Giant fluctuations in logistic growth
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We analyze the fluctuation of the number of individuals when two competing species, beginning with a few initial individuals, are submitted to a logistic growth. We show that when the total number of individuals reaches the carrying capacity, the number of each species is subject to giant fluctuations (variance ∼ mean 2 ) if the two species have similar growth rate. We show that the deterministic logistic equation can be used only when the growth rates are significantly different, otherwise such growth has to be investigated by stochastic processes tools. These results generalize to a wide class of growth law.

I. INTRODUCTION.

In many chemical or biological systems, fluctuations can be large and drastically modify the results expected from a mean field approximation [START_REF] Tsimring | Noise in biology[END_REF]. A famous early example was investigated by Delbrück [START_REF] Delbrück | Statistical Fluctuations in Autocatalytic Reactions[END_REF] for the unbounded autocatalytic chemical reaction A → 2A where he showed that the number n(t) of A molecules at time t displays giant fluctuations: the variance V (t) is of the order of the square of the mean V (t) = n(t) 2 /n 0 , where n 0 is the initial number of A molecules. It can be shown that spatial diffusion is not fast enough to dilute these local fluctuations and this phenomenon can lead to spatial clustering for example of organisms in ecological systems [START_REF] Houchmandzadeh | Neutral clustering in a simple experimental ecological community[END_REF][START_REF] Houchmandzadeh | Theory of neutral clustering for growing populations[END_REF] or of neutrons in nuclear reactors [START_REF] Dumonteil | Particle clustering in Monte Carlo criticality simulations[END_REF].

The unbounded autocatalytic reaction captures the initial growth period, but may seem unrealistic for systems where resources are limited [START_REF] Das | Giant number fluctuations in microbial ecologies[END_REF]. More realistic scenarios are captured by a logistic growth where the reaction constant tends toward zero as the number of replicating agents increases. If only one species is subject to such a growth, fluctuations will become negligible when the number of replicating agents reaches the carrying capacity of the system. On the other hand, as we show below, if different species are competing for the same resources, the number of each species can display large fluctuations similar to the above example. This situation is relevant for example when independent cellular pathways compete for the same resources [START_REF] Genot | Computing with Competition in Biochemical Networks[END_REF], when a cell is infected initially by a few bacteria or viruses carrying different mutations or when different mutants of cancerous cells compete with each other in the organism [START_REF] Spratt | Decelerating growth and human breast cancer[END_REF][START_REF] Nkiruka | Parameterizing the Logistic Model of Tumor Growth by DW-MRI and DCE-MRI Data to Predict Treatment Response and Changes in Breast Cancer Cellularity during Neoadjuvant Chemotherapy[END_REF]. Another important example is chemical/biological reactions in small compartments such as droplets [START_REF] Song | Reactions in Droplets in Microfluidic Channels[END_REF][START_REF] Baccouche | Massively parallel and multiparameter titration of biochemical assays with droplet microfluidics[END_REF] which can be used for example for high throughput directed evolution [START_REF] Agresti | Ultrahigh-throughput screening in drop-based microfluidics for directed evolution[END_REF].

Consider the simple competition of two species of autoreplicators A and B subject to a logistic growth where their deterministic evolution equation is given by

dn dt = an(N s -n -m) (1) 
dm dt = bm(N s -n -m) (2) 
where n, m are the (continuous) number of each species, a, b, their respective growth rate at small concentration and N s the carrying capacity of the system. The solution of the above equations is given by

n n 0 = m m 0 r (3) 
where n 0 and m 0 are the initial number of each species and r = a/b is the relative growth rate of A in respect to B species. The final number of each species is found by solving n ∞ + m ∞ = N s in combination with relation [START_REF] Houchmandzadeh | Neutral clustering in a simple experimental ecological community[END_REF]. In particular, for the neutral case r = 1, the final number of each species is explicitly given by n ∞ = pN s and m ∞ = (1 -p)N s where p = n 0 /(n 0 + m 0 ) is the initial proportion of A species. Equations (1-2) are mean field approximations of the discrete stochastic process given by the following rates:

