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Abstract
Weprove a set of tight entanglement inequalities for arbitraryN-qubit pure states. By focusing on all
bi-partitemarginal entanglements between each single qubit and its remaining partners, we show that
the inequalities provide anupper bound for eachmarginal entanglement, while the knownmonogamy
relation establishes the lower bound. The restrictions and sharing properties associatedwith the
inequalities are further analyzedwith a geometric polytope approach, and examples of three-qubit
GHZ-class andW-class entangled states are presented to illustrate the results.

Introduction

Entanglement is a special type of correlation among physical systems. Its restriction and its distribution as a
resource amongmultiple parties both play an important role in the proposals of various quantum information
and technology tasks [1]. Various entanglements (concerning different compositions of entangled parties) exist
in amultiparty system, and different aspects of entanglement distribution can be considered. For example, in a
three-qubit system, there exist six different bi-partite entanglements E1 2∣ , E2 3∣ , E1 3∣ , E1 23∣ , E2 31∣ , E3 12∣ . Here EA B∣
denotes bi-partite entanglement between partiesA andB, where each party can contain either one or the
remaining (two) qubits. Coffman, Kundu, andWootters initiated the focus of distribution from a ‘one-to-
group’ entanglement (between a singled-out qubit and a group of qubits) into all ‘one-to-one’ entanglements
(between the singled-out qubit and each individual qubit in the group) [2]. This led to the discovery of thewell-
known entanglementmonogamy relation, E E E1 23

2
1 2
2

1 3
2 +∣ ∣ ∣ , followed by variousN-party extensions [3–12].

Monogamy relations reveal one aspect of fundamental connections among a particular subset of bi-partite
entanglements in amultiparty system.Herewe focus on a different subset of bi-partite entanglements, i.e., a set
of same-typemarginal entanglements. Such a consideration reveals a different aspect of fundamental
entanglement restriction. It can be crucial to various proposals to runmultiple parallel entanglement-assisted
quantum tasks in a singlemultiparty system [1, 13], for example, quantum information transfer fromone site to
another in amulti-site spin chain system [14].

Specifically, we consider the restrictions among all ‘one-to-group’ entanglements between a single qubit and
the remaining ones in an arbitraryN-qubit system. Such bi-partite entanglements are sometimes also called
quantummarginal entanglements, as discussed byWalter et al [15]. For example, in the three-qubit case, the
concernedmarginal entanglements are E1 23∣ , E2 31∣ , and E3 12∣ .We obtain a generic set of entanglement
restriction relations that can be called polygon inequalities for arbitrary pure states in terms of generic
entanglementmeasures including vonNeumann entropy S [16], concurrenceC [17], negativityN [18], and a
normalized Schmidt weightY [19].We then show each entanglement polygon inequality provides an upper
bound for a corresponding ‘one-to-group’marginal entanglement, while themonogamy relation provides its
lower bound.We further illustrate these inequalities with a geometric representation to give a clear visualization
of the restriction and sharing properties.
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Entanglement polygon inequality

Weconsider allN ‘one-to-group’ entanglements in anN-qubit system, i.e., E N1 23¼∣ , Ej k j N1¼ ¹ ¼∣ ,K,
EN N12 1¼ -∣ . Fromnowonwe use the notation Ej to represent Ej k j N1¼ ¹ ¼∣ for simplicity. Herewe take all these
entanglements {Ej} being normalized, i.e., valued between 0 and 1. Any connection among these entanglements
has to be restricted by the underlying states, which are governed by the fundamentals of quantummechanics.
Thereforewe consider an arbitraryN-qubit pure state that in general can be expressed as

c s s , 1
s s

s s N
, , 0,1

, , 1

N

N

1

1åYñ = ñ ¼ ñ
¼ =

¼∣ ∣ ∣ ( )

where cs s, , N1 ¼ are normalized coefficients and sj takes the value 0 or 1 corresponding to the two states 0ñ∣ , 1ñ∣ of
the jth qubit, with j N1, 2, 3, ,= ¼ .

Ourmain result is a set of symmetric inequalities:

E E , 2j
k j

k å
¹

( )

among allN ‘one-to-group’marginal bi-partite entanglements Ej. These inequalities are valid for arbitraryN-
qubit pure states as given in (1). HereEj can be any one ofmany entanglementmeasures including vonNeumann
entropy [16], concurrence [17], and negativity [18], as well as the normalized Schmidt weight [19–21].

