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Abstract

One critical part of decision support during the response phase
to a wildfire is the ability to perform large-scale evacuation planning.
While in practice most evacuation planning is principally designed
by experts using simple heuristic approaches or scenario simulations,
more recently optimization approaches to evacuation planning have
been carried out, notably in the context of floodings. Evacuation
planning in case of wildfires is much harder as wildfire propagations
are inherently less predictable than floods. This paper present a new
optimization model for evacuation planning in the event of wildfire
ailming at maximizing the temporal safety margin between the evac-
uees and the actual or potential wildfire front. As a first contribution,
an open-source data instance generator based on road network gener-
ation via quadtrees and a basic fire propagation model is proposed to
the community. As a second contribution we propose 0—1 integer pro-
gramming and constraint programming formulations enhanced with a



simple compression heuristic that are compared on 240 problem in-
stances build by the generator. The results show that the generated
instances are computationally challenging and that the contraint pro-
gramming framework obtains the best performance.

1 Introduction

The overall objective of the GEO-SAFE project [§] is to develop methods
and tools enabling to set up an integrated decision support system to as-
sist authorities in optimizing the resources during the response phase to a
wildfire (fire suppression, life and goods protection). One critical and cru-
cial part of this integrated decision support is the ability to perform large-
scale evacuation planning [I5]. While in practice most evacuation planning
is principally designed by experts using simple heuristic approaches or sce-
nario simulations [I7], more recently optimization approaches to evacuation
planning have been addressed, using a variety of optimization technology,
as surveyed recenly in [2]. This paper presents a challenging variant of the
evacuation planning problem in case of wild fire issued from exchanges with
practitioners in the context of the GEO-SAFE project and from a specific
literature review. A large amount of work has been carried out, notably at
NICTAE],[H, 4, [12), 10, [5, 6, @, 3] mainly in the context of floodings, which
can be transposed under some adaptations to evacuation in case of fires.
Evacuation planning in case of wildfires is indeed much harder. Wildfire
propagations are inherently less predictable than floods. While flood levels
mostly rely on the fixed topology of the area and rainfalls, wildfire mainly
depends on the wildland fuels [14] [I], on the slope of the burning ground and
more importantly on the speed and direction of the wind that can suddenly
change at any time [I8, [16]. Therefore, evacuation planning dedicated to
wildfires must be much more robust to difference future scenarios. A good
evacuation plan in case of wildfire must not only minimize the evacuation
time of the population but also maximize the spatial and temporal safety
margin between the evacuees and the actual or potential wildfire front.
This paper present a new optimization model for evacuation planning in
the event of wildfire as well as a problem instance generator. On these in-
stances, basic 0-1 integer programming and constraint programming formu-
lations enhanced with a simple compression heuristic are compared. In Sec-
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tion [2, we provide a literature review and we define the considered problem.
Section (3| presents the instance generator. The basic 0-1 integer program-
ming, constraint programming formulations and the heuristic are proposed
in Section [d] Computational experiments are given in Section [3]

2 State-of-the-art review and problem defini-
tion

2.1 Basic evacuation data

We adopt the notation an terminology given in [6]. There is a directed graph
GN =EUTUS, A) representing e.g. a road network in a region that must
be evacuated. The graph is made of:

e the set of evacuation nodes £. An evacuation node represents a zone
where people to be evacuated are regrouped),

e the set of safe nodes S. A safe node represent a safe geographical
zone that people located in the evacuation nodes must reach during
the planning horizon

e the set of transit nodes 7. A transit node represent an intersection
in the road network that can be traversed by the vehicles carrying
evacuated people from the evacuation zones to the safe zones.

Suppose the time is discretized in minutes. Each evacuation node k € & is
associated with a number of evacuees dj. Each arc ¢ € A has a capacity
U, in evacuees/minute, a travel time t, giving the number of minutes that a
vehicle takes to traverse the arc and a end time b., which gives the time at
which the arc becomes unavailable due to the fire propagation.

Other characteristics may appear in the variants considered in the cited
papers.

