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Abstract

We prove a set of tight entanglement inequalities for arbitrary N-qubit pure states. By focusing on all
bi-partite marginal entanglements between each single qubit and its remaining partners, we show that
the inequalities provide an upper bound for each marginal entanglement, while the known monogamy
relation establishes the lower bound. The restrictions and sharing properties associated with the
inequalities are further analyzed with a geometric polytope approach, and examples of three-qubit
GHZ-class and W-class entangled states are presented to illustrate the results.

Introduction

Entanglement is a special type of correlation among physical systems. Its restriction and its distribution as a
resource among multiple parties both play an important role in the proposals of various quantum information
and technology tasks [ 1]. Various entanglements (concerning different compositions of entangled parties) exist
in a multiparty system, and different aspects of entanglement distribution can be considered. For example, ina
three-qubit system, there exist six different bi-partite entanglements E, 5, E3, Ei3, Ei|23> E231> E3)12- Here Ey
denotes bi-partite entanglement between parties A and B, where each party can contain either one or the
remaining (two) qubits. Coffman, Kundu, and Wootters initiated the focus of distribution from a ‘one-to-
group’ entanglement (between a singled-out qubit and a group of qubits) into all ‘one-to-one’ entanglements
(between the singled-out qubit and each individual qubit in the group) [2]. This led to the discovery of the well-
known entanglement monogamy relation, E12| 23 = E12| , + Elzl 3, followed by various N-party extensions [3—12].

Monogamy relations reveal one aspect of fundamental connections among a particular subset of bi-partite
entanglements in a multiparty system. Here we focus on a different subset of bi-partite entanglements, i.e., a set
of same-type marginal entanglements. Such a consideration reveals a different aspect of fundamental
entanglement restriction. It can be crucial to various proposals to run multiple parallel entanglement-assisted
quantum tasks in a single multiparty system [1, 13], for example, quantum information transfer from one site to
another in a multi-site spin chain system [14].

Specifically, we consider the restrictions among all ‘one-to-group’ entanglements between a single qubit and
the remaining ones in an arbitrary N-qubit system. Such bi-partite entanglements are sometimes also called
quantum marginal entanglements, as discussed by Walter et al [15]. For example, in the three-qubit case, the
concerned marginal entanglements are E; |53, E;31, and E3|;,. We obtain a generic set of entanglement
restriction relations that can be called polygon inequalities for arbitrary pure states in terms of generic
entanglement measures including von Neumann entropy S [16], concurrence C[17], negativity N[18],and a
normalized Schmidt weight Y [19]. We then show each entanglement polygon inequality provides an upper
bound for a corresponding ‘one-to-group’ marginal entanglement, while the monogamy relation provides its
lower bound. We further illustrate these inequalities with a geometric representation to give a clear visualization
of the restriction and sharing properties.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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N=3 N=17

Figure 1. Schematic illustration of entanglement polygon inequalities. Closed N-sided polygons are shown in (a) and (b) to illustrate
entanglement restriction (2) for 3 and 7 qubits, respectively. The length of each side represents correspondingly to the value of
marginal entanglement E.

Entanglement polygon inequality

We consider all N ‘one-to-group’ entanglements in an N-qubit system, i.e., Eyj23. x> Ejj1.. k=j.. N> - >
Enj12...N—1- From now on we use the notation Ejto represent Ejj; . ;... n for simplicity. Here we take all these
entanglements { E;} being normalized, i.e., valued between 0 and 1. Any connection among these entanglements
has to be restricted by the underlying states, which are governed by the fundamentals of quantum mechanics.
Therefore we consider an arbitrary N-qubit pure state that in general can be expressed as
W) = > o ads) o Isn)s 1
S oo SN=0,1

where ¢, ., are normalized coefficients and s; takes the value 0 or 1 corresponding to the two states |0), |1) of
the jth qubit, with j = 1, 2, 3, ..., N.

Our main result is a set of symmetric inequalities:

Ei <) Ep )]
k=j

amongall N ‘one-to-group’ marginal bi-partite entanglements E;. These inequalities are valid for arbitrary N-
qubit pure states as given in (1). Here E; can be any one of many entanglement measures including von Neumann
entropy [16], concurrence [17], and negativity [18], as well as the normalized Schmidt weight [19-21].

