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Giant fluctuations in logistic growth
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CNRS, LIPHY, F-38000 Grenoble, France

Univ. Grenoble Alpes, LIPHY,
F-38000 Grenoble, France

We analyze the fluctuation of the number of individuals when two competing species, beginning
with a few initial individuals, are submitted to a logistic growth. We show that when the total
number of individuals reaches the carrying capacity, the number of each species is subject to giant
fluctuations (variance ∼ mean2) if the two species have similar growth rate. We show that the
deterministic logistic equation can be used only when the growth rates are significantly different,
otherwise such growth has to be investigated by stochastic processes tools. These results generalize
to a wide class of growth law.

I. INTRODUCTION.

In many chemical or biological systems, fluctuations
can be large and drastically modify the results expected
from a mean field approximation[1]. A famous early
example was investigated by Delbrück [2] for the un-
bounded autocatalytic chemical reaction A → 2A where
he showed that the number n(t) of A molecules at time t
displays giant fluctuations: the variance V (t) is of the

order of the square of the mean V (t) = 〈n(t)〉2 /n0,
where n0 is the initial number of A molecules. It can be
shown that spatial diffusion is not fast enough to dilute
these local fluctuations and this phenomenon can lead to
spatial clustering for example of organisms in ecological
systems[3, 4] or of neutrons in nuclear reactors[5].

The unbounded autocatalytic reaction captures the
initial growth period, but may seem unrealistic for sys-
tems where resources are limited[6]. More realistic sce-
narios are captured by a logistic growth where the reac-
tion constant tends toward zero as the number of repli-
cating agents increases. If only one species is subject to
such a growth, fluctuations will become negligible when
the number of replicating agents reaches the carrying ca-
pacity of the system. On the other hand, as we show
below, if different species are competing for the same
resources, the number of each species can display large
fluctuations similar to the above example. This situation
is relevant for example when independent cellular path-
ways compete for the same resources[7], when a cell is
infected initially by a few bacteria or viruses carrying dif-
ferent mutations or when different mutants of cancerous
cells compete with each other in the organism[8, 9]. An-
other important example is chemical/biological reactions
in small compartments such as droplets[10, 11] which
can be used for example for high throughput directed
evolution[12].

Consider the simple competition of two species of au-
toreplicators A and B subject to a logistic growth where
their deterministic evolution equation is given by

dn

dt
= an(Ns − n−m) (1)

dm

dt
= bm(Ns − n−m) (2)

where n, m are the (continuous) number of each species,
a, b, their respective growth rate at small concentration
and Ns the carrying capacity of the system. The solution
of the above equations is given by

n

n0

=

(

m

m0

)r

(3)

where n0 and m0 are the initial number of each species
and r = a/b is the relative growth rate of A in respect
to B species. The final number of each species is found
by solving n∞ +m∞ = Ns in combination with relation
(3). In particular, for the neutral case r = 1, the final
number of each species is explicitly given by n∞ = pNs

and m∞ = (1 − p)Ns where p = n0/(n0 + m0) is the
initial proportion of A species.

Equations (1-2) are mean field approximations of the
discrete stochastic process given by the following rates:

W (n,m → n+ 1,m) = an(Ns −N) (4)

W (n,m → n,m+ 1) = bm(Ns −N) (5)

where N = n +m is the total number of individuals at
time t. Figure (1) displays the stochastic behavior of
the logistic growth (4,5) for r = 1. We observe that as
expected[6], fluctuations in the total number of individu-
als N = n+m disappear as N reaches the carrying capac-
ity Ns (Fig. 1a). However, the number of individuals of
each species is extremely variable (Fig. 1b). In fact, as we
will show below, the probability of finding n individuals
of type A when the system reaches saturation (N = Ns)
is uniform in this case P (n,N = Ns) = 1/(Ns − 1).
For such giant fluctuations, the deterministic solution
n∞ = pN is devoid of information and we have as much
chance of finding one A individual as finding pN individ-
uals!

