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Abstract

Motivated by stricter environmental regulations, government incentives, branding opportunities,
and potential cost reductions, companies are replacing their conventional vehicles (CVs) with electric
vehicles (EVs). However, due to financial and operational restrictions, these fleet transitions usually
occur in several stages. This introduces new operational challenges, because most existing fleet
management and routing tools are not designed to handle hybrid fleets of CVs and EVs. In this
paper, we study a problem arising in the daily operations of telecommunication companies, public
utilities, home healthcare providers, and other businesses: the technician routing and scheduling
problem with conventional and electric vehicles (TRSP-CEV). To solve this problem we propose a
two-phase parallel matheuristic. In the first phase the matheuristic decomposes the problem into
several vehicle routing problems with time windows, and it solves these problems (in parallel) using
a greedy randomized adaptive search procedure (GRASP). At the end of each GRASP iteration,
the routes making up the local optimum are stored in long-term memory. In the second phase, the
method uses the stored routes to find a TRSP-CEV solution. We discuss computational experiments
on industrial instances provided by a French utility. We provide managerial insight into the impact
of the proportion of EVs in the fleet on metrics such as the number of routes, the total operational
cost, and the CO2 emissions. Additionally, we present state-of-the-art results for the closely related
electric fleet size and mix vehicle routing problem with time windows and recharging stations.

1 Introduction

Electric vehicles (EVs) include hybrids, plug-in hybrids, and battery electric vehicles. Although their
market share is still small, it is increasing thanks to government incentives and technological improve-
ments. The benefits of EVs include reductions in noise and local greenhouse gas emissions, their lower
operational cost with respect to conventional vehicles (CVs), their contribution to a green corporate
image, and their suitability for low-emission zones. However, the large-scale adoption of EVs is still
hampered by economical and technical constraints such as the high upfront cost, low driving range, and
long battery charging time, as well as the limited availability of charging infrastructure (Pelletier et al.,
2014). Commercial EVs are mostly used in urban operations such as last-mile distribution (Taefi et al.,
2015) and technical and home care services (ENEDIS, 2015; Yavuz et al., 2015). Indeed, service vehicles
form the first market segment where EVs are expected to match CVs in terms of total cost of ownership
(Electrification Coalition, 2010).

EVs are evolving rapidly, so there is uncertainty about their future operational capacities and costs
(e.g., maintenance cost, energy price, battery lifetime, charging time). For this reason, the transition
to cleaner fleets usually occurs in several stages (Kleindorfer et al., 2012; Sierzchula, 2014). During the
transition, companies operate hybrid fleets with both EVs and CVs. This introduces new operational
challenges, because most existing fleet management and routing tools are not designed to handle hybrid
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fleets. To contribute to the toolbox available to companies operating in this context, we introduce the
technician routing and scheduling problem with conventional and electric vehicles (TRSP-CEV). The
TRSP-CEV designs routes that take into account the customers’ time windows (TWs) and the drivers’
skills, shifts, and lunch breaks. In the TRSP-CEV there is a fixed and heterogeneous fleet of CVs and
EVs. Due to their relatively limited driving ranges, EVs may need to include one or more recharging stops
in their routes. To solve the problem, we propose a parallel matheuristic. The approach has two phases.
In the first phase we decompose the problem into a number of simpler vehicle routing problems (VRPs)
with TWs and solve these problems in parallel using a greedy randomized adaptive search procedure
(GRASP). The routes making up the local optima are stored in long-term memory. In the second phase,
we solve a set covering problem over the stored routes to find a solution for the TRSP-CEV.

The main contributions of this paper are fourfold. First, we introduce a complex new VRP, namely the
TRSP-CEV. Second, we propose a decomposition scheme that can be extended to other VRP variants.
Third, we propose a set of test instances based on (i) the operation of a public utility, (ii) real charg-
ing infrastructure availability, and (iii) realistic energy consumption and charging functions. Fourth, we
analyze the solutions of TRSP-CEV instances with different geographical characteristics and fleet com-
positions to provide insights into the impact of the introduction of EVs in field maintenance operations.
Additionally, we report state-of-the-art solutions for the closely related electric fleet size and mix VRP
with TWs and recharging stations (E-FSMVRPTW).

The remainder of this paper is organized as follows. Section 2 reviews the related literature. Section 3
formally defines the TRSP-CEV and presents a mixed integer linear programming (MILP) formulation.
Section 4 introduces our parallel matheuristic. Section 5 presents the computational experiments and
reports the results from our parallel matheuristic on the Hiermann et al. (2016) instances for the E-
FSMVRPTW. Section 6 provides concluding remarks.

2 Literature review

The TRSP-CEV integrates the elements of two (complex) (VRPs): the VRP with CVs and EVs (Goeke
& Schneider, 2015) and the workforce scheduling and routing problem (Castillo-Salazar et al., 2016). We
now briefly survey the most relevant literature on these two problems. See Pelletier et al. (2016) for a
recent review of electric VRPs and Castillo-Salazar et al. (2016) and Paraskevopoulos et al. (2017) for
reviews of workforce scheduling and routing problems.

2.1 Electric vehicle routing problems

The main feature of electric VRPs (E-VRPs) is that they explicitly model the limited range of EVs. In
consequence, they deal not only with classical routing decisions (e.g., customer sequencing) but also with
charging decisions (where and how much energy to charge). Early work on E-VRPs makes simplifying
assumptions about the charging operations. For instance, Conrad & Figliozzi (2011) studied an E-VRP
where the charging stations (CSs) are located at the customer locations (i.e., no detours are needed).
Likewise, in the green VRP, Erdoğan & Miller-Hooks (2012) assume that fully recharging the battery
takes a constant time. More recently, authors have started to relax these assumptions. Felipe et al.
(2014) studied an E-VRP where the stations have multiple charging technologies (i.e., speeds). They
also allow partial charging, i.e., the amount of energy charged is a decision variable. They use a multi-
neighborhood local search heuristic and simulated annealing. Schneider et al. (2014) introduced the
E-VRP with TWs and recharging stations (E-VRPTW) in which the customers must be served within
a specified time interval (i.e., the TW). They assume that the charging time is variable and depends
on the state of charge (SoC) on arrival at the CS; they do not allow partial charging. They propose a
hybrid metaheuristic combining tabu search and variable neighborhood search (VNS). Later, Schneider
et al. (2015) improved their results by combining their VNS with an adaptive large neighborhood search
(ALNS). Keskin & C̆atay (2016) extended the E-VRPTW to partial recharging and proposed an ALNS.
Desaulniers et al. (2016) developed a branch-and-price-and-cut algorithm for E-VRPTW variants with
full or partial recharging. Their method consistently solves instances with up to 100 customers and 21
charging stations. In the TRP-CEV, we consider CSs with different technologies, allow partial recharging,
and model the charging time as a decision variable.

As pointed out by Pelletier et al. (2017), modeling the behavior of the battery (during charging,
storage, and discharging) is a challenging task. In most studies, the charging function is assumed to be
linear with respect to the charging time (Schneider et al., 2014; Felipe et al., 2014; Schneider et al., 2015;
Keskin & C̆atay, 2016; Desaulniers et al., 2016). In practice, however, the SoC is a logarithmic function of
the charging time. To deal with this, Montoya et al. (2017) studied the E-VRP with a nonlinear charging
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function (E-VRP-NL); a problem in which the charging function is approximated using a piecewise linear
expression. They show that approximating the charging function using linear expressions may lead to
solutions that are either infeasible or overly expensive. They propose a matheuristic based on iterated
local search (ILS) and a set partitioning post-optimizer to solve E-VRP-NL instances with up to 320
customers. More recently, Froger et al. (2017) have introduced enhanced mixed integer programming
formulations for the E-VRP-NL.

The energy consumption of EVs is another factor that has been simplified in the literature. Most
E-VRP models assume that the energy consumption is a linear function of the traveled distance (Erdoğan
& Miller-Hooks, 2012; Schneider et al., 2014; Felipe et al., 2014; Schneider et al., 2015; Keskin & C̆atay,
2016). However, Goeke & Schneider (2015) use speed, road gradient, and cargo load to estimate the
energy consumption of both EVs and CVs. Similarly, Murakami (2017) describes an energy consumption
model that takes into account road gradient, vehicle speed and acceleration, and waiting time at traffic
lights. In the TRSP-CEV, we model the charging functions using nonlinear expressions, and we use
realistic energy consumption estimates based on real road network parameters and EV characteristics.

