evaluate the accuracy the measurements obtained from rasterized simulations. We consider the SL and brain phantoms. The single sensitivity map is computed using Biot-Savart's law and is approximated on the support of each phantom with the sinusoidal model. The k-space is on a 128 × 128 Cartesian grid. Errors are reported in Table VI.

We observe that the errors decrease with the same trend as in the rectangle case, which strongly suggests that our gold standard is accurate. Meanwhile, for a given sampling density, the errors occurring with the SL phantom are consistently larger than the ones corresponding to the brain phantom. This is explained by the fact that the SL phantom presents edge transitions of larger intensity. When the benefits of an analytical model are forsaken, the MRI data are generated from a rasterized version of the phantom and the sensitivity, using the (non-necessarily uniform) discrete Fourier transform (DFT)

m M (k) = |M|F e -2πjMk , (31) 
with Mk ∞ ≤ 1/2 and

F e 2jπν = p∈Z 2 f (p)e -2jπp.ν = q∈Z 2 f (ν + q) . ( 32 
)
The right-hand side of (32) can be worked out using Poisson's summation formula. The terms with q = 0 represent the aliasing that occurs with rasterized simulations. Due to the intrinsically discontinuous nature of the phantom ρ, the Fourier transform f decreases slowly, leading to significant aliasing artifacts. However, as the sampling density increases (Tr M → 0), the impact of aliasing is reduced, as we saw in Section IV-B. Let us define an ideal anti-aliasing filter h in the Fourier domain as

ĥ(ν) = 1 if ν ∞ ≤ 1/2, 0 otherwise. ( 33 
)
For normalized frequencies ν such that ν ∞ ≤ 1/2, the analytical simulation (unaliased) is characterized as the DFT of the samples of the lowpass-filtered continuous signal

f (ν) = p∈Z 2 (h * f ) (p)e -2jπp.ν , (34) 
where (h * f ) represents the spatial continuous convolution of h and f . When using a full Cartesian k-space sampling, the classical approach to reconstruction is to perform an inverse DFT. In this case, the samples of the signal f will be perfectly recovered out of the rasterized simulation (32) which is not desired because it conceals the existence of the Gibbs phenomenon due to the antialiasing filter (see, for instance, [START_REF] Archibald | A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity[END_REF]). By contrast, the data provided by our analytical model lead to a fairer reconstruction where the Gibbs phenomenon appears. This effect is illustrated in Figure 6.

Counterintuitively, the reconstructions out of rasterized simulations lead to aliasing effects that have a positive impact on visual quality. This situation, which occurs when the same model is used for both simulation and reconstruction, is sometimes referred to as "inverse crime". It arises because of the artificially imposed consistency between the computational forward models used for simulation and reconstruction. In such an inverse-crime situation, the continuous nature of the underlying physical model is not taken into account.

2) Impact of Rasterized Simulations on Reconstruction: We consider a plausible pMRI setup. It involves an array of 8 receiver coils that are uniformly distributed around the phantom. The corresponding sensitivity maps are computed according to Biot-Savart's law. Spiral and EPI k-space trajectories are considered, both supporting a 256 × 256 image with reduction factor R = 4. The simulated raw data are generated using our analytical method as well as 256 × 256 and 512 × 512 rasterized simulations (see Section IV-C1). The same realization of complex Gaussian noise is added to the simulated data with different intensities, according to three scenarios: very low noise (40dB SNR), normal data (30dB SNR), and very noisy data (20dB SNR). Reconstructions are performed using quadratic (Tikhonov linear solution) and TV regularizations. The reconstruction algorithms use the same forward model, in the form of the same encoding matrix E. The experiments only differ in terms of the input data. The regularization parameter is tuned to optimize the SER with respect to the ground-truth phantom (256 × 256 rasterization of the phantom). We report our results in Table VII for the spiral trajectory and in Table VIII for the EPI experiments. Reconstructed images are shown in Figures 7 and8, together with their error maps, in order to illustrate the impact of the inverse-crime situation (the 256×256 rasterized simulation) in the different scenarios.