In the one-qubit case,N=1, the inequality reduces to E 01  , whichmeansE1=0 due to the non-
negativity of entanglementmeasures. It is obviously true that there is no entanglement for a single qubit. In the
two-qubit case,N=2, the inequality becomes E E1 2 and E E2 1 , whichmeansE1=E2. This is apparent for
any two-qubit state, i.e., the entanglement between qubit one and qubit two should always be equal to the
entanglement between qubit two and qubit one.

The inequality begins to become non-trivial with increasing number of qubitsN�3. To have a superficial
understanding, one can assume that the value of each entanglementEj represents the length of a line. Then the
above set of inequalities (2) guarantees that these lines can form a closedN-sided polygon. See figure 1 for a
schematic illustration forN=3 andN=7. Therefore one can naturally call such an entanglement restriction
an entanglement polygon inequality.

To have a different understanding of the restriction relation (2), one can shift to the perspective of resource
sharing. Consider the distribution of a given amount of total entanglement.When one adds Ej to both sides of (2)
and divides by 2, one immediately obtains

E E 2, 3j T ( )

where E ET j
N

j1= å = is the total of all individual entanglements. In the point of view of entanglement as a
resource, the above relation simply says that no individual participant Ej getsmore than half of the total.

This is a resource sharing rule for all the participating entanglements. It limits the flexibility of distributing a
given total resource. Such a sharing restrictionwill be very helpful to propose appropriatemultiple quantum
information tasks in a singlemultiparty system, and to guide designs to avoid overloading tasks on any particular
entanglement. A detailed understanding and analysis of the inequalities (2) and (3)will be discussed in the
followingwith a visualizable geometric representation.

As pointed out in the beginning, thewell-knownmonogamy relation [2] and the entanglement polygon
inequalities (2) concern different sets of bi-partite entanglements of amultiparty system.However, there is a
common element in both restriction relations, i.e., the ‘one-to-group’ ormarginal entanglementEj based on the
same bi-partition. TheN-qubit version of themonogamy relation reads

Figure 1. Schematic illustration of entanglement polygon inequalities. ClosedN-sided polygons are shown in (a) and (b) to illustrate
entanglement restriction (2) for 3 and 7 qubits, respectively. The length of each side represents correspondingly to the value of
marginal entanglement Ej.

2

New J. Phys. 20 (2018) 063012 X-FQian et al



E E , 4j
k j

j k
2 2 å

¹

( )∣

which is also valid for a generic entanglementmeasure E such as concurrence [3], negativity [5] and von
Neumann entropy [12].

By taking the square root of themonogamy relation (4), and combiningwith the entanglement polygon
inequality (2), one immediately finds the interesting relation

E E E . 5
k j

j k j
k j

k
2  å å

¹ ¹

( )∣

Obviously, the traditionalmonogamy relation provides a lower bound for themarginal entanglement Ejwhile
the entanglement polygon inequality establishes its upper bound.

Inequality proof

The complete proof of the entanglement polygon inequality (2) for various entanglementmeasures is non-
trivial, and its details are given in the appendix.Herewe provide a brief sketch of the proof as an illustration of
the strategy. Thefirst step is to prove that inequality (2) holds for a specific entanglementmonotoneY [20], i.e.,

Y
K

1
2

1 . 6= - - ( )

It is the normalized version of Schmidt weight [19]

K
1

7
1
2

2
2l l

=
+

( )

defined based on the Schmidt coefficients ,1 2l l of a two-party pure state (1), of which one party is taken as a
single qubit and the second party contains all the remaining qubits [22–24]5.

The second step is to show that different entanglementmeasures, i.e., vonNeumann entropy S [16],
concurrenceC [17], and negativityN [18], are all concave andmonotonically increasing functions ofY in the
region [0,1]. Then a function E(Y) can be used to represent a generic entanglementmeasure.

The third step is to combine the results of the first two steps. In thisfinal stepwe assumewithout loss of
generality thatMax Y Yi j={ } , with i N1, 2, 3, ,= ¼ . Thus themonotonic increasing property of the function
E(Y) ensures the relationMax E Y E Yi j={ ( )} ( ).We also define a linear function f Y E Y Y Yj j=( ) ( ) , and the
concavity property ofE(Y) guarantees

f Y E Y . 8k j k j¹ ¹( ) ( ) ( )

Thenwe prove the relation (see details in the appendix)

f Y E Y , 9
k

k j jå ¹( ) ( ) ( )

by using the result of thefirst step, i.e., Y Yj k k j å ¹ . By combining (8) and (9), it is then straightforward to see
that the entanglement polygon inequality (2) is valid for these genericmeasures.