Only a few researchers have considered hybrid fleets of CVs and EVs, and to the best of our knowledge
Juan et al. (2014) were the first to do so. They introduced the VRP with multiple driving ranges
(VRPMDR) in which they consider a hybrid fleet of CVs, EVs, and plug-in hybrid EVs (PHVs). They
do not consider en-route recharging. Therefore, their problem can be seen as a classical VRP with
a heterogeneous fleet in which each vehicle type has a different range. They propose a multi-round
heuristic that solves several homogeneous-fleet VRPs sequentially. Each VRP in the sequence has a
maximum-distance constraint that depends on the vehicle used. Goeke & Schneider (2015) studied the
routing of hybrid fleets with en-route recharging. They introduced the VRP with conventional and electric
vehicles (VRP-CEV) and proposed an ALNS. Computational experiments showed that minimizing the
traveled distance (ignoring the fuel, labor, and battery degradation costs) leads to solutions that are 5%
more expensive than those obtained if these terms are included in the objective function. Sassi et al.
(2015) carried out a collaborative project with the French postal service. They studied an E-VRP with
CSs of different technologies, a hybrid fleet made up of CVs and EVs of different types, compatibility
constraints between the EVs and the charging technologies, time-dependent charging costs, and the
option of partial recharging. They used a multi-start iterated tabu search based on large neighborhood
search. Hiermann et al. (2016) introduced the E-FSMVRPTW in which the number and type of EVs
are decision variables. They proposed an ALNS and a branch-and-price algorithm. Penna et al. (2016)
solved the E-FSMVRPTW via a multi-start matheuristic. Their method employs ILS to generate a pool
of high-quality routes that is then used in a set partitioning model to find an improved solution at each
restart. Recently, Hiermann et al. (2017) have studied a new problem variant in which they consider
PHVs, EVs, and CVs. They propose a hybrid genetic algorithm (HGA) enhanced with local search,
large neighborhood search, and a set partitioning formulation. Their method relies on a layered route-
evaluation procedure that depends on the type of vehicle used. If the route is performed by an EV the
evaluation procedure includes the insertion of CSs, whereas if it is performed by a PHV the evaluation
includes the selection of the fuel used.

2.2 Workforce scheduling and routing problem

In the workforce scheduling and routing problem (WSRP), a set of workers serves the requests of a
set of geographically dispersed customers. The distinctive features of the WSRP are worker-request
incompatibility constraints and request TWs; the former are usually related to the skills needed to serve
each customer request. The WSRP encompasses several scheduling and routing problems arising in
service industries. Examples include the technician routing and scheduling problem (TRSP), the home
healthcare routing and scheduling problem (Cissé et al., 2017; Fikar & Hirsch, 2017), the routing of
security personnel (Misir et al., 2011), and the scheduling of airport ground operations (Dohn et al.,
2009).

The TRSP has applications in the field maintenance of telecoms and public utilities. To schedule the
workforce at British Telecom, Tsang & Voudouris (1997) used the skill proficiency of each technician to
estimate the time required to accomplish a given request. They proposed a guided local search to minimize
a weighted combination of the traveling cost, overtime cost, and a penalty for unserved requests. Following
a different modeling approach, Chen et al. (2016) studied a multi-period TRSP where the service time
decreases as the technicians gain experience. Their experiments show that considering the learning effect
leads to better solutions than those obtained under a static productivity assumption.

The TRSP has been extended in various directions. Bostel et al. (2008) present a multi-period TRSP
for a water treatment and distribution utility, where the requests correspond to planned and emergency
maintenance operations. There are no compatibility constraints between requests and technicians. They
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propose a column generation algorithm for instances with up to 100 requests and a memetic algorithm
for larger instances. Pillac et al. (2013) studied an extension of the TRSP where the requests include
requirements for spare parts and tools. The technicians can collect tools and spare parts from a central
depot at any time during the execution of their routes. Pillac et al. propose a parallel matheuristic based
on ALNS and a set covering formulation. Kovacs et al. (2012) propose an ALNS for a TRSP where the
technicians have different proficiency levels for several skills and the requests require multiple technicians.
The technicians are assigned to teams, and routes are designed for the teams.

Another common feature of the WSRP is the need to comply with working-time regulations. These
regulations impose a working TW or a maximum duration for each route and (sometimes) mandatory
breaks. When lunch breaks are necessary, they may have fixed TWs and be taken at customer locations
(Kovacs et al., 2012; Coelho et al., 2016; Liu et al., 2017). Alternatively, they may be taken at specified
locations such as restaurants (Bostel et al., 2008). In the TRSP-CEV we assume that lunch breaks can
be taken anywhere in the route.

Our TRSP-CEV extends the literature on E-VRPs (with hybrid fleets of CVs and EVs) by including
several additional characteristics related to service provision with heterogeneous workers. To the best of
our knowledge, this is the first study that combines the elements of these two complex VRPs (E-VRP
and WSRP) into a single rich VRP model.

3 Technician routing and scheduling problem with conventional
and electric vehicles

The TRSP-CEV can be defined on a directed and complete graph G = (N ,A) where N is the set of
nodes and A is the set of arcs. The set of nodes is defined as N = {0} ∪ C ∪ S, where node 0 represents
the depot, C is a set of nodes representing the customers, and S is a set of nodes representing the CSs.
Each station s ∈ S has a charging cost ccs (in e/min). Each customer i ∈ C has a request needing skill ki
from set K and having a service time sti and a TW [eci, lci], where eci and lci are the earliest and latest
possible service start times. For simplicity, in the remainder of this paper we use the terms customer and
request interchangeably.

The set of technicians is denoted T . Each technician t ∈ T has (i) a fixed daily cost fct (e/route); (ii)
a subset of skills Kt ⊆ K; (iii) a shift [est, lst], where est (resp. lst) is the technician’s earliest departure
time from (resp. latest return time to) the depot; (iv) a lunch break [elt, llt] where elt and llt are the
starting and ending time of the lunch break; and (v) an energy consumption factor cft . This factor scales
the energy consumption of an EV according to the technician’s driving style: sportive, normal, or eco
(Bingham et al., 2012). Let T ′ ⊆ T be the subset of technicians who work a partial shift without a lunch
break. The technicians drive vehicles from a fixed fleet composed of CVs and EVs. The set of vehicles is
V = Vc ∪ Ve, where Vc is the subset of CVs and Ve is the subset of EVs. Each vehicle v ∈ V has a travel
cost tcv (e/km). The vehicles v ∈ Ve also have a fixed cost gcv for recharging (e/charge), a battery
capacity Qv (kWh), and a set Sv ⊆ S of compatible CSs. Finally, A = {(i, j) : i, j ∈ N , i 6= j} denotes
the set of arcs connecting nodes in N . Each arc (i, j) ∈ A has three associated nonnegative values: a
travel time ttij , a distance dij , and a nominal energy consumption eijv for each EV v ∈ Ve.

Similarly to Zündorf (2014) and Montoya et al. (2017), we model the SoC as a nonlinear function
of the charging time. However, we use a discrete nonlinear approximation rather than the piecewise
linear approximation; this allows us to easily capture the nonlinear behavior of the charging process.
Moreover, it enables a simple translation of the results of the TRSP-CEV into practical charging decisions
since the SoC in EVs is generally displayed as a rounded percentage of the battery capacity. Formally,
to model the charging of EV v ∈ Ve at CS s ∈ Sv we use the function fsv to describe the relation
between the vehicle’s charging time (in minutes) and the battery SoC (in % of Qv). This function is
fsv = {(b, asvb)|b ∈ B = {0, 1, . . . , 100}} where asvb is the time to take the SoC from 0 to b% of Qv at
station s ∈ Sv. In our model, we calculate the time to increase the SoC from l% to u% (l, u ∈ B : l ≤ u)
as f−1

sv (u) − f−1
sv (l) = asvu − asvl. Figure 1 illustrates the charging functions for an EV with a 16 kWh

battery and three different charging technologies.

3.1 Mixed integer linear programming formulation of the TRSP-CEV

We now provide an MILP formulation of the TRSP-CEV. As in many E-VRP models (Felipe et al., 2014;
Schneider et al., 2014; Montoya et al., 2017), to distinguish the individual visits to a CS we introduce a
unique node for each potential visit. Accordingly, we define set N ′ = {0} ∪ C ∪ S ′, where set S ′ includes
β copies of each CS s ∈ S (i.e., |S ′| = β×|S|). In the MILP we use the following decision variables: xijvt
is equal to 1 if technician t ∈ T travels from node i to j ∈ N ′ in vehicle v ∈ V, and 0 otherwise. Variable
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Figure 1: Discrete charging functions for an EV with a battery of 16 kWh using different charging
technologies.