The reconstructions in the spiral experiment are penalized compared to the EPI ones, in the sense that the high-frequency corners of the k-space are not sampled which leads to slightly inferior resolution. This explains that, all other parameters remaining constant, the EPI reconstructions outperform the spiral ones qualitatively and quantitatively. We observe that the reconstructions from rasterized simulations consistently outperform the ones obtained from analytical measurements. While large differences can occur between the inverse-crime scenario (the 256 × 256 rasterized simulations) and the analytical simulation data, the 512 × 512 simulations yield much closer performance, with at most a 0.6 dB SER difference. This is explained by the reduced aliasing artifacts when doubling the sampling density (see Section IV-C1). As expected for this type of piecewise-constant phantom, the TV reconstructions consistently outperform the linear ones. Whatever the simulation method is, TV brings a significant improvement in the very noisy scenario. However, for the other scenarios (SNR 30dB and 40dB), the improvement over linear reconstruction is modest when using the analytic measurements, whereas it is artificially spectacular using the 256 × 256 rasterized simulations. We believe that our quality assessment, obtained analytically, offers fairer predictions of the practical worth of a reconstruction method than its overly optimistic rasterized version.

V. CONCLUSION

We proposed a method to develop realistic analytical phantoms for parallel MRI. Our analytical phantom approach offers strong advantages for the quantitative validation of MRI and pMRI reconstruction softwares: it is flexible enough to represent general imaging targets, it provides highly accurate representation of the physical continuous model and avoids overly optimistic reconstructions. This kind of framework is also applicable to the assessment of advanced MRI reconstruction methods such as autocalibrating parallel imaging, B0 correction [START_REF] Man | Multifrequency interpolation for fast off-resonance correction[END_REF], motion correction [START_REF] Zaitsev | Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system[END_REF], [START_REF] Ooi | Prospective real-time correction for arbitrary head motion using active markers[END_REF], or higher order field imaging [START_REF] Wilm | Higher order reconstruction for mri in the presence of spatiotemporal field perturbations[END_REF]. Implementations of the phantom are made available to the community.

C. Proof of Proposition III.4

Proof: We rewrite g α B using Characterization [START_REF] Wilm | Higher order reconstruction for mri in the presence of spatiotemporal field perturbations[END_REF] with F (r) = r α e -jω.r ω 2 ω for ω = 0 and F (r) = r α+e k 1+α k e k for ω = 0. The piecewise parameterization of the contour (Table III) is then used, and by virtue of the multinomial theorem, we expand the terms r α and r α+e k .

Fig. 1 .Fig. 2 .

 12 Fig.1. Phantoms parameterized by elliptical and Bézier-defined regions. From left to right: rectangle phantom used for validation, the Shepp-Logan phantom, and a proposed brain phantom. The PDF and SVG versions of these phantoms are available online at http://bigwww.epfl.ch/algorithms/mriphantom/.

Fig. 3 .

 3 Fig.3. Fitting properties of the two sensitivity models as a function of the number of parameters. From left to right: approximation signal to error ratio (SER) in dB, maximal absolute error, and condition number of the fitting matrix.

Fig. 4 .

 4 Fig. 4. Roadmap of analytical Fourier computations.

C. Applications 1 )

 1 Investigation of Aliasing Artifacts: Let us consider the function f (u) = Sρ(Mu) which depends on the spatial sampling step matrix M. According to (1), the analytical MR data are given by m S (k) = |M| f (-Mk).

Fig. 6 .

 6 Fig. 6. 64 × 64 SL full Cartesian sampling reconstructions. From left to right: analytical simulation, rasterized "inverse crime" simulation, and corresponding line profiles.

Fig. 7 .