In the one-qubit case, N = 1, the inequality reduces to E; < 0, which means E; = 0 due to the non-
negativity of entanglement measures. It is obviously true that there is no entanglement for a single qubit. In the
two-qubit case, N = 2, the inequality becomes E; < E;and E, < Ej, which means E; = E,. This is apparent for
any two-qubit state, i.e., the entanglement between qubit one and qubit two should always be equal to the
entanglement between qubit two and qubit one.

The inequality begins to become non-trivial with increasing number of qubits N > 3. To have a superficial
understanding, one can assume that the value of each entanglement E; represents the length of aline. Then the
above set of inequalities (2) guarantees that these lines can form a closed N-sided polygon. See figure 1 fora
schematic illustration for N = 3and N = 7. Therefore one can naturally call such an entanglement restriction
an entanglement polygon inequality.

To have a different understanding of the restriction relation (2), one can shift to the perspective of resource
sharing. Consider the distribution of a given amount of total entanglement. When one adds E; to both sides of (2)
and divides by 2, one immediately obtains

E; < Er/2, (3)

where Ey = Y ]Nzl E;is the total of all individual entanglements. In the point of view of entanglement as a
resource, the above relation simply says that no individual participant E; gets more than half of the total.

This is a resource sharing rule for all the participating entanglements. It limits the flexibility of distributing a
given total resource. Such a sharing restriction will be very helpful to propose appropriate multiple quantum
information tasks in a single multiparty system, and to guide designs to avoid overloading tasks on any particular
entanglement. A detailed understanding and analysis of the inequalities (2) and (3) will be discussed in the
following with a visualizable geometric representation.

As pointed out in the beginning, the well-known monogamy relation [2] and the entanglement polygon
inequalities (2) concern different sets of bi-partite entanglements of a multiparty system. However, thereis a
common element in both restriction relations, i.e., the ‘one-to-group’ or marginal entanglement E; based on the
same bi-partition. The N-qubit version of the monogamy relation reads

2
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E} >3 Ej )
k=j
which is also valid for a generic entanglement measure E such as concurrence [3], negativity [5] and von
Neumann entropy [12].
By taking the square root of the monogamy relation (4), and combining with the entanglement polygon
inequality (2), one immediately finds the interesting relation

S Ejx <E <Y E ©)
k=j k=j

Obviously, the traditional monogamy relation provides alower bound for the marginal entanglement E; while
the entanglement polygon inequality establishes its upper bound.

Inequality proof

The complete proof of the entanglement polygon inequality (2) for various entanglement measures is non-
trivial, and its details are given in the appendix. Here we provide a brief sketch of the proof as an illustration of
the strategy. The first step is to prove that inequality (2) holds for a specific entanglement monotone Y [20], i.e.,

[2
Y=1- E—l. (6)

Itis the normalized version of Schmidt weight [19]

PO

defined based on the Schmidt coefficients /), , \/\; ofatwo-party pure state (1), of which one party is taken as a
single qubit and the second party contains all the remaining qubits [22—-24]°.

The second step is to show that different entanglement measures, i.e., von Neumann entropy S[16],
concurrence C[17], and negativity N [18], are all concave and monotonically increasing functions of Y in the
region [0,1]. Then a function E(Y) can be used to represent a generic entanglement measure.

The third step is to combine the results of the first two steps. In this final step we assume without loss of
generality that Max {Y;} = Y;, withi = 1, 2, 3, ..., N. Thus the monotonic increasing property of the function
E(Y) ensures the relation Max {E(Y;)} = E(Y}). Wealso define alinear function f (Y) = E(Y;)Y/Y}, and the
concavity property of E(Y) guarantees

@)

f M) < E(Yewr)). ®)
Then we prove the relation (see details in the appendix)

> f () > E(Y)), ©)

k

by using the result of the first step, i.e., ¥; < >7; ¥;..;. By combining (8) and (9), it is then straightforward to see
that the entanglement polygon inequality (2) is valid for these generic measures.