τit tracks the arrival time of technician t ∈ T at node i ∈ N ′. Variable yiv tracks the SoC of EV v ∈ Ve
upon departure from node i ∈ N ′. Variables qsv and osv represent the SoC when v ∈ Ve arrives at and
departs from CS s ∈ S ′v. Variable αsvb (resp. ρsvb) is equal to 1 if the SoC is b ∈ B when vehicle v ∈ Ve
arrives at (resp. departs from) the CS s ∈ S ′v. Variable ∆sv represents the time spent by vehicle v ∈ Ve
at CS s ∈ S ′v. Variable wijt is equal to 1 if technician t ∈ T takes a lunch break between i and j ∈ N ′,
and 0 otherwise. Variable zijt is equal to 1 if technician t ∈ T takes a lunch break after traveling from
node i to j ∈ N ′, and 0 otherwise. Variable z′ijt is equal to 1 if technician t ∈ T takes a lunch break
before traveling from node i to j ∈ N ′, and 0 otherwise. The MILP formulation follows:

Min
∑
j∈N ′

∑
v∈V

∑
t∈T

fct · x0jvt +
∑
i∈N ′

∑
j∈N ′
:j 6=i

∑
v∈V

∑
t∈T

dij · tcv · xijvt +
∑
v∈Ve

∑
s∈S′v

ccs ·∆sv +
∑
i∈N ′

∑
v∈Ve

∑
s∈S′v

∑
t∈T

gcv · xisvt (1)
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subject to: ∑
i∈N ′

∑
v∈V

∑
t∈T :
kj∈Kt

xijvt = 1, ∀j ∈ C (2)

∑
v∈V

∑
t∈T

xijvt ≤ 1, ∀i, j ∈ N ′ (3)

∑
j∈N ′

∑
t∈T

x0jvt ≤ 1, ∀v ∈ V (4)

∑
j∈N ′

∑
v∈V

x0jvt ≤ 1, ∀t ∈ T (5)

∑
j∈N ′

xjivt −
∑
j∈N ′

xijvt = 0, ∀i ∈ N ′, ∀v ∈ V, ∀t ∈ T (6)

eijv · cft · xijvt − (1− xijvt) ·Qv ≤ yiv − yjv , ∀i ∈ N ′, ∀j ∈ C, ∀v ∈ Ve, ∀t ∈ T (7)

yiv − yjv ≤ eijv · cft · xijvt + (1− xijvt) ·Qv , ∀i ∈ N ′, ∀j ∈ C, ∀v ∈ Ve, ∀t ∈ T (8)

eisv · cft · xisvt − (1− xisvt) ·Qv ≤ yiv − qsv ∀i ∈ N ′, ∀v ∈ Ve, ∀s ∈ S
′
v , ∀t ∈ T (9)

yiv − qsv ≤ eisv · cft · xisvt + (1− xisvt) ·Qv , ∀i ∈ N ′, ∀v ∈ Ve, ∀s ∈ S
′
v , ∀t ∈ T (10)

y0v = Qv , ∀v ∈ Ve (11)

yiv ≥ ei0v · cft · xi0vt, ∀i ∈ N ′, ∀v ∈ Ve, ∀t ∈ T (12)∑
i∈N ′

xisvt ≤ 1, ∀v ∈ Ve, ∀s ∈ S
′
v , ∀t ∈ T (13)

ysv = osv , , ∀v ∈ Ve, ∀s ∈ S
′
v (14)

qsv ≤ osv , ∀v ∈ Ve, ∀s ∈ S
′
v (15)

qsv ≤ Qv ·
∑
i∈N ′

∑
t∈T

xisvt, ∀v ∈ Ve, ∀s ∈ S
′
v (16)

osv ≤ Qv ·
∑
i∈N ′

∑
t∈T

xisvt, ∀v ∈ Ve, ∀s ∈ S
′
v (17)

qsv

Qv
· 100 ≥

∑
b∈B

b · αsvb, ∀v ∈ Ve,∀s ∈ S
′
v (18)

qsv

Qv
· 100− 1 ≤

∑
b∈B

b · αsvb, ∀v ∈ Ve,∀s ∈ S
′
v (19)

∑
b∈B

αsvb ≤
∑
i∈N ′

∑
t∈T

xisvt, ∀v ∈ Ve,∀s ∈ S
′
v (20)

osv

Qv
· 100 ≤

∑
b∈B

b · ρsvb, ∀v ∈ Ve, ∀s ∈ S
′
v (21)

osv

Qv
· 100 + 1 ≥

∑
b∈B

b · ρsvb, ∀v ∈ Ve, ∀s ∈ S
′
v (22)

∑
b∈B

ρsvb ≤
∑
i∈N ′

∑
t∈T

xisvt, ∀v ∈ Ve, ∀s ∈ S
′
v (23)

∆sv =
∑
b∈B

asvb · ρsvb −
∑
b∈B

asvb · αsvb, ∀v ∈ Ve, ∀s ∈ S
′
v (24)

τit + wijt · (llt − elt) + (ttij + sti) · xijvt−
(lst + (llt − elt)) · (1− xijvt) ≤ τjt, ∀v ∈ Ve,∀i ∈ C,∀j ∈ N ′, ∀t ∈ T (25)
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τst + wsjt · (llt − elt) + ∆sv + ttsj · xsjvt−

(amax + lst + (llt − elt)) · (1− xsjvt) ≤ τjt, ∀v ∈ Ve, ∀j ∈ N ′, ∀s ∈ S
′
v , ∀t ∈ T (26)

wijt ≤
∑
v∈V

xijvt, ∀i, j ∈ N ′,∀t ∈ T \ T ′ (27)

∑
i∈N ′

∑
j∈N ′

wijt =
∑
i∈N ′

∑
v∈V

x0ivt, ∀t ∈ T \ T ′ (28)

τit + sti ≤
(
elt ·

∑
j∈N ′

wijt

)
+

(
lst · (1−

∑
j∈N ′

wijt)

)
, ∀i ∈ C,∀t ∈ T \ T ′ (29)

τst + ∆sv ≤
(
elt ·

∑
j∈N ′

wsjt

)
+

(
lst · (1−

∑
j∈N ′

wijt)

)
, ∀s ∈ S

′
v ,∀t ∈ T \ T ′ (30)

τit ≥
(
llt ·

∑
j∈N ′

wjit

)
+

(
est · (1−

∑
j∈N ′

wjit)

)
, i ∈ N ′,∀t ∈ T \ T ′ (31)

elt · zijt − τit − pi + lst · (1− zijt) ≥ ttij · zijt, ∀i, j ∈ N ′,∀t ∈ T \ T ′ (32)

τjt − llt · z′ijt ≥ ttij · z′ijt, ∀i, j ∈ N ′,∀t ∈ T \ T ′ (33)

zijt + z′ijt = wijt, ∀i, j ∈ N ′,∀t ∈ T \ T ′ (34)

τit − tt0i ≥ est, ∀i ∈ N ′, ∀t ∈ T (35)

τit + sti + tti0 ≤ lst, ∀i ∈ C, ∀t ∈ T (36)

τst + ∆sv + tts0 ≤ lst, ∀v ∈ Ve, ∀s ∈ S
′
v , ∀t ∈ T (37)

eci ≤ τit ≤ lci, ∀i ∈ C, ∀t ∈ T (38)

xijvt ∈ {0, 1} ∀v ∈ Ve, ∀i, j ∈ C ∪ {0} ∪ S
′
v : j 6= i, ∀t ∈ T (39)

xijvt ∈ {0, 1} ∀v ∈ Vc, ∀i, j ∈ C ∪ {0} : j 6= i, ∀t ∈ T (40)

αsvb ∈ {0, 1}, ρsvb ∈ {0, 1}, ∀v ∈ Ve,∀s ∈ S
′
v ,∀b ∈ B (41)

τit ≥ 0, ∀i ∈ N ′, ∀t ∈ T (42)

yiv ≥ 0, ∀i ∈ N ′, ∀v ∈ Ve (43)

qsv ≥ 0, osv ≥ 0, ∆sv ≥ 0, ∀v ∈ Ve,∀s ∈ S
′
v , (44)

wijt ∈ {0, 1}, zijt ∈ {0, 1}, z′ijt ∈ {0, 1}, ∀i, j ∈ N ′ : j 6= i,∀t ∈ T \ T ′ (45)