The inequality (2) in terms ofY is uniquely tight, i.e., it not only applies to allN-qubit pure states, but
additionally those states exhaust the inequality, occupying its interior and also its boundaries. The inequality (2)
in terms of S,C, orN is looser than that in terms ofY due to the concavity property.

Polytope analysis

Wenow further analyze the entanglement polygon inequality with a geometric approach that captures both the
restriction (2) and resource sharing (3) features. First we assume the limiting case where there is no restriction
among allN different entanglements Ej; they are then independent of each other and can be used to identify axes
Ej in a unitN-dimensional hypercube ( E0 1j  ). Each combination of all entanglements {Ej} represents a
unique point E E EE , , , N1 2= ¼( ) inside this hypercube. For example, when N 1, 2, 3= the sets of
entanglements {Ej} form a line segment, square, and cube, respectively (see figure 2).

It is natural to imagine that, under the restriction relation (2), the occupied hypervolumewill be reduced.
This is indeed the case. For example, it will reduce to a single point E1=0 and a single diagonal line E1=E2,
respectively, in the trivial cases ofN=1 andN=2 as shown infigure 2 by the red dotO and red lineOM.

5
The Schmidt theorem is the analog in analytic function theory of the singular-value decomposition theorem formatrices. The original

paper is [22].
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As a non-trivial illustrationwe analyze in detail the case ofN=3, for which the generic entanglement
polygon inequality (2) implies

E E E E E E E E E, , . 101 2 3 2 3 1 3 1 2  + + + ( )

Onenotes thatwhen the three inequalities all take the equal sign, each of themdefines an equilateral triangle, i.e.,
OAB , OBC and OCA , seen infigure 2(c). These three triangles are the surfaces separating allowed and

forbidden regions. Therefore the inequalities have excluded the occupationof tetrahedraROAB,QOBC, and
POCA from the entire cube.On theother hand, the inhabitable region resulting from the constraints by the three
inequalities is simply the base-to-baseunion of the regular tetrahedronOABC and the rectangular tetrahedron
MABC. The entanglements {Ej}of all physical quantum states have to be restricted to this allowed confined region.

For allN�4 the restricted region defined by the restriction (2) is a polytope, a hypervolume that is compact
inside the unit hypercube. In general, for anyN, each individual inequality of (2) excludes a rectangular simplex
of the hypercubewith a hypervolume given by [25]:

E E
N

d
1

. 11
j

N

j
j

j
1 0

1
1ò =

=

-[ ]
!

( )

For example, in the three-qubit case illustrated infigure 2(c), one of the excluded rectangular simplexes is
tetrahedronPAOCwhose volume is simply 1/6. Therefore the total available hypervolume, given the restrictions
by allN such inequalities, is

V
N

1
1

1
. 12N = -

-( )!
( )

One can easily check for the three-qubit case that the volume being allowed is 1/2.
According to equation (12), the ratio of the allowed hypervolumeVN to the unit hypervolume increases as

the number of qubits is increased, approaching unity as N  ¥. That is, themore qubits that exist in the
system, the less restriction therewill be among allmarginal entanglements, and themore sharing flexibility there
will be (the issue of sharingwill be addressed in the following). Thismay be viewed as an advantage of using
multiparty systems in the realization of quantum information tasks in the sense that all the entanglements
existing in the system aremore flexible than in fewer-party systems.

A variation of the entanglement polygon inequality (2) is the relation (3), which reveals an important aspect
of entanglement resource sharing. That is, it reveals a rule how to share a given amount of total entanglement ET.
In principle, after obeying this rule, theremay still be some flexibility allowed for sharing a given amount of total
resource.We now analyze quantitatively the effect of (3) on sharingflexibility or sharing capacity.

The geometric representationhelps to visualize the freedomofdistributing entanglements.We start bynoticing
in theN=3 case that the domainsof different total entanglementsETdefine triangles transverse to the bodydiagonal
(color triangles infigure 3)under the inequality restriction. Inspection shows that theET value for these triangles
varies from0 to3, running fromzero tomaximal total entanglement. It is obvious that infinitelymany combinations
of E E EE , ,1 2 2= ( ) are available to sumto the totalET in each transverse triangle,whichmakes it difficult to quantify.