2.2 Previously considered evacuation problems

We limit our review to the the NICTA papers as they explain the genesis of
the final model w.r.t. practical considerations. The first considered problem
and solution methods were presented by Pillac et al. in 2013 in a research



report that was later published in [11]. One of the practical motivation of
the work was that in an urgency situation, the possibility of choices in a
road network, such as a fork, generate stress among the population. This is
why it is preferable to define a single evacuation path for each evacuation
zone. Hence the problem considered in [IT] can be described as a two-level
optimization problem, which can be solved in an integrated way or by a two-
phase approach. At the first level, exactly one evacuation path is determined
from each evacuation node to a single safe node. At the second level the
flow of evacuees is scheduled trough the path. A MILP (called the restricted
flow model RF) is proposed to solve the problem in an integrated way. It is
based on time-expanded graph, in which each node is duplicated for each time
period. Arc capacities u, in the time expanded network ensure that the traffic
does not exceed the road capacity, especially when several paths use the same
arc. The model includes continuous flow variable per evacuation node per arc
and in the expanded network and also a binary variable per edge in the (non-
expanded) graph G to ensure the uniqueness of the path for each evacuation
node. As the MILP is intractable on a set of instances (HN) derived from
a real case scenario involving 70000 evacuees in the Hawkesbury-Nepean
floodplain, located North-West of Sydney, an iterative column-generation-
like two-phase heuristic is proposed. Given a set of potential paths, a master
problem solves the path selection and flow scheduling problem with another
MILP (called the conflict-based heuristic path generation master problem,
CPG-MP) involving a reduced number of binary constraints (one per path).
A sub-problem finds new paths based on a subset of critical nodes by solving a
multiple-origin, multiple-destination shortest path problem. A lexicographic
objective is considered. The main objective is to maximize the number of
evacuated people during the time horizon, while a secondary objective aims
at maximizing the evacuation start time, based on the practical relevance.
Note that the second objective is only indirectly tackled by weighting each
arc in the time-expanded graph by a cost inversely proportional to the arc
time, hence solving a min-cost flow problem.

Subsequent papers describe variants of the models and new methods. A
more sophisticated variant of the heuristic was proposed in Pillac et al. (2014)
[12] for the same problem with, however, a different secondary objective
for the min-cost flow, aiming at minimizing the evacuation time (called the
clearance time), which is indirectly obtained by weighting the arc in the
time-expanded graph by a cost proportional to the arc time.

In Even et al. (2014) [4], an additional degree of freedom is introduced,
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giving the possibility of selecting contraflow roads, which consists in revers-
ing the direction of some major roads. In practical cases, this possibility
can highly increase the network capacity for evacuation. This is done by
introducing a subset A, of arcs that can be used in contraflows and by mod-
ifying the CPG-MP, interestingly without the need of introducing additional
binary variables. A software called the NICTA Evacuation Planner is also
presented, with new instances with up to 1000 000 evacuees, which are solved
requiring up to 30 min. of CPU time.

In Even et al. (2015)[5], the case where the selected paths must form
a convergent subgraph, i.e. for which each node has at most one outgoing
arc in the set of paths, is considered. This is motivated by the fact that
convergent evacuation paths can be better controlled. Indeed, even if in the
previous model, a single path was assigned to each evacuation node, in the
case where two paths are merged and then are separated again, a driver can
be confronted to a choice and take a decision that would not correspond to
what was planed. Hence the set of paths now form a tree rooted at the safe
node. The solution method is still a two-phase method but does not follow
anymore the column generation principle. A tree is first built by a MIP
working on an aggregated graph (without time discretization). The second
phase is the flow scheduling problem given the computed tree, which is a
maximum flow problem. The first phase is now able to produce good upper
bounds on the maximum number of evacuees and on the minimum clearance
time. A simulation study shows that the convergent model outperforms
the general model when the presence of a fork in the network generated an
hesitation for the driver that is capture by a 0.75 second delay.

This model is further developed by Kumar et al. (2016) [9] to incorporate
network design aspects in the problem to model possible infrastructure en-
hancement decisions, as for the west Sydney case concerns about the capacity
of the road network were expressed. Two additional decisions are introduced
: adding lanes to a road (arc) and elevating a road (arc). The first decision
results in an increase of the capacity of the arc while the second decision
postpones the flooding time, both coming at a cost. These decisions can be
incorporated in the tree design problem, which is also the master problem
of a Benders decomposition method. The objective is still to maximize the
number of evacuated people under a budget constraint that limits the in-
frastructure upgrades. The maximum flow subproblem is used to obtain a
feasible flow schedule and also to generate optimality cuts that are reinjected
in the master problem. To increase the performance of the Benders method,



pareto-optimal cuts are generated.