The objective function (1) minimizes the total cost given by the daily cost of the technicians, the total
travel cost, and the charging costs of the EVs. Constraints (2) ensure that each customer is visited once
by a technician with the appropriate skill. Constraints (3) ensure that each arc is used by at most one
vehicle and technician. Constraints (4)–(5) ensure that only one technician is assigned to each vehicle
(and vice versa). Constraints (6) impose flow conservation at all the nodes. Constraints (7)–(8) and
(9)–(10) track the SoC of the EVs at customers and CSs respectively. Constraints (11) ensure that the
EVs depart from the depot with fully charged batteries. Constraints (12) ensure that the EVs have
enough energy to return to the depot. Constraints (13) ensure that an EV charges at most once at each
CS copy. Constraints (14) set to osv the battery SoC of EV v upon departure from CS s. Constraints
(15) couple the SoC when an EV arrives at and departs from any CS. Constraints (16) and (17) ensure
that the SoC is bounded by the capacity of the battery when the EVs arrive at and depart from CSs.
Constraints (18)–(23) define the SoC when the EVs arrive at or depart from CSs. Constraints (24)
define the time spent charging at CSs. Constraints (25) and (26) track the arrival time at each node.
In constraints (26), parameter amax represents the maximum charging time of any charging function.
Constraints (27) ensure that each technician takes a lunch break between two nodes visited in his/her
route. Constraints (28) ensure that only scheduled technicians (i.e., those that leave the depot) take
lunch breaks. Constraints (29)–(31) ensure that the technicians take their lunch breaks in the scheduled
intervals. Constraints (32)–(34) ensure that the technicians take their lunch break either before or after
traveling to a node. Note that for the technicians in T ′ we remove the wijt, zijt, and z′ijt variables and
omit constraints (27)–(34). Constraints (35)–(37) impose the schedule of the technicians. Constraints
(38) ensure that every request is served within its TW. Finally, constraints (39)–(45) define the domain
of the decision variables.

4 Parallel matheuristic

The TRSP-CEV belongs to the class of “rich” VRPs because it has multiple characteristics (Hasle &
Kloster, 2007): a heterogeneous, fixed, and hybrid fleet (of EVs and CVs); EV energy constraints;
customer TWs; request-technician compatibility constraints; technician availability constraints (schedule
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Figure 2: Decomposition scheme for TRSP-CEV.

and lunch breaks) and driving styles; and the assignment of technicians to vehicles. Solving the TRSP-
CEV using classical metaheuristics may be difficult. For instance, neighborhood-based metaheuristics
may spend considerable time exploring solutions that turn out to be infeasible. To overcome this, our
solution method uses an alternative exploration approach. Instead of working directly on the space of
TRSP-CEV solutions, we search a space made up of feasible TRSP-CEV routes. A feasible route is
defined as a tuple containing: (i) a technician, (ii) a vehicle, (iii) a sequence of customers, whose requests
are compatible with the technician’s skills, and (eventually) a set of charging operations.

We follow the spirit of the approach of Taillard (1999) for heterogeneous-fleet VRPs (HVRPs). Taillard
proposes what he calls a heuristic column generation. The algorithm solves one homogeneous VRP for
each vehicle type and stores the routes in long-term memory. In a second stage, it selects a subset
of stored routes to find a solution. The exploration of the routes can be parallelized for efficiency.
Building on this idea, our matheuristic applies one of the fundamental decomposition strategies in parallel
algorithm design: exploratory decomposition. This strategy partitions the search space into smaller
regions and searches them concurrently (Grama et al., 2003). Therefore, we (i) partition the search space
into subspaces that correspond to all possible combinations of vehicles and technicians; (ii) search each
subspace in parallel to find a set of high-quality routes; (iii) build a TRSP-CEV solution by combining
routes from different subspaces.

In practice, companies have multiple vehicles with the same characteristics and technicians with the
same skills and schedules. To avoid exploring the same subspace repeatedly, we group vehicles and
technicians with identical characteristics in VT and T P, respectively. The set VT represents the vehicle
types: v′ ∈ VT represents mv′ vehicles with the same characteristics (e.g., travel cost, battery capacity,
and compatible CSs). Similarly, the set T P represents the technician profiles: t′ ∈ T P represents nt′

technicians with identical skills, driving style, schedule, and lunch break. Our matheuristic explores in
parallel the |T P| × |VT | subspaces resulting from the Cartesian product T P × VT . Figure 2 illustrates
the decomposition scheme for a TRSP-CEV instance with one CV, two EVs of different types, and three
technicians, one with profile A and two with profile B.

4.1 General structure

Algorithm 1 outlines the structure of our parallel matheuristic, PMa. The algorithm starts by call-
ing (line 2) groupTechnicians(T ), which groups the technicians and generates the set T P. It then
(line 3) invokes groupVehicles(V), which groups vehicles and generates the set VT , and calls (line 4)
buildAssignments(T P,VT ). This procedure builds the set P containing all possible assignments of
technician profiles to vehicle types. For each assignment p ∈ P PMa solves, on a dedicated thread, a
VRP with TWs and lunch breaks (VRPTW-LB). Let tp(p) ∈ T P be the technician profile in assignment
p and vt(p) ∈ VT the type of vehicle involved. In the VRPTW-LB for assignment p we assume that (i) we
have an unlimited number of technicians with profile tp(p), and (ii) the fleet is unlimited and composed
only of vehicles of type vt(p). If vt(p) is an EV, then the resulting problem is an E-VRPTW-LB. We
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Algorithm 1 Parallel matheuristic: General structure

1: function ParallelMatheuristic(G,T ,V)
2: T P ←− groupTechnicians(T )
3: VT ←− groupVehicles(V)
4: P ←− buildAssignments(T P,VT )
5: Ω←− ∅
6: parallel for each p ∈ P
7: Ωp ←− GRASP(p,G)
8: Ω←− Ω ∪ Ωp
9: end for

10: σ ←− setCovering(G,Ω,T P,VT )
11: return σ
12: end function

use a GRASP to solve the VRPTW-LB or E-VRPTW-LB problems associated with the |T P| × |VT | as-
signments in P. The algorithmic components depend on the type of problem being solved. The GRASP
returns a set Ωp containing all the routes of the local optima found during execution (line 7). The routes
in Ωp are added to the long-term memory structure Ω (line 8). After completing the parallel phase, PMa
calls (line 10) setCovering(G,Ω,T P,VT ), which solves an extended set covering formulation over Ω to
give a feasible TRSP-CEV solution. At this point we take into account the constraints on the numbers
of technicians and vehicles.

4.2 Greedy randomized adaptive search procedure

GRASPs are metaheuristic algorithms that produce high-quality solutions to optimization problems via
a two-phase strategy. The first phase builds diverse solutions via randomized constructive heuristics,
and the second phase improves these solutions using local search (Resende & Ribeiro, 2016). Several
of the state-of-the-art approaches for VRP variants are hybrid methods based on GRASP. For instance,
Mendoza et al. (2016) tackled the VRP with stochastic demands using a hybrid metaheuristic based on
GRASP and heuristic concentration. Haddadene et al. (2016) proposed a GRASP × ILS for a VRP arising
in home healthcare with TWs, synchronization, and precedence constraints. In this section we present
the components of the GRASP used by PMa to solve the (E-)VRPTW-LB. For simplicity, we focus on
the VRPTW-LB; we explain in a separate section the additional elements needed for EV characteristics.

4.2.1 Building subproblem instances

Because of differences in, for example, technician skills or charging technologies, not all nodes are compat-
ible with all technician profiles or vehicle types. In the GRASP, we first build a reduced (E)VRPTW-LB
instance by removing from N the nodes that are incompatible with tp(p) or vt(p) according to the
following rules:

Skill compatibility: We remove customers that are incompatible with technicians of profile tp(p) (i.e.,
i ∈ C : ki 6∈ Ktp(p)).

TW–schedule: We remove customers i ∈ C with estp(p) + tt0i > lci or eci + sti + tti0 > lstp(p) because
of their TW incompatibility with the schedule of technicians of profile tp(p).

TW–break: We remove customers i ∈ C with their whole TW [eci, lci] inside the lunch break of techni-
cians of profile tp(p) (i.e., [eci, lci] ⊂ [eltp(p), lltp(p)]).

Range: For EVs, we use the battery capacity Qvt(p) to remove from C all customers that are unreachable
from the closest compatible CS or the depot (i.e., i ∈ C : minj∈Svt(p)∪{0}{ejivt(p) ·cftp(p)} > Qvt(p)).