An advantage of the geometric representation is that it allows us to adopt the area of each triangle as a
natural quantitativemeasure of entanglement sharing capacity. The relation between and the amount of total
entanglement to be shared is not a linear relation, but a piecewise quadratic of the form:

Figure 2.N-dimensional spaces in which the pointE is defined, corresponding to (a)N=1 (unit line segment), (b)N=2
(unit square), and (c)N=3 (unit cube). In all cases, the pointO corresponds to no entanglement and the pointM tomaximal
entanglement.
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E E

E E

3

2

4, 0 2,

3 , 2 3.
13T T

T T

2

2


 
 

= ´
-

⎧⎨⎩( )
( )

The sharing capacity  is graphed in the right panel offigure 3, wherewe see that it is peaked around its
maximumof 3 2 atET=2, corresponding to the triangle ABC . It should be noted that greater total
entanglement ET does not guarantee greater sharing capacity.

One can further define the sharing capacity for theN-qubit case as the hyperarea of the (N−1)-dimensional
inhabitable polytope offixedET, normal to the lineOMwithin theN-dimensional polytope restricted by theN
inequalities in the formof (3). AgainO is the point of zero total entanglement andM representsmaximum total
entanglement. The general (N-1)-dimensional hyperarea expression is given as

N
N E

N
E

E E

1
2 1

, 2,

, 2,

14N
T
N

T

N T T

1

1

1








= ´

-
--

-

-

⎜ ⎟
⎧
⎨⎪
⎩⎪

⎛
⎝

⎞
⎠ ( )!
( )

( )

where EN T1 - ( ) is the zeroth uniformB-spline basis function [26] of degreeN−1 at ETwith knots
E N2, 3, 4, ,T = ¼ . It is known that these functions provide the diagonal cross-sections ofN-dimensional
hypercubes [27]. Note that inequality (2) only affects the interval E0 2T  , withinwhich the corresponding
result can be calculated directly. Here is a piecewise polynomial ofET of orderN−1, which vanishes at the
endpoints E 0T = (corresponding to pointO) andET=N (corresponding to pointM).

It is worth noting that the parameters of our geometric representation are different entanglements. This
differs from the direct focus on quantum state parameters; see for example a recent geometric analysis of
quantum state discrimination [28]. However, it would still be very interesting to explore the connection between
quantum states and our entanglement representation; a brief discussion is nowpresented as an illustration.

Example of entangled states

Let us now view our results with specific examples by considering the normalized Schmidt weightYj for three-
qubit generalizedGHZ [29] class states and its inequivalentW [30] class states:

cos 0, 0, 0 sin 1, 1, 1 , 15GHZ q qY ñ = ñ + ñ∣ ∣ ∣ ( )

and

1, 0, 0 0, 1, 0 0, 0, 1 . 16W a b gY ñ = ñ + ñ + ñ∣ ∣ ∣ ∣ ( )

It is straightforward to note that the threemarginal entanglements are given as Y Y Y 1 cos 21 2 3 q= = = - ∣ ∣
for theGHZ-class states. Obviously, they satisfy the polygon inequality (2). In the geometric representation,
these states live along the cube’s body diagonal lineOM (see figure 3). One also sees that there isminimum
sharing capacity 0 = for theGHZ-class states simply because for any given total resourceYT there is only one
way to share, i.e., Y Y Y Y 3T1 2 3= = = .

To investigateW-class states oneneeds to analyze all combinations of , ,a b g∣ ∣ ∣ ∣ ∣ ∣, and consider four different
cases, i.e., 1 22 a∣ ∣ , 1 22 b∣ ∣ , 1 22 g∣ ∣ , and Max , , 1 22 2 2a b g <(∣ ∣ ∣ ∣ ∣ ∣ ) .When 1 22 a∣ ∣ , one can
compute the entanglements, respectively, asY 21