In this article, we investigate analytically and numeri-
cally the stochastic equations (4,5) in general and discuss
the origin of such large fluctuations when r ≈ 1. The fol-
lowing section is devoted to the transformation of equa-
tions (4,5) ; section III investigates the problem for the
neutral case r = 1 ; section IV generalizes the solution
to r 6= 1. The last section is devoted to discussion and
concluding remarks. Details of some computations are
given in the appendices.
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Figure 1. Neutral logistic growth of two competing species.
100 individual based numerical simulation of equations (4,5)
with a = b = 1 and Ns = 1000 are displayed. The initial
number of each species is n0 = m0 = 1. (a) Total number of
individuals N ; (b) number of individuals of species A.

II. MAPPING TO A SIMPLE PROBLEM.

Equations (4,5) represent a 2+1 dimensional system
where because of the non-linearities, moment closure is
lost and no closed form solution can be obtained. How-
ever, if we change the independent variable from time t to
the total number of individuals, the problem is mapped
to a much simpler, one dimensional one : instead of com-
puting the probability P (n, t) of finding n individuals of
type A at time t, we compute the probability P (n,N)
of finding n individuals of type A when the total num-
ber of individuals is N . For long times, N reaches the
carrying capacity Ns and therefore, P (n, t = ∞) and
P (n,N = Ns) contain the same information. A similar
transformation was recently used to compute the Luria-
Delbrück distribution of the number of mutants for a
general growth curve[13].

The Master equation governing P (n,N) is simple.
Once a replication event happens (N → N + 1), the
probability that it was an A replicating (n → n+ 1) is

αn
N =

W (n,m → n+ 1,m)

W (n,m → n+ 1,m) +W (n,m → n,m+ 1)

=
rn

N + (r − 1)n

The probability that it was a B replicating (n remains
constant) is

βn
N = 1− αn

N =
N − n

N + (r − 1)n

The master equation for P (n,N) is therefore

Figure 2. Mapping of the logistic growth into a flow problem
in the (N,n) plane.

P (n,N +1) = αn−1

N P (n− 1, N)+ (1− αn
N )P (n,N) (6)

at the initial time, the system contains N0 individuals,
n0 of which are of type A ; the initial condition for the
Master equation (6) is

P (n,N0) = δnn0

where δ designates the Kronecker delta. The Master
equation (6) is the mapping of the logistic growth into
a flow problem in the (N,n) plane, where each node
distributes its content P (n,N) to the adjacent ones
(N+1, n+1) and (N+1, n) with proportion αn

N and βn
N

(figure 2).
Because of the form of the flow, the number of A in-

dividuals n is bounded by n0 and N − N0 + n0 (figure
2). More over, on the two boundaries, the Master equa-
tion (6) reduces to a one term recurrence relation. For
example, on the lower boundary,

P (n0, N + 1) = (1− αn0

N )P (n0, N) (7)

The probability is found to be

P (n0, N) =
(N0 − n0)N−N0

(N0 + sn0)N−N0

(8)

where s = r− 1 is the excess relative fitness of species A.
(x)p designates the Pochhammer symbol (raising facto-
rial) :

(x)p = x(x+ 1)...(x+ p− 1) (9)

Similarly, on the higher boundary,

P (N −N0 + n0, N) =
(n0)N−N0

(

N0+sn0

r

)

N−N0

(10)

Relation (10) can also be deduced from (8) by exchanging
the role of A and B individuals.

The mean of various quantities can be computed the-
oretically from the Master equation (6). Let f(.) be an
arbitrary function and define

〈f(n)(N)〉 =
∑

n

f(n)P (n,N)
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then

〈f(n)(N + 1)〉 = 〈f(n)(N)〉+〈αn
N (f(n+ 1)(N)− f(n)(N))〉

(11)
For example, for f(n) = n, we have

〈n(N + 1)〉 − 〈n(N)〉 = 〈αn
N 〉

the mean field, continuous approximation of the above
expression leads to

d 〈n〉
dN

= α
〈n〉
N (12)

which is the equation deduced from the deterministic evo-
lution (relation 1-2).