CS compatibility: Finally, for EVs, we include in N only the compatible CS s ∈ Svt(p). For CVs, N
does not include any CS.

Because of this node removal step, the compatibility constraints (between customers and technicians,
and between EVs and CSs) do not have to be checked during the GRASP execution.
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4.2.2 Greedy randomized construction

At each GRASP iteration, we generate initial solutions using a randomized version of the well-known
I1 heuristic for the VRPTW (Solomon, 1987). This randomized Solomon heuristic (RSH) builds routes
sequentially. After initializing a route with a randomly selected seed customer, RSH calculates the
insertion cost of the remaining customers as follows:

c1(i, u, j) = ω1 · c11(i, u, j) + ω2 · c12(i, u, j). (46)

The insertion cost c1(i, u, j) of customer u ∈ C between two adjacent nodes i and j of the current
partial route r has two terms: c11(i, u, j) = diu+duj −µ ·dij is the change in the distance of route r; and
c12(i, u, j) = tju − tj is the change in the arrival time of customer j. In this expression, tju denotes the
new arrival time at customer j, given that u is inserted into the route, and tj is the arrival time before
the insertion. The parameter µ > 0 is the weight on the distance savings generated by the removal of
arc (i, j) in the calculation of c11(i, u, j); and the parameters ω1 and ω2 are the weights on the two terms
(ω1 ≥ 0, ω2 ≥ 0, ω1 + ω2 = 1). Using this insertion cost, RSH builds a restricted candidate list (RCL)
containing the κ customers with the smallest values of c1. At each iteration, it selects randomly from
RCL the next customer to be inserted into the current partial route. RSH inserts the selected customer
(u) between customers i and j to minimize c2(i, u, j) = λd0u − c1(i, u, j), with λ ≥ 0. The parameter λ
controls the extent to which the insertion position depends on the distance to the depot, and the extra
distance and time needed to visit the unrouted customer in the current route.

The route construction stops when the end of the schedule of the technicians of profile tp(p) is reached,
and a new route is initialized if there are remaining unrouted customers. In the RCL we include only
customers with feasible insertions: before evaluating (46), we check if inserting u between i and j satisfies
the TW and schedule constraints. As observed by Pillac (2012), this feasibility check can be done in
constant time using the concepts of waiting time (i.e., the time between the vehicle’s arrival at i and
the opening of the TW eci) and forward time slack (i.e., how long the departure time of a node can
be delayed without causing the route to become infeasible). To efficiently calculate these values, we use
the preprocessing and updating mechanisms of Savelsbergh (1992). Note that the lunch break of the
technicians of profile tp(p) has a fixed schedule [eltp(p), lltp(p)]. Therefore, when checking the feasibility
of an insertion, we must verify the feasibility of the lunch schedule. We also have to take into account
the time of the break when computing the waiting times and forward time slacks of the customers in the
route. If necessary, to maintain the feasibility of the lunch break schedule, we change the nodes i and j
between which the break is taken and adjust its location. We select whether, taking the break at node i
before traveling to node j, or taking the break at j before starting the service leads to a feasible solution.

4.2.3 Local search

To improve the RSH solution, we use a variable neighborhood descent (VND; Hansen et al., 2017). This
local search is a deterministic variant of VNS that sequentially explores several neighborhoods. For
the VRPTW-LB we use two neighborhoods that focus on improving the routing decisions (i.e., relo-
cate and exchange) and one neighborhood based on ejection chains that aims to reduce the number of
routes. The relocate neighborhood removes a customer i from route r = (0, . . . , pred(i), i, suc(i), . . . , 0)
and inserts it between two consecutive nodes j and k in route r′ = (0, . . . , j, k, . . . , 0). The resulting
routes are r̄ = (0, . . . , pred(i), suc(i), . . . , 0) and r̄′ = (0, . . . , j, i, k, . . . , 0). Similarly, the exchange neigh-
borhood takes a pair of customers i and j served by routes r = (0, . . . , pred(i), i, suc(i), . . . , 0) and
r′ = (0, . . . , pred(j), j, suc(j), . . . , 0) and exchanges their positions. In this case the resulting routes are
r̄ = (0, . . . , pred(i), j, suc(i), . . . , 0) and r̄′ = (0, . . . , pred(j), i, suc(j), . . . , 0). In our implementation we
use intra-route (r = r′) and inter-route (r 6= r′) versions of both neighborhoods and a best-improvement
exploration strategy. We again use the preprocessing and updating mechanisms of Savelsbergh (1992) to
check the feasibility and cost improvement of these neighborhoods in constant time.

To decrease the value of the first term of the objective function (1), the third neighborhood of the
VND aims to reduce the number of routes. Therefore, we sequentially apply a naive ejection chain (NEC)
procedure (Rousseau et al., 2002) to all the routes in a given TRSP-CEV solution. To eliminate route
r, NEC removes the customers in r one at a time. Let i be the removed or floating customer. After
the removal, NEC tries to insert i into a route r′ 6= r. If this fails, NEC searches for a customer j
whose removal from r′ would make the insertion of i possible. If such a customer exists, NEC removes
j and inserts i into r′. The process restarts with j as the new floating customer. The ejection chain is
completed when no floating customers exist (i.e., the removal and insertion processes succeed without
ejecting a customer); in this case NEC continues with the ejection of the next customer in the sequence
of route r. As observed by Rousseau et al. (2002), restrictions are necessary to (i) prevent NEC from
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cycling and (ii) increase its effectiveness (i.e., improve the probability of reducing the number of routes).
First, we forbid the insertion of a floating customer into its original route r. Second, we keep a tabu
list with the customers that have already been ejected and do not allow them to be ejected again. To
control the increase in the distance of the solution, the floating customer is inserted into the route and
position that minimizes the value of c11 as defined for the RSH (with µ = 1). Finally, in the case
where no ejection allows the insertion of the current floating customer (because it is infeasible or because
the required ejection is tabu) the process stops for r and continues with the next route. If the NEC
neighborhood removes one (or more routes) from the solution, the VND procedure goes back to the
routing neighborhoods (i.e., relocate and exchange).

4.2.4 Dealing with electric vehicles

If vt(p) is an EV, the routing problem solved in the parallel phase becomes an E-VRPTW-LB. To adapt
our GRASP to the E-VRPTW-LB, we slightly modify the components of the RSH and VND. For instance,
every time the RSH and the NEC neighborhood try to insert a customer into a route, we must check if
the resulting route is energy-feasible. This check is executed in two stages. First, we drop any visits to
CSs and check whether the route can be covered on a single battery charge (i.e., using Qvt(p) or less). If
so, the insertion is energy-feasible. Otherwise, we repair the route using a greedy heuristic. We reject the
insertion if the heuristic is unable to find a feasible route, i.e., a route that satisfies not only the energy
constraint but also the TWs, lunch breaks, and schedule constraints. We carry out a similar procedure
every time the relocate and exchange neighborhoods evaluate a move. We first drop any visits to CSs from
the route(s) involved in the move and check the TWs, lunch breaks, and schedule constraints; second,
we check if the move improves the solution; and third, we use a greedy heuristic to insert CSs in each
route involved in the move. It is worth noting that a move that is infeasible or nonimproving on a route
without CSs cannot be feasible or improving after we insert CSs.

To repair energy-infeasible routes we use a greedy heuristic based on those proposed by Felipe et al.
(2014) and Montoya et al. (2017) for related E-VRPs. Let Π = (π(0), π(1), ..., π(i), ..., π(j), ..., π(nr)) be
an energy-infeasible route. Nodes π(0) and π(nr) in Π represent the depot while nodes π(1), ..., π(nr−1)
represent the customers. Algorithm 2 outlines the structure of the heuristic. There are five procedures:
trackTimeVariables(·), trackBattery(·), sumNegative(·), totalCost(·), and copyAndInsert(·). Pro-
cedure trackTimeVariables(·) computes the earliest departure time Dπ(i) and the latest feasible arrival

times Lπ(i) at each node π(i) ∈ Π to ensure TW, lunch break, and schedule feasibility. Procedure

trackBattery(·) computes the SoC Yπ(i) at each node π(i) ∈ Π. Note that since Π is an energy-
infeasible route, Yπ(i) may take negative values. Procedure sumNegative(·) computes the sum of the SoC
with negative values (i.e., sn =

∑
π(i)∈Πmin{0, Yπ(i)}). Procedure totalCost(·) computes the total cost

c of the route. Finally, procedure copyAndInsert(·) takes as input a fixed route, a CS, and a position in
the route; it returns a copy of the fixed route with the CS inserted at the given position.