2 2b g= +(∣ ∣ ∣ ∣ ),Y 22
2b= ∣ ∣ , andY 23

2g= ∣ ∣ . This clearly satisfies

Figure 3. Inhabitable region inside the unit entanglement cube. The entanglement polygon inequality (2) confines the inhabitable
region to just two tetrahedraOABC andMABC (shaded in gray). Also shown are three triangular planar sections of this region
transverse to the unit cube’s body diagonal. Degree of sharing  is shown as a function ofET in the right panel. The three colored dots
correspond, respectively, to the three colored triangles in the left panel.
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thepolygon inequality (2). Particularly, this case satisfy one of the boundary equalities,Y Y Y1 2 3= + ,
corresponding to OBC in the geometric representation illustrated infigure 3. Similarly, the symmetric cases

1 22 b∣ ∣ and 1 22 g∣ ∣ satisfy, respectively, the remaining two equalitiesY Y Y2 1 3= + andY Y Y3 1 2= + .
These correspond to OCA and OAB in the cube (seefigure 3). The occupationof these boundaries indicates the
unique tightness of our inequalities (2) in termsofY.

When Max , , 1 22 2 2 a b g(∣ ∣ ∣ ∣ ∣ ∣ ) , one has Y 21
2a= ∣ ∣ , Y 22

2b= ∣ ∣ , Y 23
2g= ∣ ∣ , satisfying relation (2).More

interestingly, one sees Y Y Y 21 2 3+ + = . Therefore, in this case, theW-class states occupy the entire triangle
ABC in the cube, which exhibits themaximum sharing capacity with 3 2 = .

Summary

Wehave presented an entanglement polygon inequality for arbitraryN-qubit pure states, and analyzed its
restriction and sharing properties with a geometric representation. Its intimate connection to thewell-known
monogamy relation is also shown.

The entanglement polygon inequality reveals a type of fundamental constraint amongmultiple
entanglements of amultiparty system governed by quantummechanics. It further establishes a resource sharing
rule that limits theflexibility of distributing entanglements among all participants. Such a sharing rulemay
provide guidance when proposing optimal schemes that can runmultiple entanglement-assisted quantum tasks
in a singlemultiparty system.

Our geometric representation of the inequalities provides a potentially useful way to analyze and understand
multiple entanglement restrictions, as well as to study collective or dynamical entanglement behavior. It has the
advantage of exposing quantitatively the degree of restriction and sharing capacity. An example of its utility has
already been demonstrated in the development of a center-of-mass interpretation of bi-partite purity for both
pure andmixed states (see [21]).

Preliminary numerical results support the speculation that the same inequalities ofYj hold for pure states of

multipartyM-level systems, where the normalized entanglementmonotone becomes Y 1j
M K

K M 1

j

j
= -

-

-( )
and

Kj is the Schmidt weight of the extended pure state. This will simply extend our resource sharing treatment to a
muchwider category of quantum states.
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Appendix. Proof of entanglement polygon inequality

Toprove the entanglement polygon inequality, wefirst prove that the normalized Schmidt weightY [20] satisfies
the set of inequalities in (2).We then show that all othermeasures, i.e., vonNeumann entropy [16], concurrence
[17], and negativity [18] satisfy automatically the same symmetric inequality relation due to the fact that they are
all concave andmonotonically increasing functions ofY.

Polygon inequality forY
First, we prove the entanglement inequalities in relation (2) of themain text in terms ofY for arbitraryN-qubit
pure states.When bipartitioned between a single qubit (e.g., the ith qubit) and remainingN−1 qubits, anN-
qubit pure state can always be decomposed into the Schmidt form, i.e.,

f g f g , 17i i i i i i
1 1 1 2 2 2

l lYñ = ñ Ä ñ + ñ Ä ñ∣ ∣ ∣ ∣ ∣ ( )( ) ( ) ( ) ( ) ( ) ( )

where f
n

i ñ∣ ( ) and g
n

i ñ∣ ( ) , n= 1, 2, are the Schmidt bases of the ith qubit and the remainingN−1 qubits,
respectively. Here i

1l
( ) and i

2l
( ) are the corresponding Schmidt coefficients andwe assume i i

1 2l l( ) ( ) for all i
without loss of generality.