The inequality (2) in terms of Yis uniquely tight, i.e., it not only applies to all N-qubit pure states, but
additionally those states exhaust the inequality, occupying its interior and also its boundaries. The inequality (2)
interms of S, C, or Nislooser than that in terms of Y due to the concavity property.

Polytope analysis

We now further analyze the entanglement polygon inequality with a geometric approach that captures both the
restriction (2) and resource sharing (3) features. First we assume the limiting case where there is no restriction
amongall N different entanglements Ej; they are then independent of each other and can be used to identify axes
Ejin a unit N-dimensional hypercube (0 < E; < 1). Each combination of all entanglements { E;} represents a
unique point E = (E}, E,, ..., Ey) inside this hypercube. For example, when N = 1, 2, 3 the sets of
entanglements { E;} form aline segment, square, and cube, respectively (see figure 2).

Itis natural to imagine that, under the restriction relation (2), the occupied hypervolume will be reduced.
This is indeed the case. For example, it will reduce to a single point E; = 0and a single diagonal line E; = E,,
respectively, in the trivial cases of N = 1 and N = 2 as shown in figure 2 by the red dot O and red line OM.

> The Schmidt theorem is the analog in analytic function theory of the singular-value decomposition theorem for matrices. The original
paperis[22].
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(@) N=1
(0] E L
(b) N=2
E 2
O
0,00 E
Figure 2. N-dimensional spaces in which the point E is defined, corresponding to (a) N = 1 (unit line segment), (b) N = 2
(unitsquare), and (c) N = 3 (unit cube). In all cases, the point O corresponds to no entanglement and the point M to maximal
entanglement.

As anon-trivial illustration we analyze in detail the case of N = 3, for which the generic entanglement
polygon inequality (2) implies

E\+ E, > Es, E; + Es > Ey, Es + E; > E,. (10)

One notes that when the three inequalities all take the equal sign, each of them defines an equilateral triangle, i.e.,
AOAB, AOBC and AOCA, seen in figure 2(c). These three triangles are the surfaces separating allowed and
forbidden regions. Therefore the inequalities have excluded the occupation of tetrahedra ROAB, QOBC, and
POCA from the entire cube. On the other hand, the inhabitable region resulting from the constraints by the three
inequalities is simply the base-to-base union of the regular tetrahedron OABCand the rectangular tetrahedron
MABC. The entanglements { E;} of all physical quantum states have to be restricted to this allowed confined region.

Forall N > 4 therestricted region defined by the restriction (2) is a polytope, a hypervolume that is compact
inside the unit hypercube. In general, for any N, each individual inequality of (2) excludes a rectangular simplex
of the hypercube with a hypervolume given by [25]:

N 1 ) 1
J-1dE = —
1’1;[1 fo EPdE =3 (11

For example, in the three-qubit case illustrated in figure 2(c), one of the excluded rectangular simplexes is
tetrahedron PAOC whose volume is simply 1/6. Therefore the total available hypervolume, given the restrictions
by all N such inequalities, is

1

=1 — .
N (N —1)!

(12)
One can easily check for the three-qubit case that the volume being allowed is 1 /2.

According to equation (12), the ratio of the allowed hypervolume Vy to the unit hypervolume increases as
the number of qubits is increased, approaching unity as N — oc. That is, the more qubits that exist in the
system, the less restriction there will be among all marginal entanglements, and the more sharing flexibility there
will be (the issue of sharing will be addressed in the following). This may be viewed as an advantage of using
multiparty systems in the realization of quantum information tasks in the sense that all the entanglements
existing in the system are more flexible than in fewer-party systems.

A variation of the entanglement polygon inequality (2) is the relation (3), which reveals an important aspect
of entanglement resource sharing. That is, it reveals a rule how to share a given amount of total entanglement Er.
In principle, after obeying this rule, there may still be some flexibility allowed for sharing a given amount of total
resource. We now analyze quantitatively the effect of (3) on sharing flexibility or sharing capacity.