W (n, m → n + 1, m) = an(N s -N ) (4) W (n, m → n, m + 1) = bm(N s -N ) (5) 
where N = n + m is the total number of individuals at time t. Figure [START_REF] Tsimring | Noise in biology[END_REF] displays the stochastic behavior of the logistic growth (4,5) for r = 1. We observe that as expected [START_REF] Das | Giant number fluctuations in microbial ecologies[END_REF], fluctuations in the total number of individuals N = n+m disappear as N reaches the carrying capacity N s (Fig. 1a). However, the number of individuals of each species is extremely variable (Fig. 1b). In fact, as we will show below, the probability of finding n individuals of type A when the system reaches saturation

(N = N s ) is uniform in this case P (n, N = N s ) = 1/(N s -1).
For such giant fluctuations, the deterministic solution n ∞ = pN is devoid of information and we have as much chance of finding one A individual as finding pN individuals! In this article, we investigate analytically and numerically the stochastic equations [START_REF] Houchmandzadeh | Theory of neutral clustering for growing populations[END_REF][START_REF] Dumonteil | Particle clustering in Monte Carlo criticality simulations[END_REF] in general and discuss the origin of such large fluctuations when r ≈ 1. The following section is devoted to the transformation of equations [START_REF] Houchmandzadeh | Theory of neutral clustering for growing populations[END_REF][START_REF] Dumonteil | Particle clustering in Monte Carlo criticality simulations[END_REF] ; section III investigates the problem for the neutral case r = 1 ; section IV generalizes the solution to r = 1. The last section is devoted to discussion and concluding remarks. Details of some computations are given in the appendices. Equations (4,5) represent a 2+1 dimensional system where because of the non-linearities, moment closure is lost and no closed form solution can be obtained. However, if we change the independent variable from time t to the total number of individuals, the problem is mapped to a much simpler, one dimensional one : instead of computing the probability P (n, t) of finding n individuals of type A at time t, we compute the probability P (n, N ) of finding n individuals of type A when the total number of individuals is N . For long times, N reaches the carrying capacity N s and therefore, P (n, t = ∞) and P (n, N = N s ) contain the same information. A similar transformation was recently used to compute the Luria-Delbrück distribution of the number of mutants for a general growth curve [START_REF] Houchmandzadeh | General formulation of Luria-Delbr\"uck distribution of the number of mutants[END_REF].

The Master equation governing P (n, N ) is simple. Once a replication event happens (N → N + 1), the probability that it was an A replicating (n → n + 1) is

α n N = W (n, m → n + 1, m) W (n, m → n + 1, m) + W (n, m → n, m + 1) = rn N + (r -1)n
The probability that it was a B replicating (n remains constant) is

β n N = 1 -α n N = N -n N + (r -1)n
The master equation for P (n, N ) is therefore 

P (n, N + 1) = α n-1 N P (n -1, N ) + (1 -α n N ) P (n, N ) (6)
at the initial time, the system contains N 0 individuals, n 0 of which are of type A ; the initial condition for the Master equation ( 6) is

P (n, N 0 ) = δ n n0
where δ designates the Kronecker delta. The Master equation ( 6) is the mapping of the logistic growth into a flow problem in the (N, n) plane, where each node distributes its content P (n, N ) to the adjacent ones

(N + 1, n + 1) and (N + 1, n) with proportion α n N and β n N (figure 2).
Because of the form of the flow, the number of A individuals n is bounded by n 0 and N -N 0 + n 0 (figure 2). More over, on the two boundaries, the Master equation ( 6) reduces to a one term recurrence relation. For example, on the lower boundary,

P (n 0 , N + 1) = (1 -α n0 N ) P (n 0 , N ) (7) 
The probability is found to be

P (n 0 , N ) = (N 0 -n 0 ) N -N0 (N 0 + sn 0 ) N -N0 (8) 
where s = r -1 is the excess relative fitness of species A. (x) p designates the Pochhammer symbol (raising factorial) :

(x) p = x(x + 1)...(x + p -1) (9) 
Similarly, on the higher boundary,

P (N -N 0 + n 0 , N ) = (n 0 ) N -N0 N0+sn0 r N -N0 (10) 
Relation [START_REF] Song | Reactions in Droplets in Microfluidic Channels[END_REF] can also be deduced from ( 8) by exchanging the role of A and B individuals.