Finally, note that it is very simple to compute numer-
ically the probabilities obeying the Master equation (6):
The right-hand side of the equation (6) is the product
of a bi-diagonal (N + 1) × N matrix by an N− column
vector.

The next two sections are devoted to the computation
of the means and probabilities for the neutral and non-
neutral case.

III. SOLUTION FOR THE NEUTRAL CASE.

In the neutral case r = 1, αn
N = n/N ; the linearity of

α in n allows for moment closure and efficient computa-
tion of moments and probabilities. In particular, using
relation (11), the mean 〈n(N)〉 and variance σ2(N) are
found to obey the recurrence equation

〈n(N + 1)〉 =
(

1 +
1

N

)

〈n(N)〉 (13)

σ2(N + 1) =

(

1 +
2

N

)

σ2(N) + p(1− p) (14)

where p = n0/N0 is the initial proportion of the A type.
The two first moments are then found to be

〈n(N)〉 = pN (15)

σ2(N) =
p(1− p)

N0 + 1
N(N −N0) (16)

We observe that regardless of the population size N of
the system, the fluctuations are of the same magnitude
as the mean (σ ∼ 〈n〉) if the initial population size is
small:

cv =
σ(N)

〈n(N)〉 ≈
√

1− p

p(N0 + 1)
(17)

Figure (3a) shows the perfect agreement between stochas-
tic numerical simulations (equations 4,5) and the above
results on the moments.

Using expression (11), it can be shown (see appendix
A1) that the raising factorial moments obey a simple
relation:

〈(n)k〉 = 〈n(n+ 1)...(n+ k − 1)〉 = (n0)k
(N0)k

(N)k (18)
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Figure 3. Numerical stochastic simulations of equations with
rates (4,5) and comparison to theoretical values for the neutral
case r = 1 and initial values N0 = 2 and n0 = 1. (a) Evolution
of the two first moments 〈n〉 (circle) and σ (squares) as a
function of the number of individuals N . Symbols : numerical
stochastic simulations ; solid lines : theoretical values given
by relations (15,16). The moments were computed from M =
5000 realizations. (b)Solid lines: P (n,N) as a function of
the number of A individuals n for various values of N = 2k,
k = 4, 8, ...10. The gray dashed lines on the left designate
the theoretical value P (n,N) = 1/(N − 1) (relation 20). The
probabilities were computed from M = 106 realizations

In the neutral case, we can go beyond moments com-
putation and solve the Master equation (6) for P (n,N).
In general, P (n,N |n0, N0) is a polynomial of n of de-
gree N0 − 2, where n0, N0 are the initial conditions for
the number of A individuals and all individuals. It is
straightforward to check that (see appendix A2)

P (n,N |n0, N0) = A
(n− n0 + 1)n0−1(m−m0 + 1)m0−1

(N −N0 + 1)N0−1

(19)
where m = N − n, and by convention, (x)0 = 1. The
normalization constant is found to be

A =
(N0 − 1)!

(n0 − 1)!(m0 − 1)!

In particular,

P (n,N |1, 2) = 1

N − 1
(20)

P (n,N |2, 3) = 2(n− 1)

(N − 1)(N − 2)
(21)

The initial condition n0 = 1, N0 = 2 was used in numer-
ical simulations of figures 1,3.

The solution (19) is in perfect agreement with the nu-
merical solution of the Master equation (6) (figure 4 ).
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Figure 4. The probability P (n,N |n0, N0) as a function of n
for N = 100 and various initial conditions (n0, N0) indicated
in the legend. Solid line : theoretical solution (19) ; symbols
: numerical solutions of the master equation (6).