 7 Fig. 7. Reconstructed Brain phantoms and error maps for the spiral SENSE experiment.

TABLE II CLOSED

 II -FORM MR CONTRIBUTION OF ELLIPTICAL AND QUADRATIC BÉZIER REGIONS FOR THE PROPOSED SENSITIVITY MODELS.

  Our package also includes graphical tools to design the analytical phantoms. For purposes of adequate visualization, export to the popular vector-graphics formats SVG 1.1 and PDF (via the PGF/Tikz L A T E X package) is supported. The package is distributed4 in order to provide sensitivity fitting, phantom-design interface, analytical simulation tools, and to allow replication of the experiments of this section.Unlike the sinusoidal model which is very robust to numerical errors, our current implementation of the three-term recurrence relation (see Appendix B) leads to instabilities when using the polynomial model. The theoretical relation |h

	1
	efficient computations of the error function of a complex
	variable, we coded the critical parts of erfz in C++/MEX,
	with POSIX multithreading, following Marcel Leutenegger's
	recommendations 1 . The code implementing Theorem III.2
	utilizes Matt Fig's npermutek 2 . The rasterization of spline-
	defined regions, which is performed without approximation,
	partly relies on Bruno Luong's fast MEX implementation of
	insidepoly 3 .

TABLE V ERRORS

 V OF THE RASTERIZED SIMULATIONS FOR THE RECTANGLE PHANTOM.

	Sampling density	256	352	400	512	704	800	1024	1408	1600	2048
	NRMSE	5.58e-02	2.51e-02 2.01e-02	1.25e-02	7.45e-03	6.04e-03 3.85e-03	1.59e-03	1.27e-03 8.32e-04
	max. error in k-space	5.5e-03	2.0e-03	1.5e-03	1.1e-03	5.5e-04	5.3e-04	3.6e-04	1.2e-04	1.0e-04	5.8e-05
	max. error inverse DFT	5.5e-01	1.9e-01	1.6e-01	1.0e-01	6.2e-02	5.4e-02	3.9e-02	1.5e-02	1.2e-02	6.7e-03

TABLE VI ERRORS

 VI OF THE RASTERIZED SIMULATIONS FOR THE BRAIN AND SL PHANTOMS VERSUS OUR ANALYTICAL SIMULATIONS.

		Sampling density	128	176	256	352	512	704	1024	1408	2048	2816
		NRMSE	1.45e-01 9.26e-02	5.45e-02	3.48e-02 2.13e-02	1.02e-02	6.70e-03	4.06e-03 2.03e-03	1.49e-03
	Brain	max. err. k-space	1.1e-02	5.7e-03	3.3e-03	2.6e-03	1.4e-03	6.6e-04	4.1e-04	2.4e-04	1.5e-04	9.5e-05
		max. err. inverse DFT	2.3e-01	1.4e-01	1.1e-01	7.9e-02	5.1e-02	2.0e-02	2.1e-02	1.4e-02	4.8e-03	5.6e-03
		NRMSE	2.76e-01 1.79e-01	9.74e-02	5.38e-02 2.85e-02	2.01e-02	1.28e-02	6.23e-03 3.34e-03	2.03e-03
	SL	max. err. k-space	2.9e-02	1.6e-02	8.8e-03	4.9e-03	2.6e-03	1.7e-03	1.0e-03	6.1e-04	3.0e-04	1.7e-04
		max. err. inverse DFT	4.7e-01	3.0e-01	1.6e-01	1.1e-01	6.5e-02	3.9e-02	3.3e-02	1.3e-02	7.0e-03	5.0e-03

TABLE VII RECONSTRUCTION

 VII BIAS OF RASTERIZED SIMULATIONS ON QUADRATIC AND TV REGULARIZATION RECONSTRUCTIONS OF THE BRAIN PHANTOM FOR THE SPIRAL SENSE EXPERIMENT. OPTIMIZED SER AND CORRESPONDING BIAS ARE SHOWN IN DB.