The geometric representation helps to visualize the freedom of distributing entanglements. We start by noticing
inthe N = 3 case that the domains of different total entanglements Erdefine triangles transverse to the body diagonal
(color triangles in figure 3) under the inequality restriction. Inspection shows that the Er-value for these triangles
varies from 0 to 3, running from zero to maximal total entanglement. It is obvious that infinitely many combinations
of E = (E,, E,, E,) areavailable to sum to the total Ein each transverse triangle, which makes it difficult to quantify.

An advantage of the geometric representation is that it allows us to adopt the area A of each triangle as a
natural quantitative measure of entanglement sharing capacity. The relation between A and the amount of total
entanglement to be shared is not a linear relation, but a piecewise quadratic of the form:

4
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Figure 3. Inhabitable region inside the unit entanglement cube. The entanglement polygon inequality (2) confines the inhabitable
region to just two tetrahedra OABC and MABC (shaded in gray). Also shown are three triangular planar sections of this region
transverse to the unit cube’s body diagonal. Degree of sharing A is shown as a function of Erin the right panel. The three colored dots
correspond, respectively, to the three colored triangles in the left panel.

2,

2 3 (1)
The sharing capacity A is graphed in the right panel of figure 3, where we see that it is peaked around its
maximum of \/3 /2 at E;- = 2, corresponding to the triangle AABC. It should be noted that greater total
entanglement Erdoes not guarantee greater sharing capacity.

One can further define the sharing capacity for the N-qubit case as the hyperarea of the (N — 1)-dimensional
inhabitable polytope of fixed E, normal to the line OM within the N-dimensional polytope restricted by the N
inequalities in the form of (3). Again O is the point of zero total entanglement and M represents maximum total
entanglement. The general (N-1)-dimensional hyperarea expression is given as

1— N E%\Fl Er <2
A= N x N N—pr T (14)
By 1(ET), Er > 2,

where By_1(Er) is the zeroth uniform B-spline basis function [26] of degree N — 1 at Erwith knots

Er =2, 3, 4, ..., N.Itisknown that these functions provide the diagonal cross-sections of N-dimensional
hypercubes [27]. Note that inequality (2) only affects the interval 0 < E7 < 2, within which the corresponding
result can be calculated directly. Here A is a piecewise polynomial of Er of order N — 1, which vanishes at the
endpoints E; = 0 (corresponding to point O) and Er = N (corresponding to point M).

Itis worth noting that the parameters of our geometric representation are different entanglements. This
differs from the direct focus on quantum state parameters; see for example a recent geometric analysis of
quantum state discrimination [28]. However, it would still be very interesting to explore the connection between
quantum states and our entanglement representation; a brief discussion is now presented as an illustration.

Example of entangled states

Let us now view our results with specific examples by considering the normalized Schmidt weight Y; for three-
qubit generalized GHZ [29] class states and its inequivalent W [30] class states:

|UsHz) = cos b0, 0, 0) + sind|1, 1, 1), (15)

and
|Tw) = all, 0, 0) + 5|0, 1, 0) + 4]0, 0, 1). (16)
Itis straightforward to note that the three marginal entanglements aregivenas ¥ = ¥, = ¥; = 1 — | cos 20|

for the GHZ-class states. Obviously, they satisfy the polygon inequality (2). In the geometric representation,
these states live along the cube’s body diagonal line OM (see figure 3). One also sees that there is minimum
sharing capacity A = 0 for the GHZ-class states simply because for any given total resource Yrthere is only one
waytoshare,ie., ¥ =Y, = Y5 = Y /3.

To investigate W-class states one needs to analyze all combinations of ||, |5], ||, and consider four different
cases,i.e., | = 1/2,|8°% = 1/2,|7]* > 1/2,and Max(|af?, |8, |7]*) < 1/2.When|a)* > 1/2,0necan
compute the entanglements, respectively, as Y; = 2(|3]> + |7*), Y2 = 2|8[?,and Y5 = 2|7|?. This clearly satisfies
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the polygon inequality (2). Particularly, this case satisfy one of the boundary equalities, ¥} = Y, + Y3,
corresponding to AOBC in the geometric representation illustrated in figure 3. Similarly, the symmetric cases
|8 > 1/2and|y]> > 1/2 satisfy, respectively, the remaining two equalities Y, = ¥; + V;and Y3 = ¥} + Y,.
These correspond to AOCA and AOAB in the cube (see figure 3). The occupation of these boundaries indicates the
unique tightness of our inequalities (2) in terms of Y.