The mean of various quantities can be computed theoretically from the Master equation [START_REF] Das | Giant number fluctuations in microbial ecologies[END_REF]. Let f (.) be an arbitrary function and define

f (n)(N ) = n f (n)P (n, N ) then f (n)(N + 1) = f (n)(N ) + α n N (f (n + 1)(N ) -f (n)(N )) (11) For example, for f (n) = n, we have n(N + 1) -n(N ) = α n N
the mean field, continuous approximation of the above expression leads to

d n dN = α n N (12) 
which is the equation deduced from the deterministic evolution (relation 1-2).

Finally, note that it is very simple to compute numerically the probabilities obeying the Master equation ( 6):

The right-hand side of the equation ( 6) is the product of a bi-diagonal (N + 1) × N matrix by an N -column vector.

The next two sections are devoted to the computation of the means and probabilities for the neutral and nonneutral case.

III. SOLUTION FOR THE NEUTRAL CASE.

In the neutral case r = 1, α n N = n/N ; the linearity of α in n allows for moment closure and efficient computation of moments and probabilities. In particular, using relation [START_REF] Baccouche | Massively parallel and multiparameter titration of biochemical assays with droplet microfluidics[END_REF], the mean n(N ) and variance σ 2 (N ) are found to obey the recurrence equation

n(N + 1) = 1 + 1 N n(N ) (13) 
σ 2 (N + 1) = 1 + 2 N σ 2 (N ) + p(1 -p) (14) 
where p = n 0 /N 0 is the initial proportion of the A type.

The two first moments are then found to be

n(N ) = pN (15) σ 2 (N ) = p(1 -p) N 0 + 1 N (N -N 0 ) (16) 
We observe that regardless of the population size N of the system, the fluctuations are of the same magnitude as the mean (σ ∼ n ) if the initial population size is small:

cv = σ(N ) n(N ) ≈ 1 -p p(N 0 + 1) (17) 
Figure (3a) shows the perfect agreement between stochastic numerical simulations (equations 4,5) and the above results on the moments. Using expression [START_REF] Baccouche | Massively parallel and multiparameter titration of biochemical assays with droplet microfluidics[END_REF], it can be shown (see appendix A 1) that the raising factorial moments obey a simple relation: In the neutral case, we can go beyond moments computation and solve the Master equation [START_REF] Das | Giant number fluctuations in microbial ecologies[END_REF] for P (n, N ). In general, P (n, N |n 0 , N 0 ) is a polynomial of n of degree N 0 -2, where n 0 , N 0 are the initial conditions for the number of A individuals and all individuals. It is straightforward to check that (see appendix A 2)

(n) k = n(n + 1)...(n + k -1) = (n 0 ) k (N 0 ) k (N ) k (18)
P (n, N |n 0 , N 0 ) = A (n -n 0 + 1) n0-1 (m -m 0 + 1) m0-1 (N -N 0 + 1) N0-1 (19) 
where m = N -n, and by convention, (x) 0 = 1. The normalization constant is found to be

A = (N 0 -1)! (n 0 -1)!(m 0 -1)! In particular, P (n, N |1, 2) = 1 N -1 (20) 
P (n, N |2, 3) = 2(n -1) (N -1)(N -2) (21) 
The initial condition n 0 = 1, N 0 = 2 was used in numerical simulations of figures 1,3. The solution [START_REF] Kimura | Solution of a process of random genetic drift with a continuous model[END_REF] is in perfect agreement with the numerical solution of the Master equation ( 6) (figure 4 ). IV. SOLUTION FOR r > 1.