The heuristic starts by computing Dπ(i) and Lπ(i) for each node and the sum sn of the SoC with

negative values for the current fixed-route Π (lines 2–7). It then enters the outer loop (lines 8–38). In
each pass through the inner loop (lines 9–31), it (i) computes the slack time st at CS sj between the
vertices π(i) and π(i+1) ∈ Π and determines if st is positive (lines 11–12), (ii) computes Y ′ and sn, given
that the amount of charge at the inserted CS sj is min{ψ(st), ec,Qvt(p)}, where ψ(st) is the amount of
energy that the EV can charge in st time units, and ec is the energy needed to complete the fixed route
from CS sj , and (iii) selects the insertion that maximizes sn (lines 18–22). If sn = 0 (i.e., the route is
energy-feasible), the heuristic selects the insertion (CS and position) that minimizes c, the cost of the
route (lines 23–28). If there is at least one feasible insertion (i.e., insertion=true), then it performs the
selected insertion (lines 32–34). When it does not find a feasible CS insertion, it stops, and the route is
deemed infeasible (lines 35–36). If after the insertion of the CS, the route Π is still energy-infeasible (i.e.,
sn < 0), the heuristic starts again at line 9 and tries to insert additional CSs until energy-feasibility is
reached or no more feasible insertions exist.

The choice of the heuristic to repair routes during the constructive and local search phases of our
GRASP is based on computational performance. However, as Montoya et al. (2017) showed, optimal
charging decisions are key to the effectiveness of E-VRP algorithms. We therefore run a global charging
improvement (GCI) routine on the local optimum returned by the VND at the end of each GRASP
iteration. In this routine we solve a fixed-route vehicle charging problem with time windows (FRVCP-
TW) for each route in the solution. The FRVCP-TW finds the set of charging operations that minimizes
the sum of the travel and charging costs of a fixed route while ensuring that (i) the SoC of the battery
when the vehicle arrives at any node is nonnegative; (ii) the customers are visited within their TWs; (iii)
the lunch break is taken at a valid time; and (iv) the whole route is performed within the technician’s
schedule.
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Algorithm 2 Greedy heuristic

1: function GreedyHeuristic(Π
0
,F )

2: Π←− Π
0

3: < D,L >←− trackTimeVariables(Π)
4: Y ←− trackBattery(Π)
5: sn←− sumNegative(Y )
6: c←− ∞
7: insertion←− false
8: while sn < 0 do
9: for j = 1 to |Svt(p)| do

10: for i = 0 to nr − 1 do
11: st←− Lπ(i+1) −Dπ(i) − ttπ(i)sj

− ttsj,π(i+1)

12: if st ≥ 0 then

13: Π
′ ←− copyAndInsert(Π, Sj , i)

14: Y ′ ←− trackBattery(Π
′
)

15: sn′ ←− sumNegative(Y ′)

16: c′ ←− totalCost(Π
′
)

17: insertion←− true
18: if sn′ > sn then
19: sn←− s′
20: u←− j
21: v ←− i
22: end if
23: if sn′ = 0 and c′ < c then
24: sn←− s′
25: c←− c′
26: u←− j
27: v ←− i
28: end if
29: end if
30: end for
31: end for
32: if insertion= true then
33: Π←− copyAndInsert(Π

′
, Su, i)

34: < D,L >←− trackTimeVariables(Π)
35: else
36: return false, Π
37: end if
38: end while
39: return true, Π
40: end function

The GCI procedure is as follows. For each route visiting at least one CS, we (i) drop all the CSs, (ii)
build an MILP for the FRVCP-TW, and (iii) solve the MILP using a commercial solver. We omit steps
(ii) and (iii) for routes that are energy-feasible after dropping the CSs. A presents the detailed MILP
formulation of the FRVCP-TW.

Figure 3 summarizes the two versions of the GRASP. For the E-VRPTW-LB the figure indicates how
charging decisions are made: with the heuristic (H) or the MILP (M).

4.3 Set covering

To find a feasible TRSP-CEV solution, we solve an extended set covering (SC) formulation (line 10 of
Algorithm 1) over the routes stored in Ω. We introduce the following parameters: cr is the cost of route
r ∈ Ω (including the technician, traveled distance, and charging costs); λri is equal to 1 if route r ∈ Ω
serves customer i ∈ C and 0 otherwise; ξrv′ is equal to 1 if route r ∈ Ω is performed with a vehicle of
type v′ ∈ VT and 0 otherwise; and ηrt′ is equal to 1 if route r ∈ Ω is performed by a technician of profile
t′ ∈ T P and 0 otherwise. Let χr be a binary decision variable that takes the value 1 if route r ∈ Ω is
selected in the TRSP-CEV solution, and 0 otherwise. We formulate the SC as follows:

min
∑
r∈Ω

cr · χr (47)

subject to ∑
r∈Ω

λri · χr ≥ 1, ∀i ∈ C (48)

∑
r∈Ω

ξrv′ · χr ≤ mv′ ∀v′ ∈ VT (49)

∑
r∈Ω

ηrt′ · χr ≤ nt′ ∀t′ ∈ T P (50)

χr ∈ {0, 1} ∀r ∈ Ω (51)
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Figure 3: General structure of GRASP for (E-)VRPTW-LB.

The objective function (47) minimizes the total cost. Constraints (48) ensure that each customer is
served at least once. Constraints (49) impose the maximum number of vehicles of each type. Constraints
(50) impose the maximum number of technicians of each profile. Finally, constraints (51) define the
domain of the decision variables. Since the requests must be served exactly once, a set partitioning
formulation may seem more appropriate. However, as observed by Pillac et al. (2013) for a similar
problem, finding a good combination of routes that visit all the customers exactly once could be complex.
Therefore, we use an SC formulation. If the solution includes duplicate visits to customers, we repair
it as follows. For each customer with multiple visits, we enumerate the solutions resulting from keeping
the customer in one route and removing it from the others. Then, we retain the solution with the lowest
cost. Since we select the customers sequentially, our repair procedure is a heuristic.

5 Computational experiments

Since the TRSP-CEV is a new problem, there are no results or algorithms to benchmark against. There-
fore, we first compare its performance to that of state-of-the-art approaches for the E-FSMVRPTW. We
also run PMa on a set of industrial instances of the TRSP-CEV to gain insight into the impact of the fleet
composition (i.e., proportion of EVs) on the solution cost and structure. The details of these experiments
follow.

5.1 Implementation and experimental environment

We implemented PMa in Java (jdk-1.8.0 152) and used Gurobi Optimizer (version 7.5.2) to solve the
MILPs in the GCI and SC phases. We used a computer with an Intel Xeon E5-2670 processor (with 16
cores at 2.6 GHz) and 64 GB of RAM running Linux CentOS 6.6. To parallelize our method we used
the Java package concurrent (Oracle, 2017). More precisely, we implemented the GRASP tasks as a
Callable object and used a ThreadPoolExecutor to manage and schedule the |T P| × |VT | tasks. We
solved the SC formulation with a time limit of 800 s. If |T P| × |VT | was smaller than the number of
available processors we duplicated some of the tasks (prioritizing those solving the E-VRPTW-LB) to
better exploit the parallel design of the matheuristic.

The parameters of PMa are the number of GRASP iterations (ι), the size of the restricted candidate
list (κ), the value µ used in the calculation of c11, the weights of the two terms in the RHS insertion
cost (ω1 and ω2), and the value of λ used in the calculation of c2. To fine-tune these parameters we
conducted a short computational study; for the sake of brevity we do not discuss the study in this paper.
The values obtained are (ι, κ, µ, ω1, ω2, λ) = (100, 10, 20.0, 0.1, 0.9, 3.0). For the best trade-off between
solution quality and computational performance we set ι = 100. This may seem small, but the GRASP
component runs ι iterations for each assignment in P to feed the pool of routes Ωp. Therefore, the total
number of GRASP iterations is ι× |P|.
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5.2 Results for E-FSMVRPTW

For validation purposes, we adapted PMa to solve the closely related E-FSMVRPTW introduced by
Hiermann et al. (2016). This problem routes an unlimited heterogeneous fleet of EVs to serve a set
of geographically scattered customers within their TWs. The customers have a positive demand, the
EVs have a limited capacity, all the CSs have the same technology, the EVs charge fully at CSs, the
charging function is linear, and the EVs have a fixed operation cost. The E-FSMVRPTW minimizes the
sum of the fixed cost of using the vehicles and the total traveled distance. To solve the E-FSMVRPTW
with PMa, we included the customer demand and added the vehicle capacities as an additional GRASP
constraint. We also modified the charging model to take into account the (simplified) linear modeling
considered by Hiermann et al. (2016). Moreover, to ensure the parallel execution of our method, we
included several dummy technicians for each vehicle type in the heterogeneous fleet. Finally, we dropped
the lunch break and the technician/request compatibility constraints. We do not aim to establish new
state-of-the-art results for the E-FSMVRPTW; we simply want to show that PMa can be competitive on
a related problem with only mild modifications.