For simplicity we prove only the first inequality:

Y Y ; 18
j

N

j
2

1å
=

( )
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the remainingN−1 inequalities follow by symmetry.We hence consider the specific Schmidt decomposition
with respect to qubit 1 by taking i=1 in (17).We express the two (N−1)-qubit states g

1
1 ñ∣ ( ) and g

2
1 ñ∣ ( ) in the

Schmidt basis of each qubit, with complex amplitudes xj and yj, i.e.,

g x f f f

x f f f

x f f f a, 19

i N

i N

i N

1
1

1 1
2

1 1

2 1
2

1 2

2 2
2

2 2
N 1

ñ = ñ ¼ ñ ¼ ñ

+ ñ ¼ ñ ¼ ñ

+ ¼ + ñ ¼ ñ ¼ ñ-

∣ ∣ ∣ ∣

∣ ∣ ∣

∣ ∣ ∣ ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

g y f f f

y f f f

y f f f b, 19

i N

i N

i N

2
1

1 1
2

1 1

2 1
2

1 2

2 2
2

2 2
N 1

ñ = ñ ¼ ñ ¼ ñ

+ ñ ¼ ñ ¼ ñ

+ ¼ + ñ ¼ ñ ¼ ñ-

∣ ∣ ∣ ∣

∣ ∣ ∣

∣ ∣ ∣ ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( )

wherewe have the orthonormality conditions

x y a1, 20
j

j
j

j
1

2
2

1

2
2

N N1 1

å å= =
= =

- -

∣ ∣ ∣ ∣ ( )

x y b0. 20
j

j j
1

2N 1

*å =
=

-

( )

The entanglement between qubit 1 and the remaining qubits can then be easily obtained as

Y 2 . 211 2
1l= ( )( )

Nowwe rearrange the state (17), andwrite it by grouping the states of qubit 2, i.e.,

f x f f f

x f f f

y f f f

y f f f

f x f f f

x f f f

y f f f

y f f f . 22

N

N

N

N

N

N

N

N

1
2

1
1

1 1
1

1
3

1

1
1

2 1
1

2
3

2

2
1

1 2
1

1
3

1

2
1

2 2
1

2
3

2

2
2

1
1

2 1 1
1

1
3

1

1
1

2 1
1

2
3

2

2
1

2 1 2
1

1
3

1

2
1

2 2
1

2
3

2

N

N

N

N

N

N

2

2

2

1

2

1

l

l

l

l

l

l

l

l

Yñ= ñ ñ ñ ¼ ñ

+ ¼ + ñ ñ ¼ ñ

+ ñ ñ ¼ ñ

+ ¼ + ñ ñ ¼ ñ

+ ñ ñ ñ ¼ ñ

+ ¼ + ñ ñ ¼ ñ

+ ñ ñ ¼ ñ

+ ¼ + ñ ñ¼ ñ

+

+

-

-

-

-

-

-

∣ ∣ [ ∣ ∣ ∣

∣ ∣ ∣

∣ ∣ ∣

∣ ∣ ∣ ]

∣ [ ∣ ∣ ∣

∣ ∣ ∣

∣ ∣ ∣

∣ ∣ ∣ ] ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

( )

( )

( )

( )

It is easy to note that the corresponding Schmidt coefficients for qubit 2 are given as

x y , 23
j

j j1
2

1

2

1
1 2

2
1 2

N 2

ål l l= +
=

-

( ∣ ∣ ∣ ∣ ) ( )( ) ( ) ( )
( )

x y . 24
j

j j2
2

1

2

1
1

2
2

2
1

2
2

N

N N

2

2 2ål l l= +
=

+ +

-

- -( ∣ ∣ ∣ ∣ ) ( )( ) ( ) ( )
( )

( ) ( )

Again the entanglementmeasure between qubit 2 and the rest is obtained as

Y x y2 . 25
j

j j2
1

2

1
1

2
2

2
1

2
2

N

N N

2

2 2å l l= +
=

+ +

-

- -( ∣ ∣ ∣ ∣ ) ( )( ) ( )
( )

( ) ( )

Wenote that the expression forY2 simply picks up the coefficients xj
2∣ ∣ and yj

2∣ ∣ that correspond to the (N−1)-

qubit basis states, as given in equations (19), when qubit 2 is in the Schmidt basis f
2

2 ñ∣ ( ) . Similarly, the ith qubitYi,
which can be expressed in similar form as (25), picks all the coefficients xj

2∣ ∣ and yj
2∣ ∣ that correspond to the

(N−1)-qubit basis states containing f i
2
ñ∣ ( ) .When summing over allYi from2 toN, we get

Y x x x

x N x

y y y

y N y

2

2 1

2

2 1 . 26

j

N

j N

N

N

N

2
1
1

2
2

3
2 2

1
2

2

2
1

2
2

3
2 2

1
2

2

N

N

1

1

å l

l

= + +¼+

+ +¼+ -

+ + +¼+

+ +¼+ -

=

+

+

-

-

[∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ( ) ]
[∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ( ) ] ( )