IV. SOLUTION FOR r > 1.

For the non-neutral case r > 1,

αn
N =

rn

N + (r − 1)n

is not anymore linear in n and an exact solution for
P (n,N) becomes hard to obtain. However, as we are
interested in the solution for large N , we can treat n and
N as continuous variables and approximate the Master
equation (6) by a partial differential equation (PDE). The
Master equation (6) has indeed a simple structure and
can be set into

∂NP (n,N) + ∂n [α
n
NP (n,N)] = 0 (22)

Equation (22) is a first order PDE and can be solved by
the methods of characteristics[14]. Its general solution is
found to be (see appendix B)

P (n,N) =
∂

∂n
f

(

(N − n)r

n

)

(23)

where f(.) is an arbitrary function to be determined
from the initial condition. The implicit function (N −
n)r/n = Cte is the solution of the mean field equation
(12) dn/dN = αn

N .
Let us define ñ such that (figure 5)

(N − n)r

n
=

(N0 − ñ)r

ñ
(24)

Then for the initial condition P (n,N0) = φ0(n), the com-
plete solution of equation (22) is given by (see appendix
B)

P (n,N) =
∂ñ

∂n
φ0(ñ) (25)

=
ñ(N0 − ñ)

N0 + (r − 1)ñ

N + (r − 1)n

n(N − n)
φ0(ñ) (26)

0.0 0.2 0.4 0.6 0.8 1.0

̃n/N0

0.0

0.2

0.4

0.6

0.8

1.0

n/
N

r̃=1.0
r̃=1.1
r̃=1.25
r̃=1.5
r̃=2

Figure 5. Function n(ñ) obtained by numerically solving the
algebraic equation (24) for N0/N = 10−3 and various values
of r.
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Figure 6. Solution (30) of the continuous Master equation
(22) (continuous lines) compared to numerical solutions of
the discrete Master equation (6) (dashed lines) for N = 2000,
N0 = 2, n0 = 1 and various values of r. The solution (30) is
obtained by numerically solving equation (24) and then using
relation (26).

No special function is defined in the mathematical liter-
ature to deal with equations of type xr + ux − u = 0 ;
however, it is straightforward to find the numerical solu-
tion of equation (24) and use expression (26) to compute
P (n,N).

To make it more concrete, let us consider in some de-
tails the neutral case r = 1, and compare the exact known
solution (19) to the solution (25) of the PDE approach.
In this case, relation (23) transforms into the explicit
form ñ = (N0/N)n. The initial condition has to be cho-
sen in order to match the known solution (19) ; once it
has been fixed for r = 1, it will be used for all r > 1.
The initial condition corresponding to the discrete case
n0 = 1, N0 = 2 (relation 20) is

φ0(n) = Π(n− 1) (27)

where the gate function is defined as Π(x) = 1/2 for
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|x| < 1 and is zero outside this domain. Therefore,

P (n,N) =
2

N
Π

(

2

N
n− 1

)

(28)

=
1

N
n ∈]0, N [ (29)

which approximates the exact solution (20) to O(1/N).
The general solution for arbitrary r corresponding to

initial condition n0 = 1, N0 = 2 is then simply

P (n,N) =
1

2

∂ñ

∂n
n ∈]0, N [ (30)

Figure 6 shows the excellent agreement between expres-
sion (30) and the numerical solution obtained from the
exact discrete Master equation (6).

Various moments can be extracted from solution (25):

〈

nk(N)
〉

r
=

ˆ N

0

nkP (n,N)dn =

ˆ N0

0

nkφ0(ñ)dñ (31)

where n inside the integrand on the right-hand side of
eq. (31) is a function of ñ through relation (24). For the
neutral case r = 1, n/N = ñ/N0 and therefore

ˆ N0

0

ñk

Nk
0

φ0(ñ)dñ =

〈

nk(N)
〉

1

Nk
=

(n0)k
(N0)k

+O(1/N) (32)

We can obtain an explicit form of n as a function of ñ
for various conditions. If s = r − 1 ≪ 1, we can obtain
a perturbative solution of equation (24) in powers of s.
On the other hand, for high values of integer r such as
r = 2, 3, 4, we can exactly solve the algebraic equation
(24). These two cases constitute the near neutral and
highly non-neutral situations and allows us to understand
the general behavior of the system.