All previous approaches assumed that each individual vehicle of an evac-
uation (flow unit) moves independently from the other vehicles of the same
zone, and exactly as prescribed by the maximum flow model. Pillac et al.
[T0] propose to use the concept of response curves to incorporate behavioral
models in the problem. In practice, instead of assigning a start time to each
evacuee, the authorities can influence the evacuation start time of a zone and
the level of resources mobilized to increase the evacuation rate (e.g. number
of agents knocking on people’s door), to which people answer according to
a behavioral model abstracted by a response curve. It follows that to each
evacuation zone k € £, a set of response curves Fj is given. For each evac-
uated zone, a start time d, and a response curve fy € Fj, has to be assigned
such that the flow of evacuees leaving zone k at time ¢ is givn by

¢ |0 ift <o
d)k_{ ft—20) ift>o.
A column generation approach is proposed where the set of all evacuation
plans of a zone is considered, where a evacuation plan is a path from the
evacuated zone to a safe node, the start time and the response curve. The
master problem selects a plan for each evacuation zone in such a way that
the network capacity is satisfied and the total cost of the plans is minimized
(without ensuring that a convergent is obtained). The plan generation sub-
problem is solved either via a MIP or via a shortest path approach. The
methods experiences difficulties is solving realistic instances due to a long-
tail effect.

Another drawback of the flow model is that it generated preemptive evac-
uation plans. As flow units are routed independently there are time periods
in which the evacuation of a zone may be stopped and reinitiated later.
Even et al. (2015) [6] report that this creates serious implementation issues
for the evacuation plans. They propose another model in which the evacua-
tion rate is a decision variable that remains fixed as soon as the evacuation
starts and as long as the zone is not fully evacuated or the time horizon is
reached. They assume that the evacuation path of each evacuation zone is
already determined and concentrate only on the scheduling problem. We
present this model in the case that all people must be evacuated and the
objective is to minimize the clearance time. Let J, denote the start time
of evacuation of zone k£ and let )\, denote the evacuation rate of zone k.
Let A, = (e}, ... ,eLA’“‘) the evacuation path of zone k given as its list of
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edges. An evacuation plan defines a task J} for each edge e}, with a start
time St = 0y, + 22;11 t1 where ¢ is the travel time of edge €. The evacuation
has a variable duration p, and the total number of evacuees is pi\, with
peAe = dj, since all people must be evacuated. Each edge task e} € Ay has
duration pg. Let J. the set of tasks that use edge e € A. We also denote
as uy the maximum evacuation rate of an evacuation node k, which can be
seen as a node capacity. The model can be written as follows :

min Chax (1)
s.t.

Cruae > S+ Vke & 2)
S+ pr < b Ve EVi=1,..., | A (3)
e = dy, Vk e & (4)

i—1
Sp=0r+ ) t Vke&Vi=1,..., | A (5)

q=1
> Ak < e Ve € AVt >0 (6)

Ji€Te,Si <t<Si+pi

5 >0 Vk e & (7)
wp > A >0 Vk e & (8)
pe >0 Vk e & (9)

This is a no-wait total work- and resource-constrained project schedul-
ing problem where (4 are the total work constraints, (5) are the no-wait
constraints, as the start time of the evacuation task on a arc of the evac-
uation path starts exactly at the decided evacuation time d, plus the total
travel time along the path toward edge e. Constraints @ are the capacity
constraints on each edge e. The problem was efficiently solved in [6] via con-
straint programming for both the clearance time minimization version and
the maximization of the number of evacuated people variant.

2.3 A new evacuation planning problem in case of wild
fires

In the work of Even et al. (2015) [6] and previous studies, the time b, at which
arc e becomes unavailable comes from a flood propagation model, which
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is pretty accurate. In the case of fire, even if precise propagation models
can be obtained, they depend on multiple parameters. Among them, the
wind has a great variability. The subject of promising further studies would
be to consider explicitly uncertainty via robust of stochastic approaches,
but this would require the definition of various scenarios possibly associated
with probability distributions. An alternative to modeling uncertainty of the
unavailability dates would be to consider an objective function that seeks to
maximize the length of the time interval [C., b.|, where C, is the completion
time of the last task using edge e. It follows that in this paper we consider
the following optimization problem, with objective function giving the
maximum (possibly negative) slack on each evacuation arc, weighted by the
population.

i di (b — S, 10
e vinL A k(be, — S +px) (10)

st @), @), ©. @ 6. O (11)

3 Realistic data instance generator

Catastrophic wildfire requiring large population evacuation are, thankfully,
rare events. However, it means that obtaining useful data is difficult, and
indeed this a key problem within the GEO-SAFE project. A significant part
of the project revolves around simulation tools such as EXODUS [7], however,
even simulated data was hard to come by.