When Max(|a?, |87, [71*) < 1/2,0nehas ¥ = 2|al?, Y, = 2|6, Y5 = 2|7|% satisfying relation (2). More
interestingly, onesees ¥; + Y, + Y3 = 2. Therefore, in this case, the W-class states occupy the entire triangle
AABC in the cube, which exhibits the maximum sharing capacity with A = /3 /2.

Summary

We have presented an entanglement polygon inequality for arbitrary N-qubit pure states, and analyzed its
restriction and sharing properties with a geometric representation. Its intimate connection to the well-known
monogamy relation is also shown.

The entanglement polygon inequality reveals a type of fundamental constraint among multiple
entanglements of a multiparty system governed by quantum mechanics. It further establishes a resource sharing
rule that limits the flexibility of distributing entanglements among all participants. Such a sharing rule may
provide guidance when proposing optimal schemes that can run multiple entanglement-assisted quantum tasks
in a single multiparty system.

Our geometric representation of the inequalities provides a potentially useful way to analyze and understand
multiple entanglement restrictions, as well as to study collective or dynamical entanglement behavior. It has the
advantage of exposing quantitatively the degree of restriction and sharing capacity. An example of its utility has
already been demonstrated in the development of a center-of-mass interpretation of bi-partite purity for both
pure and mixed states (see [21]).

Preliminary numerical results support the speculation that the same inequalities of Y; hold for pure states of
MK
KM~ 1)
Kjis the Schmidt weight of the extended pure state. This will simply extend our resource sharing treatment to a

much wider category of quantum states.

and

multiparty M-level systems, where the normalized entanglement monotone becomes Y; = 1 —

Acknowledgments

We acknowledge partial financial support from the National Science Foundation through awards PHY-
1068325, PHY-1203931, PHY-1505189, PHY-1507278, and INSPIRE PHY-1539859. MAA received funding
from the Excellence Initiative of Aix-Marseille University - A"MIDEX, a French ‘Investissements d’Avenir’
programme. XFQ would also like to thank Michael Hall and Shuming Chen for pointing out the connection
between our entanglement constraint relations and the polygon inequalities.

Appendix. Proof of entanglement polygon inequality

To prove the entanglement polygon inequality, we first prove that the normalized Schmidt weight Y[20] satisfies
the set of inequalities in (2). We then show that all other measures, i.e., von Neumann entropy [16], concurrence
[17], and negativity [ 18] satisfy automatically the same symmetric inequality relation due to the fact that they are
all concave and monotonically increasing functions of Y.

Polygon inequality for Y

First, we prove the entanglement inequalities in relation (2) of the main text in terms of Y for arbitrary N-qubit
pure states. When bipartitioned between a single qubit (e.g., the ith qubit) and remaining N — 1 qubits, an N-
qubit pure state can always be decomposed into the Schmidt form, i.e.,

1) = VXI) @ 187) + V1) @ lg), (17)
where | f;”} and | grfi)>, n = 1,2, are the Schmidt bases of the ith qubit and the remaining N — 1 qubits,
respectively. Here A" and A are the corresponding Schmidt coefficients and we assume A" > A\ for all i

without loss of generality.
For simplicity we prove only the first inequality:

N
NV (18)
=2
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the remaining N — 1 inequalities follow by symmetry. We hence consider the specific Schmidt decomposition
with respect to qubit 1 by takingi = 1in (17). We express the two (N — 1)-qubit states | g(1)> and | g2(1)> in the
Schmidt basis of each qubit, with complex amplitudes x;and y;, i.e.,

18y = xlf®) 1) 1Y)

+ ol f2) D) )

+ o fP) D) Y, (19a)
8") = nlfP) o AP 1)

+ ) D) 1)

oyl 57 157 1Y), (196)
where we have the orthonormality conditions

2 2

Yokl =yl =1, (20a)