A. Perturbative solution.

Let us first consider the case s = r − 1 ≪ 1. Setting
κ = log(N/N0), we have, to the second order in s :

x = x̃+κx̃(1− x̃)s−κx̃(1− x̃) ((κ+ 1)x̃− κ/2))s2 (33)

where x̃ = ñ/N0, x = n/N . The symmetry of equation
(24) implies that x̃ can be expressed as a function of x
by simply replacing κ by −κ in expression (33). Using
expression (31,32) for the initial conditions N0, n0, , to
the first order perturbations, the moments are found to
be

〈n(N)〉r = 〈n(N)〉
1

{

1 + κs
(N0 − n0)

N0 + 1

}

(34)

σ2
r (N) = σ2

1(N)

{

1 + 2κs
N0 − 2n0

N0 + 2

}

(35)

σr(N)

〈n(N)〉r
= cv1

{

1− κs
N0(n0 + 1)

(N0 + 1)(N0 + 2)

}

(36)
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Figure 7. Coefficient of variation σ(N)/ 〈n(N)〉 for s = 0.05
(r = 1+ s) and various initial conditions (N0, n0). Thin solid
lines : exact values obtained from direct numerical resolution
of the Master equation (6) ; Dashed lines : first order pertur-
bations given by expression (36) ; thick solid lines : second
order perturbations. The initial condition (N0, n0) of each
curve is displayed above it.

Where the subscript 1 refers to the neutral expressions
(15-17). Figure 7 shows the comparison of the above
expressions to exact values obtained from numerical so-
lutions of the exact Master equation (6).

We observe that the correction of the above expressions
compared to neutral values (equation 15-17) are logarith-
mic and of the order of sκ = s log(N/N0) : the fluctu-
ations amplitude σ is still large and of the order of the
mean 〈n〉. The perturbative approach is valid for κs ≪ 1
; the solution for higher values of s can be slightly im-
proved by using higher order perturbations ( figure 7) but
the perturbative approach reaches its limit for κs . 1.

B. High values of r.

High values of r can be understood by investigating
integer values such as 2,3,4 for which the equation (24)
can be exactly solved. For the case r = 2

x =
γ(1− x̃)2 + 2x̃−

√

γ2(1− x̃)2 + 4γx̃

2x̃
(37)

where γ = N0/N ≪ 1 and as before, x = n/N and
x̃ = ñ/N0. We will investigate the simplest case corre-
sponding to the initial condition N0 = 2, n0 = 1 where
φ0(u) = Π(u−1) (relation 27). For this initial condition,
the moments equation (31) is greatly simplified :

〈

nk
〉

Nk
=

N0

2

ˆ 1

0

xkdx̃ (38)

Using expression (37), performing the integrations in-
volved by equation (38) and keeping only the leading
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orders of γ, we find that

〈n(N)〉
N

= 1− 4

3

√
γ +

γ

4
(1− 2 log γ) +O(γ3/2) (39)

σ2(N)

N2
= γ

(

− log γ − 77

18

)

+

γ3/2

(

−4

3
log γ +

106

15

)

+O(γ2) (40)

Expression (40) is valid for N/N0 ? 72 which is indeed
the regime of interest (figure 8) . We see that for r = 2,
the variance increases only as N logN and not N2 as in
the neutral case. Therefore, for high values of N , the
coefficient of variation σ/ 〈n〉 decreases as (logN/N)1/2

. In this regime, fluctuations become negligible and the
deterministic approach is valid.