Therefore, we opted for taking advantage of the project environment to
contribute to this effort by generating our own “realistic” dataset. On the
one hand, this approach may introduce biases since we must use models to
generate realistic road networks and simulate wildfires. On the other hand,
we believe that it will make it much more convenient for benchmarking algo-
rithms in the future. As it turns out, the generated instance are challenging
even though relatively modest in size, thus being interesting from an aca-
demic viewpoint as well.

3.1 Generation of road networks

The first step is to generate a graph standing for the road network. To this
end, we used the quadtree model described in [3]. In a nutshell, this model
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starts with a single square formed by four nodes and four edges. At each
iteration, a square is chosen and five nodes are added, one in the center of the
square, and one on each edge connected by a perpendicular edge to the center
node. A parameter r controls the sprawl, that is, the preference for splitting
larger squares (r < 1) or smaller square (r > 1). The graphs generated
in this manner share a many features with real road networks: they are
planar, embedded in an Euclidean plane, have similar density distributions,
path lengths are within a constant factor of the Euclidean distance, and the
number of turns is logarithmic with high probability. An example of random
quadtree network is shown in Figure The colors on the edges correspond
to road capacity. To allocate capacities, we first compute a minimum Steiner
tree spanning three randomly chosen nodes in high density areas (“cities”)
and connect these cities to the nearest corner of the outer square. The
corresponding set of edges are given the highest capacity and are coloured
in blue in Figure [Ia] A second set of edges, forming a grid are given an
intermediate capacity, they are coloured in green.

H T H H T H
Gl FmymCaRE"
HH T HEHTT
HHH : _ii‘g_
H T HH T T e
o | HHH - [ H
[ i [ | i
[ | |
e [ [ o H HEH [ [ H | B HFEH
i i I e i +ﬁ'ﬁwi |i
|\ | zimnnz: i iRl A
(a) road network (b) simulated wildfire (¢) evacuation plan

Figure 1: An example of generated instance

3.2 Simulating wildfire

The second step consists in determining safety due dates for every edge of the
evacuation tree, that is, a time after which the edge become unsafe. To this
purpose we use a relatively simple fire propagation model. We chose to use a
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simple model based on two parameters: a constant intensity v representing
the type of fuel material as well as the temperature, and a wind direction.
Indeed, the goal is not so much to accurately predict fire propagation, as it is
to generate safety due dates consistent with a wildfire. Of course, should the
authorities use this type of planning tools during a real event, then correctly
predicting fire propagation would be among the most important factor.

The land area is discretized into squares of fixed size (we use another
parameter to control this size) which can be in three states: wuntouched,
burning and burned. The fire starts as a single burning square, then at each
iteration, any untouched square adjacent of a burning square catches fire
with probability 7(%)2, where v stands for the intensity of the fire, and A
is the angle between the wind an a vector going from the center of burning
square to the center of the untouched square. Moreover, any burning square
that did not propagate stop burning with probability 2. Figure[Lb|illustrate
the state of the simulated wildfire, with burning squares in red and burned
squares in black.

3.3 Generating evacuation plans

The third step consists in generating the actual evacuation plan, that is, an
embedded tree connecting a set of evacuation nodes £ to a safe node r. Here
again, the goal is not to compute the best evacuation plans, however they
must be representative of what would be actual plans.

We first randomly pick a predefined number of evacuation nodes among
the nodes of the graph that are in the state burned or burning of the simulated
fire. Then we use the convention that the safe zone is the furthest corner
from the center of the fire. The evacuation tree is computed simply by using
a shortest paths algorithm, however with respect to an arc labeling taking
into account first the safety due date of the arc, and only then its length and
its capacity.

At this point we have all the information we need to define a fire evacu-
ation problem as defined in Section

The tools we developed as well as the benchmarks instances we used in
this paper can be accessed here: https://github.com/ehebrard/evacsim.

10


https://github.com/ehebrard/evacsim

4 Formulations and heuristic

In this section, we propose two formulations for the problem: a 0-1 integer
linear programing formulation and a constraint programming formulation.
Then, we describe a simple compression heuristic able to find quickly an
initial solution.