=1 =1
2N*l
> xjy]?“:o. (20b)
=1

The entanglement between qubit 1 and the remaining qubits can then be easily obtained as
Y = 220, 1)
Now we rearrange the state (17), and write it by grouping the states of qubit 2, i.e.,
& [\/ATM DY [FO) . [ fN)
b DD e fO) FOY) )
A RENAT) AN
4+ )\(1 ¥y 2)| (1) (3)> |f(N)>
+ If(” APz O £ o 1Y)
VN w0 N o 1£)
+ F Yool EOAD) - 1A)
4 Dy EONED) L), 22)

Itis easy to note that the corresponding Schmidt coefficients for qubit 2 are given as

2(N*2)
M =30 I+ APy, (23)
j=1
2(N—Z)
AP = 37 oo P + )\(zl)|)’2<N—2>+j|2)- (24)
j=1

Again the entanglement measure between qubit 2 and the rest is obtained as

HN=2)

,=2 Z (/\§1)|x2<”’ 2)+j|2 + )\(21)|)’2<N—2>+j|2)- (25)
j=1

We note that the expression for Y, simply picks up the coefficients |x;|* and | yjl2 that correspond to the (N — 1)-

qubit basis states, as given in equations (19), when qubit 2 is in the Schmidt basis | fz(z)>. Similarly, the ith qubit Y;,
which can be expressed in similar form as (25), picks all the coefficients |x;|* and | yj|2 that correspond to the

(N — 1)-qubit basis states containing | fz(i)). When summing over all Y; from 2 to N, we get

N
S0V =2A I + |xs? + ... + |xwl?
j=2

+ 2lxn i + o (N — Dx,een]
+ 200 + 1P+ P
+ 2lyy P 4+ (N = Dyl (26)
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That is, the number of times |x;|* appears in the sum equals the number of times | fz(i)> appears in the
corresponding (N — 1)-qubit basis states given in equations (19).
From the above summation, along with the assumption \{"’ > A\{", one immediately finds

N N1
STV =3 200l + ALy,
j=2 k=2

2N—l

N T P (27)
k=2

We note that in order for equation (27) to hold, it needs each |x|* and | y; |* inside the square brackets of
equation (26) to have a coefficient greater than or equal to 1. Ifthe assumption A > \{? is removed, one will get
a different version of equation (26) where the actual coefficients for each |x;[* and | y, |* inside the square brackets
will be different from the current equation (26). However, these coefficients are still determined by the number
of times either fis or fos appear in equation (19) in each particular vector, which guarantees that there are at least
one |x;|* and one |y, * forall 2 < k < 2¥~V in equation (26). This suffices to get equation (27).

From relation (27) along with (21), proving relation (18) requires only proving the following relation

1> | + [yl (28)
From condition (20b), one has
HN=D) 2
by P = | %)+ > xyf (29)
=3

The right hand side of (29) can be written as

Z(N*U Z(N—l)
RHS = (x2y2*+ > xjy;.k][xz*yz + > x]*y]]
=3

=3
HN-1)
=lopl + 0y Y xfy,
=3
H(N=-1) H(N=1) H(N=-1)
ST AT A DS (30)
=3 =3 =3

By using condition (20a), one can write this expression as

Z(N*I) 2<N*1)
RHS = [1 — |l — Z |xj|2](1 —nPF = > |}’j|2]
j=3 j=3

Z(Nfl) Z(Nfl)
* * * *
+xy) Y0 Xy X X X
j=3 j=3
Z(N*l) Z(N*I)
>k *
LD IR ADDES/E
j=3 j=3
2(N*l)

=1y — S P — bl + bayl?
j=3
Z(N*I) Z(N*I) Z(N*I)
FRES P - X P IR Y P
j=3 j=3 j=3

2(N—l) 2(N—l] 2(N—l)

2 2 % *
+ 20 P 0 P eyt Y0 1y,
= i e
Z(Nfl) (N—-1) (N—1)

2 2
ST AT DI (31)
j=3 j=3

j=3

When comparing with the left hand side of (29), one immediately has
1= |af? = Ipl? = A, (32)
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where, following some algebra, A can expressed as