For the non-neutral case r > 1,

α n N = rn N + (r -1)n
is not anymore linear in n and an exact solution for P (n, N ) becomes hard to obtain. However, as we are interested in the solution for large N , we can treat n and N as continuous variables and approximate the Master equation ( 6) by a partial differential equation (PDE). The Master equation ( 6) has indeed a simple structure and can be set into

∂ N P (n, N ) + ∂ n [α n N P (n, N )] = 0 (22) 
Equation ( 22) is a first order PDE and can be solved by the methods of characteristics [START_REF] Polyanin | Handbook of First-Order Partial Differential Equations[END_REF]. Its general solution is found to be (see appendix B)

P (n, N ) = ∂ ∂n f (N -n) r n (23) 
where f (.) is an arbitrary function to be determined from the initial condition. The implicit function (Nn) r /n = Cte is the solution of the mean field equation ( 12) dn/dN = α n N . Let us define ñ such that (figure 5)

(N -n) r n = (N 0 -ñ) r ñ (24)
Then for the initial condition P (n, N 0 ) = φ 0 (n), the complete solution of equation ( 22) is given by (see appendix B) No special function is defined in the mathematical literature to deal with equations of type x r + ux -u = 0 ; however, it is straightforward to find the numerical solution of equation ( 24) and use expression (26) to compute P (n, N ).

P (n, N ) = ∂ ñ ∂n φ 0 (ñ) (25) = ñ(N 0 -ñ) N 0 + (r -1)ñ N + (r -1)n n(N -n) φ 0 (ñ) (26)
To make it more concrete, let us consider in some details the neutral case r = 1, and compare the exact known solution [START_REF] Kimura | Solution of a process of random genetic drift with a continuous model[END_REF] to the solution (25) of the PDE approach. In this case, relation (23) transforms into the explicit form ñ = (N 0 /N )n. The initial condition has to be chosen in order to match the known solution [START_REF] Kimura | Solution of a process of random genetic drift with a continuous model[END_REF] ; once it has been fixed for r = 1, it will be used for all r > 1.

The initial condition corresponding to the discrete case

n 0 = 1, N 0 = 2 (relation 20) is φ 0 (n) = Π(n -1) (27) 
where the gate function is defined as Π(x) = 1/2 for |x| < 1 and is zero outside this domain. Therefore,

P (n, N ) = 2 N Π 2 N n -1 (28) = 1 N n ∈]0, N [ (29) 
which approximates the exact solution [START_REF] Ewens | Mathematical Population Genetics[END_REF] to O(1/N ).

The general solution for arbitrary r corresponding to initial condition n 0 = 1, N 0 = 2 is then simply

P (n, N ) = 1 2 ∂ ñ ∂n n ∈]0, N [ (30) 
Figure 6 shows the excellent agreement between expression (30) and the numerical solution obtained from the exact discrete Master equation [START_REF] Das | Giant number fluctuations in microbial ecologies[END_REF].

Various moments can be extracted from solution (25):

n k (N ) r = ˆN 0 n k P (n, N )dn = ˆN0 0 n k φ 0 (ñ)dñ (31)
where n inside the integrand on the right-hand side of eq. ( 31) is a function of ñ through relation ( 24). For the neutral case r = 1, n/N = ñ/N 0 and therefore

ˆN0 0 ñk N k 0 φ 0 (ñ)dñ = n k (N ) 1 N k = (n 0 ) k (N 0 ) k + O(1/N ) (32)
We can obtain an explicit form of n as a function of ñ for various conditions. If s = r -1 ≪ 1, we can obtain a perturbative solution of equation ( 24) in powers of s. On the other hand, for high values of integer r such as r = 2, 3, 4, we can exactly solve the algebraic equation (24). These two cases constitute the near neutral and highly non-neutral situations and allows us to understand the general behavior of the system.

A. Perturbative solution.

Let us first consider the case s = r -1 ≪ 1. Setting κ = log(N/N 0 ), we have, to the second order in s :

x = x + κx(1 -x)s -κx(1 -x) ((κ + 1)x -κ/2))s 2 (33)
where x = ñ/N 0 , x = n/N . The symmetry of equation (24) implies that x can be expressed as a function of x by simply replacing κ by -κ in expression (33). Using expression (31,32) for the initial conditions N 0 , n 0 , , to the first order perturbations, the moments are found to be 6) ; Dashed lines : first order perturbations given by expression (36) ; thick solid lines : second order perturbations. The initial condition (N0, n0) of each curve is displayed above it.