V. DISCUSSION AND CONCLUSION.

In this article, we have investigated the distribution of
the number of individuals n and m of two species A,B
during a logistic growth. We have shown that the in-
vestigation is greatly simplified if instead of time t, the
independent variable is chosen to be the total number of
individuals N = n +m. This paper was focused on the
well known logistic growth, but the method and conclu-
sions are valid for any stochastic growth of the form

W (n,m → n+ 1,m) = anf(n,m) (41)

W (n,m → n,m+ 1) = bmf(n,m) (42)

where f(n,m) is an arbitrary function not necessarily
symmetric in m and n.

The most interesting feature of the investigated system
is the large amplitude of fluctuations in the neutral case
r = a/b = 1, where both species have similar growth

rate. Suppose that we draw (and replace) Ns individ-
uals at random from a pool of N0 individuals when n0

are of the A type. The distribution of the number of A
type in the Ns sample is a binomial one with parameter
p = n0/N0 ; the fluctuation amplitude of this experi-
ment σ/ 〈n〉 ∼ 1/

√
Ns is small if Ns ≫ 1. One could

naively suppose that a logistic growth when two types A
and B individuals are competing and the system expands
from N0 to Ns individuals (Ns ≫ N0) is similar to the
above drawing experiment : each individual in the final
pool draws at random its ancestor from the initial pool.
This is however not the case and we have shown that
contrary to the binomial case, the fluctuation amplitude
σ/ 〈n〉 ∼ 1/

√
N0 is always large and independent of the

final system size.

Various experiments can be devised to test the rele-
vance of the above computations. For example, a phage
such as λ can be modified into few different mutants,
each expressing a different fluorescent proteins (such as
GFP, RFP, YFP,...) ; the mutants can then be used to
co-infect a bacterial culture. The distribution of the col-
ors in the culture after some time can be related to the
probabilities we have computed through a convolution by
a Poisson-Binomial distribution to account for variation
in the initial number of co-infectors. A similar experi-
ment can be performed using PCR amplification of few
similar DNA strands[15] of the same length and charac-
teristics and then analyze the number of strands copy in
each droplets.

The problem we have investigated can also be used
to extend the Wright-Fisher (WF) model of population
genetics to variable size population (see for example[16–
18]). In the WF model with fixed population size N0 and
two mutant types A and B, each generation is formed
by selecting randomly N0 individuals among the progeny
of generation i to form generation i + 1. If x is the
proportion of the A type with reproductive advantage
r = 1+ s, then a diffusion (Kimura) equation can be de-
rived for the evolution of the population ([19, 20]) where
the drift and diffusion coefficient are a(x) = sx(1 − x)
and b(x) = x(1− x)/(2N).

We can generalize the WF model by allowing, at each
generation i, the population to expand to size Ns and
then select N0 individuals among them to form the new
generation i+ 1. By using the result of subsection IVA,
it is straightforward to show that the diffusion equa-
tion governing this system is the same as before except
that the relative excess fitness is now renormalized to
s′ = s log(Ns/N0). The fact that the effective fitness
increases in a growing population was already noted by
Ewens ([16]), although the amplifying factor in the prob-
lem investigated by him was proportional to the harmonic
mean Ns and N0 rather than their logarithmic difference
as here.

In summary, we have shown that populations subjects
to logistic-like growth such as equation (41,42) can be
modeled by deterministic equations only if there is sig-
nificant difference (r ? 2) between their growth rates.
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If they have similar growth rate, the deterministic equa-
tion must be abandoned and a stochastic treatment used
instead.
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Appendix A: Various neutral computations

1. Factorial moments.

Consider the function f(n) = (n)k = n(n + 1)...(n +
k − 1) ; then

f(n+ 1)− f(n) = (n+ 1)k−1 (n+ k − n) = k(n+ 1)k−1

and therefore

n (f(n+ 1)− f(n)) = k(n)k = kf(n)

Therefore, using the general expression (11), we find the
one term recurrence relation

〈f(n)(N + 1)〉 =
(

1 +
k

N

)

〈f(n)(N)〉

which is trivially solved and leads to expression (18).