Hiermann et al. (2016) generated a set of 108 small instances with 5 to 15 customers and a set of
168 large instances with 100 customers and 21 CSs. The latter are based on the instances for the E-
VRPTW from Schneider et al. (2014) extended with the fleet composition of Liu & Shen (1999) for the
FSMVRPTW with CVs. These instances have different customer location patterns: randomly distributed
(r), clustered (c), or a mix of both (rc). With respect to the planning horizon, the testbed has two types
of instances: the first has a short horizon (type r1, c1, and rc1), and the second has a long horizon (type
r2, c2, and rc2). Hiermann et al. (2016) consider three (increasing) battery capacities for each instance
to produce data sets A, B, and C respectively.

To solve the E-FSMVRPTW, Hiermann et al. (2016) proposed an ALNS and a branch-and-price
(BnP). For the small instances, their BnP was able to obtain the optimal solution within a time limit of
two hours. Hiermann et al. (2017) solved only the large E-FSMVRPTW instances with their HGA. We
compare the PMa results with both methods. Tables 1 and 2 summarize the results of the comparison
on the small and large E-FSMVRPTW instances respectively. The results are computed over ten runs.
For the small instances, we compare the results obtained by ALNS and PMa with the optimal solutions
obtained by BnP. For the large instances, we compare the results with the best known solution (BKS)
taken from Hiermann et al. (2016) or Hiermann et al. (2017) and updated with the new BKSs from PMa.
The tables report four metrics: the number of optimal solutions or BKSs found by each method, the
average gap with respect to the BKS or optimal solution (S)1, the average best gap (i.e., the average gap
between the best solution found by a given method and S), and the average running time in minutes.
B.1 reports the detailed results for the E-FSMVRPTW.

Table 1: Comparison of PMa with ALNS of Hiermann et al. (2016) on small E-FSMVRPTW instances.
Metric ALNS PMa
Number of optimal solutions 108/168 81/168
Avg. Gap (%) 0.55 0.32
Avg. Best Gap (%) 0.00 0.31
Avg. Time (min) 0.32 0.06

Table 2: Comparison of PMa with ALNS (Hiermann et al., 2016) and HGA (Hiermann et al., 2017) on
large E-FSMVRPTW instances.

Metric ALNS HGA PMa
Number of BKS 22/168 119/168 32/168
Avg. Gap (%) 1.41 0.44 1.74
Avg. Best Gap (%) 0.48 0.10 1.35
Avg. Time (min) 22.66 15.80 11.78

On the small instances, PMa was competitive with ALNS. Although PMa matched only 81 optimal
solutions, its average gap is smaller than that of ALNS (0.32% vs 0.55%). On the large instances (Table
2), PMa had an average gap (1.74%) greater than those of ALNS (1.41%) and HGA (0.44%). However,
PMa found 25 new BKSs and matched another 7. To better indicate the performance of PMa, Table 3
presents average gaps and average best gaps for each instance type. It shows that PMa performs well on

1Gap =
cost(solution)−cost(S)

cost(S)
× 100, where S is the optimal solution or the BKS.
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Table 3: Performance of PMa for each instance type
Type Avg.

best
gap
(%)

Avg.
gap
(%)

Type Avg.
best
gap
(%)

Avg.
gap
(%)

Type Avg.
best
gap
(%)

Avg.
gap
(%)

Type Avg.
best
gap
(%)

Avg.
gap
(%)

c1 0.04 0.09 c1 0.09 0.23 c1 0.10 0.26 c1 0.07 0.20
c2 0.07 0.21 c2 0.18 0.31 c2 0.24 0.36 c2 0.16 0.29

A r1 0.00 0.06 B r1 0.08 0.30 C r1 0.18 0.36 All r1 0.09 0.24
r2 2.39 2.89 r2 5.87 7.11 r2 7.21 8.47 r2 5.16 6.16

rc1 0.12 0.28 rc1 0.23 0.39 rc1 0.24 0.39 rc1 0.19 0.35
rc2 0.31 0.65 rc2 2.40 3.33 rc2 2.62 3.53 rc2 1.77 2.50

most instance types, with average gaps below 0.7%. The notable exceptions are the instances r2 and rc2.
PMa, intended for a highly constrained E-VRP, does not perform well on these less-constrained instances
with long planning horizons and randomly distributed customers.

PMa is much faster than ALNS on the small instances. On the large instances, PMa reports running
times that are better than those of ALNS and HGA. This result must be interpreted with caution. First,
there are slight differences in the computational environment used to evaluate the three methods. Second,
while PMa exploits the now-standard multi-core technology, neither Hiermann et al. (2016) or Hiermann
et al. (2017) explicitly state whether or not their implementations take advantage of this feature.

In conclusion, the results of our experiments on the E-FSMVRPTW suggest that PMa, with only
mild modifications, gives competitive results for this closely related problem. This is encouraging, since
the method was not developed for this problem.

5.3 Results for industrial TRSP-CEV instances

We generated a set of instances for the TRSP-CEV using data provided by the French electricity giant
ENEDIS. We used these instances to conduct several experiments. We first used a set of small instances
to compare the PMa results to optimal solutions found using the MILP formulation introduced in Section
3.1. In the second experiment, we compared the performance of PMa to that of the company’s commercial
routing software on industrial instances with a 100% CV fleet. Finally, in the third experiment we used
the large instances to analyze different fleet composition scenarios and evaluate the impact of introducing
EVs.

5.4 Instance generation

The maintenance and repair operations at ENEDIS are divided into geographical zones. Each zone has
a depot where the technicians start and end their routes. We received access to 14 data sets classified
according to the type of geographical zone: 4 urban, 5 semi-urban, and 5 rural instances (the naming
convention indicates this information). The number of customers ranges between 54 and 167. The
location, TWs, service time, and required skills of the requests come directly from ENEDIS data. To
complete the instances, we added the actual CSs located in the geographical zone of the customers. We
obtained the CS locations and technology (i.e., protocol and charging mode) from www.data.gouv.fr, the
open-data platform of the French government (Quest, 2014). For the distances and travel times, we used
real road-network data provided by Open Street Maps. To compute the nominal energy consumption
for each arc, we used the model proposed by De Cauwer et al. (2015). This model considers fine-grained
information on the roads (e.g., distance, speed, and elevation) and real EV parameters (e.g, mass and
rolling resistance). We obtained the former from Open Street Maps and NASA (SRTM) and the latter
from technical sources and specialized websites (Automobile-propre, 2017; Renault, 2014; Peugeot, 2015;
Uhrig et al., 2015).

In our instances, the number of available technicians ranges between 9 and 12. There are two skills
(electricity and gas). The technician profiles (skills, schedule, lunch break, etc.) correspond to real data.
For confidentiality reasons, we scaled the costs while keeping the cost structure and magnitudes. The
fleet is composed of one type of CV (Renault Kangoo) and two types of EVs (Renault Kangoo ZE and
Peugeot Ion). Note that the travel cost of the CVs is much higher than that of the EVs (1 vs. 0.08 and
0.06 e/km, respectively). For each instance, we consider six scenarios with the percentage of EVs set to
{0%, 20%, 40%, 60%, 80%, 100%}.

To compare the PMa results with optimal solutions, we generated a set of ten small instances with
five and ten customers and two or three technicians and vehicles. These instances can be solved using
the MILP formulation. To generate each small instance, we randomly selected customers, technicians,
and vehicles from a randomly chosen large instance (ensuring that at least one vehicle is an EV). Our
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instances are publicly available at www.vrp-rep.org (Mendoza et al., 2014).2

5.4.1 Results for small TRSP-CEV instances

Initially, we solved the ten small TRSP-CEV instances using Gurobi and PMa. B.2 presents detailed
results. PMa consistently matched the optimal solution found by Gurobi. Comparing the running times
reveals the difficulty of solving the TRSP-CEV to optimality. While Gurobi took (on average) 7356.94 s,
PMa took only 0.73 s. Moreover, the average running time of Gurobi rises from 186.00 s to 14527.88 s
when the instance size increases from five to ten customers. It is thus safe to conclude that solving
the MILP formulation for larger instances using a commercial optimizer would lead to excessive running
times. These results support the choice of a matheuristic for large TRSP-CEV instances.