	Channel data SNR	40dB	30dB	20dB
	Sampling density	256	512	256	512	256	512
	Linear	SER Bias	24.61 19.92 5.07 0.37	20.31 17.99 2.56 0.24	14.09 13.45 0.75 0.11
	TV	SER Bias	33.75 20.80 13.45 0.49	27.60 20.26 7.75 0.42	19.61 17.72 2.43 0.54

TABLE VIII RECONSTRUCTION

 VIII BIAS OF RASTERIZED SIMULATIONS ON QUADRATIC AND TV REGULARIZATION RECONSTRUCTIONS OF THE BRAIN PHANTOM FOR THE EPI SENSE EXPERIMENT. OPTIMIZED SER AND CORRESPONDING BIAS ARE SHOWN IN DB.

	Channel data SNR	40dB	30dB	20dB
	Sampling density	256	512	256	512	256	512
	Linear	SER Bias	36.25 20.77 16.02 0.54	26.30 19.79 6.95 0.44	16.73 15.31 1.61 0.19
	TV	SER Bias	42.25 20.98 21.85 0.58	32.75 20.73 12.57 0.55	23.92 19.29 5.02 0.39
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APPENDIX

A. Proof of Theorem III. [START_REF] Ribés | Linear inverse problems in imaging[END_REF] First, we consider the case ω = 0. Proof: Take ψ(r) = r α and ϕ(r) = (e k .r) 2 /2 = r 2 k /2. Then, ∇ (r α ).e k = α k r α-e k , ∇ϕ = r k e k , and ∆ϕ = 1. Using Green's first identity yields (1 + α k )f α B (0) = ∂B r α+e k e k .ndσ.

For the case ω = 0, we need an intermediate result.

Proof: Use Green's first identity with ψ(r) = r α , ϕ(r) = -e -jω.r , and the fact that x.∇r α = i x i α i r α-ei .

Let us continue the proof of Theorem III.2 by mathematical induction on n = |α|. For n = 0, α = 0 and the result holds true according to Lemma A.1. When considering n = 1, α = e i , and Lemma A.1, we obtain f ei B (ω) = jg ei B (ω) + ωi ω 2 g 0 B (ω). This is true for all i, hence the result holds true for n = 1. Now, we suppose the result holds true at order n and we consider α such that |α| = n + 1. From Lemma A.1, we have that

Since |α -e i | = n, we substitute f α-ei B using the induction hypothesis and, after simplifications, we obtain

with d i (x) = x i /|x| for x = 0 and d i (0) = 0. By permutation of the sums and noting that i d i (x) = 1 for x = 0 and i d i (0) = 0, we get This is valid for all α such that |α| = n + 1. Hence, the induction hypothesis was proved at order n + 1 assuming it holds true at order n.

B. Characterization and Computations of a Family of 1-D Integrals

Proposition A.2. For m ∈ N, h (m) follows the recursion rule a+λb) dλ by parts and identify h (m+1) , h (m) and h (m-1) if m > 0.

Corollary A.3. For small values of a and b, one can rely on the backward iteration starting from a higher order M > m to get accurate results

Proposition A.4. For b nonzero and m ≥ 1, the forward iteration is used

Proof: From Proposition A.2 with m = 0 and b = 0, we get h (0) (a, 0) = e -ja/2 sinc(a/(2π)). In the case b = 0, we define t = λ + a 2b such that λ(a + bλ) = 

where the lower incomplete gamma function is defined as γ(s, z) = z s 1 0 λ s-1 e -λz dλ. Proof: Note that e -jλ(a+λb) = e -jλa ∞ n=0 (-jλ 2 b) n /n!. By virtue of Fubini's theorem, we get

(-jb) n h (m+2n) (a, 0)/n!.

Identify γ(m + 2n + 1, ja) to (ja) m+2n+1 h (m+2n) (a, 0).