n(N ) r = n(N ) 1 1 + κs (N 0 -n 0 ) N 0 + 1 (34) σ 2 r (N ) = σ 2 1 (N ) 1 + 2κs N 0 -2n 0 N 0 + 2 (35) σ r (N ) n(N ) r = cv 1 1 -κs N 0 (n 0 + 1) (N 0 + 1)(N 0 + 2) ( 36 
)
Where the subscript 1 refers to the neutral expressions [START_REF] Schaerli | Continuous-Flow Polymerase Chain Reaction of Single-Copy DNA in Microfluidic Microdroplets[END_REF][START_REF] Ewens | The probability of survival of a new mutant in a fluctuating environment[END_REF][START_REF] Otto | The Probability of Fixation in Populations of Changing Size[END_REF]. Figure 7 shows the comparison of the above expressions to exact values obtained from numerical solutions of the exact Master equation ( 6). We observe that the correction of the above expressions compared to neutral values (equation 15-17) are logarithmic and of the order of sκ = s log(N/N 0 ) : the fluctuations amplitude σ is still large and of the order of the mean n . The perturbative approach is valid for κs ≪ 1 ; the solution for higher values of s can be slightly improved by using higher order perturbations ( figure 7) but the perturbative approach reaches its limit for κs 1.

B. High values of r.

High values of r can be understood by investigating integer values such as 2,3,4 for which the equation ( 24) can be exactly solved. For the case r = 2

x = γ(1 -x) 2 + 2x -γ 2 (1 -x) 2 + 4γ x 2x (37) 
where γ = N 0 /N ≪ 1 and as before, x = n/N and x = ñ/N 0 . We will investigate the simplest case corresponding to the initial condition N 0 = 2, n 0 = 1 where φ 0 (u) = Π(u -1) (relation 27). For this initial condition, the moments equation ( 31) is greatly simplified :

n k N k = N 0 2 ˆ1 0 x k dx (38) 
Using expression (37), performing the integrations involved by equation (38) and keeping only the leading The theoretical value is obtained from expressions (39,??) ; the exact, numerical value is obtained by numerical resolution of the Master equation ( 6). As a guide for the eye, N -0.5 and N -0.4 are also displayed.

orders of γ, we find that

n(N ) N = 1 - 4 3 √ γ + γ 4 (1 -2 log γ) + O(γ 3/2 ) (39) σ 2 (N ) N 2 = γ -log γ - 77 18 + γ 3/2 - 4 3 log γ + 106 15 + O(γ 2 ) (40) 
Expression (40) is valid for N/N 0 72 which is indeed the regime of interest (figure 8) . We see that for r = 2, the variance increases only as N log N and not N 2 as in the neutral case. Therefore, for high values of N , the coefficient of variation σ/ n decreases as (log N/N ) 1/2 . In this regime, fluctuations become negligible and the deterministic approach is valid.

V. DISCUSSION AND CONCLUSION.

In this article, we have investigated the distribution of the number of individuals n and m of two species A,B during a logistic growth. We have shown that the investigation is greatly simplified if instead of time t, the independent variable is chosen to be the total number of individuals N = n + m. This paper was focused on the well known logistic growth, but the method and conclusions are valid for any stochastic growth of the form

W (n, m → n + 1, m) = anf (n, m) (41) W (n, m → n, m + 1) = bmf (n, m) (42) 
where f (n, m) is an arbitrary function not necessarily symmetric in m and n.

The most interesting feature of the investigated system is the large amplitude of fluctuations in the neutral case r = a/b = 1, where both species have similar growth rate. Suppose that we draw (and replace) N s individuals at random from a pool of N 0 individuals when n 0 are of the A type. The distribution of the number of A type in the N s sample is a binomial one with parameter p = n 0 /N 0 ; the fluctuation amplitude of this experiment σ/ n ∼ 1/ √ N s is small if N s ≫ 1. One could naively suppose that a logistic growth when two types A and B individuals are competing and the system expands from N 0 to N s individuals (N s ≫ N 0 ) is similar to the above drawing experiment : each individual in the final pool draws at random its ancestor from the initial pool. This is however not the case and we have shown that contrary to the binomial case, the fluctuation amplitude σ/ n ∼ 1/ √ N 0 is always large and independent of the final system size.