2. Expression of the probability.

To shorten the notations, we use m = N −n whenever
needed. The Master equation in the neutral case is

P (n,N + 1) =
n− 1

N
P (n− 1, N) +

m

N
P (n,N) (A1)

Consider

P (n,N) =
(n− n0 + 1)n0−1(m−m0 + 1)m0−1

(N −N0 + 1)N0−1

(A2)

Pochhammer manipulation is similar to factorial manip-
ulation. In particular,

N(N −N0 + 1)N0−1 = (N −N0 + 1)N0

(n− 1)(n− n0)n0−1 = (n− n0)n0

m(m−m0 + 1)m0−1 = (m−m0 + 1)m0

and therefore, the right hand side of relation (A1) is
found to be

(n− n0 + 1)n0−1(m−m0 + 2)m0−1

(N −N0 + 1)N0

(n− n0 +m−m0 + 1)

As

n− n0 +m−m0 + 1 = N −N0 + 1

and

N −N0 + 1

(N −N0 + 1)N0

=
1

(N + 1−N0 + 1)N0−1

expression (A2) is indeed a solution of the Master equa-
tion, up to a multiplicative constant. The constant is
found by stating P (n0, N0) = 1. As the master equation
conserves the probability, the constant is valid for all N .

Appendix B: Solving the PDE

Consider a first order partial differential equation
(PDE) of first order for the function P (x, t) of type

∂tP + ∂x(αP ) = 0 (B1)

where α = α(x, t) is a known function. Let us call
R(x, t) = Cte the solution of the characteristic equation

dx

dt
= α(x, t)

Then by definition,

∂tR + α∂xR = 0

Consider the function

Q(x, t) =
∂

∂x
f (R(x, t)) (B2)

where f() is an arbitrary function. Then

∂tQ+ ∂x (αQ) = ∂x {(∂tR+ α∂xR) f ′(R)} = 0

and therefore Q(x, t) is a solution of equation (B1). For
example, for α = c, the solution is the trivial propagation
P (x, t) = f(x− ct).

The function f(.) has to be determined from the initial
condition P (x, t0) = φ0(x). Consider two points (t0, x̃)
and (t, x) in the plane, related through R(x, t) = R(x̃, t0),
i.e. they belong to the same characteristic curve. Obvi-
ously, we can reverse this relation as x̃ = g (R(x, t), t0)
and therefore write the general solution (B2) as P (x, t) =
∂xf (x̃) = (∂x̃/∂x)f ′(x̃). On the other hand, at the ini-
tial time t0, x = x̃, ∂x̃/∂x = 1 and therefore f ′() = φ0().
The solution of the PDE (B2) with the initial condition
φ0(x) is then

P (x, t) =
∂x̃

∂x
φ0(x̃)

P (., t) can be seen as a transformation, i.e. scaling and
deformation of the initial condition φ0(.). An initial
Dirac distribution however propagates without deforma-
tion along a characteristic curve because f(x)δ(x) = δ(x)



8

: in this case, the PDE is reduced to the deterministic
equations dx/dt = α.

Let us precise the function φ0(.) used in this article for
the PDE (22) . The true probability Pd(n,N) is func-
tion of discrete variables n and N . In order to estimate
this probability, we have used the probability density
Pc(n,N) of continuous variable n,N . Pc must approx-
imate Pd for large N . φ0() has to be chosen to make
this approximation as precise as possible. However, we
cannot use the discrete initial condition P (n,N0) = δnn0

,

because the continuous PDE will be reduced to a de-
terministic equation. We make the assumption that the
choice of φ0(.) is independent of r and therefore can be
deduced from the known expression of neutral probabil-
ity. For r = 1, ñ = (N0/N)n, and therefore we have

φ0(ñ) =
N

N0

P1(
N

N0

ñ, N)

where P1(, ) is the neutral probabilities but the argu-
ments are continuous.
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