4.1 0-1 linear programming formulation

Let H denote an upper bound on the latest evacuation completion time on
the evacuation nodes (the time by which the last evacuee leaves the evac-
uation node). We propose an integer 0-1 linear formulation that makes
a discrete approximation of the problem. The set of discrete evacuation
possible start times is equal to Hy = {0,..., H — p,} where p, = (Z—Zl is
the smallest possible integer evacuation processing time. For an evacua-
tion start time t € Hj, the set of possible evacuation processing times is
Pri = {py, ..., min(dy, H — t)}. Let pyi € Pre denote the m'™ smallest pos-

sible processing time for m = 1,...,|Py|. We introduce a 0-1 variable zy,
equal to 1 if and only if 6 = ¢, pr = pmr €t A\p = ;f—’fk. By analogy to multi-
mode scheduling problems, set {1,...,|P|} represent the set of processing

modes available for scheduling an evacuation task that starts at time t. For
a given mode m and a given time ¢, we denote by I, C H; the maximal
discrete time interval such that

i—1 i1
Vrel, te€ [T—O—th,...,T—l—Zt%—i—pmk—l]
q=1 q=1

i.e. the set of evacuation start times 7 in mode m that make evacuation on
edge e in process at time ¢. This interval is previsely:

i—1 i—1
L ={t = th, ot =Y = p+ 1} N H
q=1

q=1

Given these elements , the problem can be expressed as the following 0-1
integer linear program:
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max Wpin (12)

s.t.
[Pt
Wmln_ Zzt“‘pmk Lhtm — th VkES,VZ:L,|Ak|
teH, m=1
(13)
[P
YD wrm =1 Vi € €
teH,, m=1
(14)
[Prol

Z Z Z NemThtm < U Ve € AVE=0,...,H—1

Jieg. m=lrel},
(15)

Trm € {0, 1} ke& teHy,mée Py
(16)

4.2 Constraint Programming formulation

In [6], the NEPP was modeled using standard cumulative constraints. We
adapt here this model for our problem. Let T (resp. x) denote the largest
(resp. smallest) value in the domain of a variable z. Given a set of tasks
J with start time variable s; € [s,,S;], processing time variable p; € [p;, P,
height variable \; € [);, \;] and a resource 7 of constant capacity u,., recall
that cumulative((s;, pi, \i)ics, u,) enforces the relations

> N<u VteH

1€ J|s; <t<s;+pi

Consequently, to model the problem, it suffices to associate a task J}, to
each arc on the evacuation path of each evacuation node k € &, with height
variable \; € [1,ug], start time variable S} € [0, H — ] duration variable
Dk € [d” d,]. A resource is defined per arc e € A, with capamty Ue.

The baseline constraint program for the evacuation planning problem is
obtained by replacing constraints (@ in the problem formulation of Section

12



by:

cumulative((Sy, pe, Ak)sieg.,ue) Ve €A (17)

4.3 Heuristic

We propose a simple compression heuristic to find an initial upper bound.
The heuristic is based on the assumption that scheduling all evacuation tasks
at time 0 with the minimum evacuation rate yields a feasible solution, with a
high cost. Starting from this solution (Vk € &£, we set the start time s; := 0,
the end time ey := di, and the rate Ay := 1). Now an iterative process
starts where, at each iteration, the critical evacuation tasks, i.e. the one
that minimizes the cost on some edge, is identified. Then, its duration is
decreased and its height is consequently increased until (i) either no more
height increase/duration decrease can be performed without exceeding an
edge capacity or (ii) the task is not critical anymore and another task becomes
critical. If case (i) occurs the process stops, otherwise, if case (ii) occurs, the
compression process restarts with the new critical task unless the objective
increase is smaller than a predefined parameter €, in which case the process
also stops. Due to the possibility of only left shifting a task k by i at
each iteration, this descent heuristic is of pseudo polynomial computational
complexity.

5 Computational experiments

We generated 240 benchmark instances following the protocol described in
Section [3] They are organized into three types of road networks: Dense,
Medium and Sparse where the density refers to the number of intersections
(respectively 400, 800 and 1200) in the land area. Notice that the graph
has always 4 edges per node, so this corresponds to graph size. The impact
on the instance is that larger graphs allow for more choices for the shortest
paths and therefore longer independent paths. For every type of road net-
work, we generated 4 classes of instances, with respectively 10, 15, 20 and 25
evacuation nodes. Finally, for every class we simulated 20 random wildfires
and the subsequent evacuation trees.