Various experiments can be devised to test the relevance of the above computations. For example, a phage such as λ can be modified into few different mutants, each expressing a different fluorescent proteins (such as GFP, RFP, YFP,...) ; the mutants can then be used to co-infect a bacterial culture. The distribution of the colors in the culture after some time can be related to the probabilities we have computed through a convolution by a Poisson-Binomial distribution to account for variation in the initial number of co-infectors. A similar experiment can be performed using PCR amplification of few similar DNA strands [START_REF] Schaerli | Continuous-Flow Polymerase Chain Reaction of Single-Copy DNA in Microfluidic Microdroplets[END_REF] of the same length and characteristics and then analyze the number of strands copy in each droplets.

The problem we have investigated can also be used to extend the Wright-Fisher (WF) model of population genetics to variable size population (see for example [START_REF] Ewens | The probability of survival of a new mutant in a fluctuating environment[END_REF][START_REF] Otto | The Probability of Fixation in Populations of Changing Size[END_REF][START_REF] Wienand | Evolution of a Fluctuating Population in a Randomly Switching Environment[END_REF]). In the WF model with fixed population size N 0 and two mutant types A and B, each generation is formed by selecting randomly N 0 individuals among the progeny of generation i to form generation i + 1. If x is the proportion of the A type with reproductive advantage r = 1 + s, then a diffusion (Kimura) equation can be derived for the evolution of the population ( [START_REF] Kimura | Solution of a process of random genetic drift with a continuous model[END_REF][START_REF] Ewens | Mathematical Population Genetics[END_REF]) where the drift and diffusion coefficient are a(x) = sx(1 -x) and b(x) = x(1 -x)/(2N ).

We can generalize the WF model by allowing, at each generation i, the population to expand to size N s and then select N 0 individuals among them to form the new generation i + 1. By using the result of subsection IV A, it is straightforward to show that the diffusion equation governing this system is the same as before except that the relative excess fitness is now renormalized to s ′ = s log(N s /N 0 ). The fact that the effective fitness increases in a growing population was already noted by Ewens ([16]), although the amplifying factor in the problem investigated by him was proportional to the harmonic mean N s and N 0 rather than their logarithmic difference as here.

In summary, we have shown that populations subjects to logistic-like growth such as equation (41,42) can be modeled by deterministic equations only if there is significant difference (r 2) between their growth rates.

If they have similar growth rate, the deterministic equation must be abandoned and a stochastic treatment used instead.

dx dt = α(x, t)
Then by definition,

∂ t R + α∂ x R = 0
Consider the function

Q(x, t) = ∂ ∂x f (R(x, t)) (B2)
where f () is an arbitrary function. Then

∂ t Q + ∂ x (αQ) = ∂ x {(∂ t R + α∂ x R) f ′ (R)} = 0
and therefore Q(x, t) is a solution of equation (B1). For example, for α = c, the solution is the trivial propagation P (x, t) = f (x -ct).

The function f (.) has to be determined from the initial condition P (x, t 0 ) = φ 0 (x). Consider two points (t 0 , x) and (t, x) in the plane, related through R(x, t) = R(x, t 0 ), i.e. they belong to the same characteristic curve. Obviously, we can reverse this relation as x = g (R(x, t), t 0 ) and therefore write the general solution (B2) as P (x, t) = ∂ x f (x) = (∂ x/∂x)f ′ (x). On the other hand, at the initial time t 0 , x = x, ∂ x/∂x = 1 and therefore f ′ () = φ 0 (). The solution of the PDE (B2) with the initial condition φ 0 (x) is then P (x, t) = ∂ x ∂x φ 0 (x) P (., t) can be seen as a transformation, i.e. scaling and deformation of the initial condition φ 0 (.). An initial Dirac distribution however propagates without deformation along a characteristic curve because f (x)δ(x) = δ(x)

: in this case, the PDE is reduced to the deterministic equations dx/dt = α.