( )

( )

( )

( )
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That is, the number of times xj
2∣ ∣ appears in the sum equals the number of times f i

2
ñ∣ ( ) appears in the

corresponding (N−1)-qubit basis states given in equations (19).
From the above summation, alongwith the assumption 1

1
2
1l l( ) ( ), one immediately finds

Y x y

x y

2 ,

2 . 27

j

N

j
k

k k

k
k k

2 2

2

1
1 2

2
1 2

2

2

2
1 2 2

N

N

1

1





å å

å

l l

l

+

+

= =

=

-

-

( ∣ ∣ ∣ ∣ )

(∣ ∣ ∣ ∣ ) ( )

( ) ( )

( )

Wenote that in order for equation (27) to hold, it needs each xk
2∣ ∣ and yk

2∣ ∣ inside the square brackets of
equation (26) to have a coefficient greater than or equal to 1. If the assumption i i

1 2l l( ) ( ) is removed, onewill get
a different version of equation (26)where the actual coefficients for each xk

2∣ ∣ and yk
2∣ ∣ inside the square brackets

will be different from the current equation (26). However, these coefficients are still determined by the number
of times either f1s or f2s appear in equation (19) in each particular vector, which guarantees that there are at least
one xk

2∣ ∣ and one yk
2∣ ∣ for all k2 2 N 1  -( ) in equation (26). This suffices to get equation (27).

From relation (27) alongwith (21), proving relation (18) requires only proving the following relation

x y1 . 281
2

1
2 +∣ ∣ ∣ ∣ ( )

From condition (20b), one has

x y x y x y . 29
j

j j1 1
2

2 2
3

2
2N 1

* * *å= +
=

-

∣ ∣ ( )
( )

The right hand side of (29) can bewritten as

x y x y x y x y

x y x y x y

x y x y x y x y

RHS

. 30

j
j j

j
j j

j
j j

j
j j

j
j j

j
j j

2 2
3

2

2 2
3

2

2 2
2

2 2
3

2

2 2
3

2

3

2

3

2

N N

N

N N N

1 1

1

1 1 1

* * * *

* *

* * * *

å å

å

å å å

= + +

= +

+ +

= =

=

= = =

- -

-

- - -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∣ ∣

( )

( ) ( )

( )

( ) ( ) ( )

By using condition (20a), one canwrite this expression as

x x y y

x y x y x y x y

x y x y

y y x x y

x y x y x

x y x y x y

x y x y x y x y

RHS 1 1

,

1

. 31

j
j

j
j

j
j j

j
j j

j
j j

j
j j

j
j

j
j

j
j

j
j

j
j

j
j

j
j j

j
j j

j
j j

j
j j

1
2

3

2
2

1
2

3

2
2

2 2
3

2

2 2
3

2

3

2

3

2

1
2

3

2
2

1
2

1 1
2

1
2

3

2
2

3

2
2

1
2

3

2
2

3

2
2

3

2
2

2 2
3

2

2 2
3

2

3

2

3

2

N N

N N

N N

N

N N N

N N N

N N N

1 1

1 1

1 1

1

1 1 1

1 1 1

1 1 1

* * * *

* *

* *

* * * *

å å

å å

å å

å

å å å

å å å

å å å

= - - - -

+ +

+

= - - - +

+ - +

+ +

+ +

= =

= =

= =

=

= = =

= = =

= = =

- -

- -

- -

-

- - -

- - -

- - -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

( )

( ) ( )

( ) ( )

( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

When comparingwith the left hand side of (29), one immediately has

x y1 , 321
2

1
2- - = D∣ ∣ ∣ ∣ ( )
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where, following some algebra,Δ can expressed as

x y y y x

x y x y x y x y

x y x y

x y y x

x y x y x y x y

y x x y x y

x y y x

x y x y x y

x y y x x y x y

,

,

, 33

j
j

j
j

j
j

j
j j

j
j j

j
j j

j
j j

j
j

j
j

j
j j

j
j j

j
j

j
j

j
j j

j
j j

j
j j

j k k j j k

j k j j k k

j
j j

j k
j k k j

2
2

3

2
2

2
2

3

2
2

3

2
2

2 2
3

2

2 2
3

2

3

2

3

2

2
2

3

2
2

2
2

3

2
2

2 2
3

2

2 2
3

2

3

2
2

3

2
2

3

2

3

2

3

2

2 2
2

3

2

3

2

3

2

2 2

3

2

2 2
2

3

2
2

N N N

N N

N N

N N

N N

N N N N

N N N N

N N

1 1 1

1 1

1 1

1 1

1 1

1 1 1 1

1 1 1 1

1 1

* * * *

* *

* * * *

* *

* *

* *

* * * *

  