We used CPLEX 12.7 to solve the MILP formulation with default settings
and CPOptimizer 12.7 for solving the CP formulation. The heuristic was
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used to provide an initial solution to both solvers. We ran every method on
every instance of the dataset with a time limit of 45 minutes on 4 cluster
nodes, each with 35 Intel Xeon CPU E5-2695 v4 2.10GHz cores running
Linux Ubuntu 16.04.4.

We provide here e few implementation details. We only used discrete
evacuation rates as it was simpler to implement in the CP solver. It follows
that Constraints (4)) was implemented as an inequality (>). The number of
edges on which to check the cumulative constraint was reduced thank to the
observation that in a path on an evacuation only one edge is a bottleneck.
It follows that only one edge per path has to be considered as a limited
resource. Last, the opposite of the weighted slack was actually minimized,
which amounts to a maximum weighted lateness objective. The results are
displayed in table [T, where we give for each solver the average upper bound on
each instance family and the optimality ratio, i.e. the percentage of verified
optimal solutions found.

CPO MIP

ub opt ub opt

23294 0.95 58746 0.70

dense_10 )
) 161100 0.70 346404 0.00
)

dense_15
dense_20
dense_25

(
(
( 311676 0.45 659395 0.00
(20) 531016 0.00 1044248 0.00
medium_10 (20) 48591 1.00 103151 0.55
medium_15 (20) 124921 0.70 306552 0.05
medium_20 (20) 276101 0.25 581273 0.00
medium 25 (20) 488282 0.10 955786 0.00
sparse_10 (20) 3747 1.00 14359 0.70
sparse_15 (20) 120173 0.65 288432 0.05
sparse 20 (20) 235771 0.35 554373 0.00
sparse 25 (20) 437618 0.00 868438 0.00
avg (240) 230191 0.51 481763 0.17

Table 1: CPO vs MIP: upper bound and optimality ratio

We can first remark that the generated instances are hard to solve opti-
mally for both solvers: on average only 51% of the instances are solved to
optimality with the same behavior for the families : almost all the instances
with10 evacuation node and a large part of the instances with 15 evacuation
nodes car be solved to optimality, while instances with 20 evacuation nodes
becomes much harder and the ones with 25 activities are intractable. As
an outcome, our generator is able to produce computationally challenging
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instances.

In terms of comparison between integer and constraint programming,
the integer program is significantly outperformed by CP, both in terms of
optimality ratio and of upper bounds on maximum weighted lateness. This
is both due to slower convergence time and memory issued due to the huge
size of the IP model. As a typical example, the instance medium 10_30_3_2
has 328147 binary variables and 3198 constraints after CPLEX preprocessing.

In terms of the obtained objective function values, on the 240 instances
only 45 have negative values, meaning that in a majority of instances the
evacuation could not be performed on some edge before the expected dead-
line. Interestingly, all these 45 instances were solved to optimality, which
represents 36% of the 123 instances solved to optimality. 74% of the re-
maining instances, correspond to pessimistic scenarios where the evacuation
road network is unable to ensure the evacuation of the the whole population
before the traversal of some route segment would become critical. If such
situation occurred in actual road network this could give helpful support to
the authorities for increasing the capacity of specific road segments or to
build better prescribed evacuation routes.

6 Concluding remarks

We have proposed a data instance generator and optimization frameworks
for a computationally challenging evacuation planning problem, with an ob-
jective function tailored to the event of wildfire. This generator could be
improved by incorporating more sophisticated fire propagation models and
actual road networks. The generation of evacuation routes is also an opti-
mization problem in itself. Feedback from the evacuation planning, in the
case, which often occurred in our experiments, where obtained safety margin
are not sufficient should be used to modified the evacuation routes accord-
ingly. In terms of the evacuation planning problem we have proposed new
integer and constraint programming formulation. To obtain competitive re-
sults with IP, one should obviously consider decomposition approach as the
problem is huge. Continuous models could also be designed to reduce the
number of variables. Even if CP obtains much better results, the vast ma-
jority of medium size instances could not be solved to optimality. As future
research directions, we will specific global constraint that better capture the
structure of the problem as well as dedicated search strategies. Finally, we
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believe that coupling our approach with simulation and/or stochastic-robust
optimization will lead to useful decision support tools in case of response to
wild fires.
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