Let us precise the function φ 0 (.) used in this article for the PDE (22) . The true probability P d (n, N ) is function of discrete variables n and N . In order to estimate this probability, we have used the probability density P c (n, N ) of continuous variable n, N . P c must approximate P d for large N . φ 0 () has to be chosen to make this approximation as precise as possible. However, we cannot use the discrete initial condition P (n, N 0 ) = δ n n0 , because the continuous PDE will be reduced to a deterministic equation. We make the assumption that the choice of φ 0 (.) is independent of r and therefore can be deduced from the known expression of neutral probability. For r = 1, ñ = (N 0 /N )n, and therefore we have

φ 0 (ñ) = N N 0 P 1 ( N N 0 ñ, N )
where P 1 (, ) is the neutral probabilities but the arguments are continuous.

Figure 1 .

 1 Figure 1. Neutral logistic growth of two competing species. 100 individual based numerical simulation of equations (4,5) with a = b = 1 and Ns = 1000 are displayed. The initial number of each species is n0 = m0 = 1. (a) Total number of individuals N ; (b) number of individuals of species A.

Figure 2 .

 2 Figure 2. Mapping of the logistic growth into a flow problem in the (N, n) plane.

Figure 3 .

 3 Figure 3. Numerical stochastic simulations of equations with rates (4,5) and comparison to theoretical values for the neutral case r = 1 and initial values N0 = 2 and n0 = 1. (a) Evolution of the two first moments n (circle) and σ (squares) as a function of the number of individuals N . Symbols : numerical stochastic simulations ; solid lines : theoretical values given by relations (15,16). The moments were computed from M = 5000 realizations. (b)Solid lines: P (n, N ) as a function of the number of A individuals n for various values of N = 2 k , k = 4, 8, ...10. The gray dashed lines on the left designate the theoretical value P (n, N ) = 1/(N -1) (relation 20). The probabilities were computed from M = 10 6 realizations

Figure 4 .

 4 Figure 4. The probability P (n, N |n0, N0) as a function of n for N = 100 and various initial conditions (n0, N0) indicated in the legend. Solid line : theoretical solution (19) ; symbols : numerical solutions of the master equation (6).

Figure 5 .

 5 Figure 5. Function n(ñ) obtained by numerically solving the algebraic equation (24) for N0/N = 10 -3 and various values of r.

Figure 6 .

 6 Figure 6. Solution (30) of the continuous Master equation (22) (continuous lines) compared to numerical solutions of the discrete Master equation (6) (dashed lines) for N = 2000, N0 = 2, n0 = 1 and various values of r. The solution (30) is obtained by numerically solving equation (24) and then using relation (26).

Figure 7 .

 7 Figure 7. Coefficient of variation σ(N )/ n(N ) for s = 0.05 (r = 1 + s) and various initial conditions (N0, n0). Thin solid lines : exact values obtained from direct numerical resolution of the Master equation (6) ; Dashed lines : first order perturbations given by expression (36) ; thick solid lines : second order perturbations. The initial condition (N0, n0) of each curve is displayed above it.

Figure 8 .

 8 Figure 8. Coefficient of variation σ(N )/ n N for r = 2 with initial condition N0 = 2, n0 = 1. The theoretical value is obtained from expressions (39,??) ; the exact, numerical value is obtained by numerical resolution of the Master equation (6). As a guide for the eye, N -0.5 and N -0.4 are also displayed.
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Appendix A: Various neutral computations 1. Factorial moments.

Consider the function f (n) = (n) k = n(n + 1)...(n + k -1) ; then

and therefore

Therefore, using the general expression [START_REF] Baccouche | Massively parallel and multiparameter titration of biochemical assays with droplet microfluidics[END_REF], we find the one term recurrence relation

which is trivially solved and leads to expression [START_REF] Wienand | Evolution of a Fluctuating Population in a Randomly Switching Environment[END_REF].

Expression of the probability.

To shorten the notations, we use m = N -n whenever needed. The Master equation in the neutral case is

Pochhammer manipulation is similar to factorial manipulation. In particular,

and therefore, the right hand side of relation (A1) is found to be

As

expression (A2) is indeed a solution of the Master equation, up to a multiplicative constant. The constant is found by stating P (n 0 , N 0 ) = 1. As the master equation conserves the probability, the constant is valid for all N .