2(N—l) Z(Nfl) 2(N—1)
A=lel S IyP + (nP + 3 P Y I
j=3 j=3 j=3
2(N71) Z(Nfl)
* * * *
- %), Z XiY; — X2 ), Z XiY;
=3 =3
2(N*1) 2(N*1)
* *
IR VAP
i=3 i=3
Z(N*I) 2(N71)
=lal Y0 Iyl + Inl Y0 Ikl
i=3 i=3
Z(Nfl) Z(Nfl)
* * * *
— %), Z XiY; — X2 ), Z XY
i=3 i=3
2(N*1) Z(Nfl) 2(N*1) 2(Nfl)
e *
+ P = X wy Y X,
j=3 j=3 j=3 j=3

>k=3  k>j=3 j=k>3

H(N=-1) HN=1) HIN=1) H(N=1)
= ZIXZyij“x}*I2+[Z + 2+ Z]
j=3

(P Ind® — %7 w0

2(N71) 2(1\171)
x K * %k
= 2 by =P+ 20 Iy — x0T (33)
j=3 j>k>3

where we used the fact that Z?i;;ﬂlez lyl* — x; y;kx,:k ) = 0.Obviously, A > 0, which indicates that
equation (32) provides the desired proof of relation (28) and consequently the inequality (18). The proof will be
exactly symmetric for all other inequalities in equation (2) of the main text. In these cases one will just have to
prove an inequality similar to (28), but by replacing |x;|?, | y,|* with |x; |, | y;|*.

Polygon inequality for other measures
From the definitions of the entanglement measures von Neumann entropy S, Concurrence C, and normalized
Negativity N, it is straightforward to express them in terms of the normalized Schmidt weight Y, i.e.,

S(Y)=1-[2 - YV)log,2 — Y) + Ylog,Y1/2,
cCY)={Jr@-v,
NY)=JYQ2 —-Y).

One sees that they are all monotonic increasing concave functions of Y in the region [0, 1].

We first assume that Max { ¥;} = Yj,withi = 1, 2, 3, ..., N.Then one immediately has Max
{E(Y;)} = E(Y;) due the monotonic increasing property of the function E(Y). Obviously, this will lead to the
following relation

E(Y) <EXW) +...+ EWi) + ... + E(Yn), (34)
foranyi = j. Therefore, what needs to be proven is only one relation, i.e.,

E(Y) < Q) + ... + E(ey) + ... + E(Y). (35)

To prove the above relation we use a geometric illustration, as shown in figure 4, for visualization assistance.
The black solid line is a generic E(Y) function which is concave and monotonically increasing with respect to Y.
The blue solid line is a linear function of Y defined as

E(Y))
fY) = —=v. (36)
Y;

Itcrosseswith E(Y)atY = Y}, f(Y;) = E(Yj)and Y = 0, f (0) = E(0) = 0.
First, we consider the sum of all f(Y) values with respect to N entanglement Yvalues determined by the
N-qubit system. That is,
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Figure 4. Schematic illustration of a concave and monotonically increasing function E(Y), as well as a linear function
f(Y) = E(Y))Y /Y] of the parameter Y. In the plot E(Y) is takenas \/Y (2 — Y) which represents concurrence and negativity.

Yiei
S f (i) = %E(Y» > E(Y), (37)
k J

where we have used the fact that Y; < 37, Y.
Second, from the concavity of E(Y), one immediately sees that E(i) > f (Y;) foranyi = 1, 2, ..., N, as
illustrated in figure 4. This leads directly to the relation

Y Eie) = ) f(Yiey) > E(Y)), (38)
k k

which is exactly (35). To this end we have proved that any concave and monotonically increasing function E(Y)
with respectto Y € [0, 1] will satisfy a similar polygon inequality in terms of (35) for any Y;.

In the literature, there exist many other entanglement measures beside the von Neumann entropy S,
concurrence C, and negativity Nj see for example an overview in [31]. It would be interesting to check whether
other measures will also satisfy the same polygon inequality (2). We expect that several of them are also concave
and monotonically increasing functions of Y so that they satisfy the same relation (2) immediately.
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