å å å

å å

å å

å å

å å

å å å å

å å å å

å å

D = + +

- -

-

= +

- -

+ -

= - + + +

-

= - + -

= = =

= =

= =

= =

= =

= = = =

= > > =

= >

- - -

- -

- -

- -

- -

- - - -

- - - -

- -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∣ ∣ ∣ ∣ (∣ ∣ ∣ ∣ ) ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∣ ∣

(∣ ∣ ∣ ∣ )

∣ ∣ ∣ ∣ ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

wherewe used the fact that x y x y x y 0j k j k j j k k3
2 2 2

N 1
* *å - ==

-
(∣ ∣ ∣ ∣ )

( )
. Obviously, 0D , which indicates that

equation (32) provides the desired proof of relation (28) and consequently the inequality (18). The proof will be
exactly symmetric for all other inequalities in equation (2) of themain text. In these cases onewill just have to
prove an inequality similar to (28), but by replacing x1

2∣ ∣ , y1
2∣ ∣ with xi

2∣ ∣ , yi
2∣ ∣ .

Polygon inequality for othermeasures
From the definitions of the entanglementmeasures vonNeumann entropy S, ConcurrenceC, and normalized
NegativityN, it is straightforward to express them in terms of the normalized Schmidt weightY, i.e.,

S Y Y Y Y Y

C Y Y Y

N Y Y Y

1 2 log 2 log 2,

2 ,

2 .

2 2= - - - +

= -

= -

( ) [( ) ( ) ]
( ) ( )
( ) ( )

One sees that they are allmonotonic increasing concave functions ofY in the region [0, 1].
Wefirst assume thatMax Y Yi j={ } , with i N1, 2, 3, ,= ¼ . Then one immediately hasMax

E Y E Yi j={ ( )} ( ) due themonotonic increasing property of the function E(Y). Obviously, this will lead to the
following relation

E Y E Y E Y E Y , 34i k i N1 +¼+ +¼+¹( ) ( ) ( ) ( ) ( )

for any i j¹ . Therefore, what needs to be proven is only one relation, i.e.,

E Y E Y E Y E Y . 35j k j N1 +¼+ +¼+¹( ) ( ) ( ) ( ) ( )

Toprove the above relationwe use a geometric illustration, as shown infigure 4, for visualization assistance.
The black solid line is a generic E(Y) functionwhich is concave andmonotonically increasingwith respect toY.
The blue solid line is a linear function ofY defined as

f Y
E Y

Y
Y . 36

j

j

=( )
( )

( )

It crosses withE(Y) at Y Yj= , f Y E Yj j=( ) ( ) andY=0, f E0 0 0= =( ) ( ) .
First, we consider the sumof all f (Y) values with respect toN entanglementY values determined by the

N-qubit system. That is,
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f Y
Y

Y
E Y E Y , 37

k
k j

k k j

j
j jå =

å
¹

¹( ) ( ) ( ) ( )

wherewe have used the fact that Y Yj k k j å ¹ .
Second, from the concavity ofE(Y), one immediately sees that E i f Yi( ) ( ) for any i N1, 2, ,= ¼ , as

illustrated infigure 4. This leads directly to the relation

E Y f Y E Y , 38
k

k j
k

k j j å å¹ ¹( ) ( ) ( ) ( )

which is exactly (35). To this endwe have proved that any concave andmonotonically increasing function E(Y)
with respect to Y 0, 1Î [ ]will satisfy a similar polygon inequality in terms of (35) for anyYj.

In the literature, there existmany other entanglementmeasures beside the vonNeumann entropy S,
concurrenceC, and negativityN; see for example an overview in [31]. It would be interesting to checkwhether
othermeasures will also satisfy the same polygon inequality (2).We expect that several of them are also concave
andmonotonically increasing functions ofY so that they satisfy the same relation (2) immediately.
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