5.4.2 Comparison with current tool

We compared the performance of PMa to that of the current routing software (CRS) used by ENEDIS
on our 14 instances. For confidentiality reasons we do not reveal the name of the tool or report detailed
results. Since the CRS cannot deal with EVs, we considered only CVs. For each instance, ENEDIS
provided us with the CRS solution for one run. We ran PMa 10 times on each instance, and we obtained
better solutions on each run. Moreover, PMa reported an average gap of 2.08%, while this figure was
8.51% for CRS. In terms of running time, PMa reported an average of 14.96 min (with a range of 1.17 min
to 21.46 min). Unfortunately we did not have access to the CRS running times.

5.4.3 Impact of fleet composition

ENEDIS is currently starting the transition from a fleet of CVs to a hybrid fleet of CVs and EVs.
This process raises a number of managerial questions regarding the fleet composition and the best EV
strategies. To help answer these questions, we analyzed the impact of the fleet composition and the
access to charging infrastructure on the feasibility and quality of the TRSP-CEV solutions. We explore
six scenarios with the proportion of EVs in the fleet ranging from 0% to 100%. For each instance and
fleet composition we run PMa 10 times and report the average results. We analyze the data using three
metrics that are important to ENEDIS: the number of routes, the total cost, and the total CO2 emissions.

We first analyze the behavior of these metrics as the proportion of EVs in the fleet grows. Figure 4
shows the average cost for each instance and fleet composition. The fixed costs correspond to the first
term of Equation (1) (the daily technician cost, which depends solely on the number of routes), and the
variable cost corresponds to the other three terms (the total distance and charging costs). The value NF
indicates that PMa did not find a feasible solution for that case (e.g., all rural instances when the fleet
is entirely composed of EVs). Notice that a pathological case arises for rural 21. A closer look reveals
that the customers are scattered over a large geographical region, so the EVs need frequent charging.
Charging is time-consuming, so the resulting routes are long (in terms of travel time) and difficult to
match to the technicians’ availability.

The data on the fixed costs reported in Figure 4 shows unexpected behavior. Intuitively, when the
fleet is composed mainly of EVs more routes are needed to serve the customers. This is because the EVs
spend a portion of their available time on charging operations. However, for our instances, the number
of routes is constant across the different fleet compositions. A more intuitive result comes from the data
on the variable costs. As Figure 4 shows, the variable costs decrease as the proportion of EVs increases.
This can be explained by the considerably higher cost per kilometer for CVs. Note that variable costs
are higher for rural instances than for semi-urban and urban instances; this is because rural routes travel
greater distances. The average traveled distance per served customer is 9.52 km on the rural instances
compared to 3.74 km and 1.94 km for the semi-urban and urban instances, respectively.

Figure 5 shows the CO2 emitted (on average) by the CVs for each instance and fleet composition.
These values were calculated by multiplying the distance traveled by the CVs by the constant emission
rate given in their technical information. As expected, the emissions decrease as the proportion of EVs
increases. Rural instances have the greatest potential for emission reductions because the vehicles travel
further. In some urban and semi-urban instances this metric decreases to zero before the EV proportion
reaches 100%. This is because the solution does not use any CVs if the number of EVs suffices to serve
all the customers.

2The instances will be made available after the conclusion of the reviewing process.
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Figure 4: Average cost for each instance and fleet composition.
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Figure 5: Average emission (in kg of CO2) for each instance and fleet composition.
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Table 4: Increase in metrics when en-route charging is forbidden (in %). �: the routes of the previous
solution did not visit CSs in this scenario.

EV percentage in the fleet

40% 60% 80%

Instance Routes dCV Cost Routes dCV Cost Routes dCV Cost
rural 19 � 0.00 9.32 0.10 0.00 11.79 0.30
rural 22 0.00 15.92 1.19 0.00 58.65 3.57 14.29 78.18 16.26

5.4.4 Impact of en-route charging

ENEDIS does not currently own charging infrastructure outside their depots. Since the availability of
public stations is uncertain, the company prefers to avoid en-route charging. We therefore evaluated the
impact of disallowing en-route charging on the cost and structure of the best TRSP-CEV solutions. In
the previous experiments, the urban and semi-urban routes can be covered on a single battery charge
(i.e, without en-roue charging). Moreover, only some rural solutions include en-route charging for EV
percentages above 20% (rural 19 and rural 22). Therefore, we ran PMa on these rural instances with
40% to 80% of EVs in the fleet, assuming that the EVs depart from the depot with a full battery and
forbidding en-route recharging. We compared these results to those reported in Figure 4. We obtained
feasible solutions for these instances in all cases. Table 4 shows the increase in the three metrics (number
of routes, total distance traveled by the CVs (dCV ), and total cost) when en-route charging is forbidden3.
Our results suggest that this has an important impact on the structure of the solutions. They may have
more routes, and the CVs have to visit more customers to compensate for the limited range of EVs.
Consequently, the cost increases. Table 4 shows that the number of routes is usually the same, but for
rural 22 the solution has an additional route when 80% of the fleet are EVs (this explains the large cost
increase for this scenario). The cost increase usually comes from the greater distance traveled by the
CVs. Finally, an important increase in the distance traveled by the CVs is observed in both instances.
This behavior implies a similar increase in the CO2 emissions, reducing the environmental benefits of the
introduction of EVs.

6 Conclusions

We have introduced the technician routing and scheduling problem with conventional and electric vehicles
(TRSP-CEV). The TRSP-CEV routes a set of technicians to serve a set of customers, using a hybrid
fleet composed of EVs and CVs. We considers real-world constraints such as customer TWs; technician
skills, schedules and lunch breaks; skill compatibility between technicians and requests; incompatibility
between CSs and EVs; nonlinear charging behavior for EVs; and a limited number of vehicles. The
problem requires simultaneous decisions about the vehicle-to-technician assignment, the sequencing of
customers, and the EV battery charging (i.e., when and how much to charge).

To solve the TRSP-CEV we proposed PMa, a parallel matheuristic. The approach decomposes the
TRSP-CEV into a set of (electric) VRPs with TWs and lunch breaks and solves each subproblem in
parallel using a GRASP. PMa then uses an extended set covering model to find a TRSP-CEV solution
using the routes of the local optima found by GRASP. PMa is competitive with state-of-the-art methods
for the closely related E-FSMVRPTW. We built a set of realistic TRSP-CEV instances using data fom
a French utility. Using these instances and our algorithm, we conducted computational experiments to
analyze the impact of the fleet composition (proportion of EVs and CVs) on the costs and emissions.
Our analysis shows that augmenting the proportion of EVs in the fleet does not necessarily increase the
number of routes needed to serve the customers, but it does lead to a significant reduction in cost and
emissions. Our experiments also showed that forbidding en-route recharging reduces the cost savings and
environmental benefits that can be obtained by introducing EVs.

Future research may include the extension of the TRSP-CEV to consider the location decisions of the
CSs; and the application of PMa to other VRPs that are amenable to solution-space decomposition (e.g.,
other workforce scheduling and routing problems).

3For all metrics the increase is calculated via Increase(%) =
value(Swout)−value(Swith)

value(Swith)
×100, where Swith is the solution

with en-route charging and Swout is the solution without this operation.
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Théo Ménard, and Timothy Nibeaudeau from Polytech Tours for developing the distance, travel time,
and energy consumption calculator that we used in our instance generation. We also thank Panagiotis
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A MILP formulation of the fixed-route vehicle recharging prob-
lem with TWs

This appendix provides the MILP formulation of the FRVCP-TW that we solve in the GCI routine.
Recall that Π = (π(0), π(1), ..., π(i), ..., π(j), ..., π(nr)) is a route violating the energy constraint (i.e., for
at least one of the nodes the SoC on arrival is negative) that is obtained after dropping the charging
operations. Nodes π(0) and π(nr) in Π represent the depot while nodes π(1), ..., π(nr − 1) represent the
customers. The feasibility of Π may be restored by inserting detours to CSs. Since route Π is performed
by a technician of profile tp(p), we consider as fixed the time and location of the lunch break. To fix
this, we create a dummy node π(l) with a TW [eltp(p), lltp(p)] and a service time stl = lltp(p) − eltp(p).
Moreover, let π(l − 1) and π(l + 1) be the customers served right before and after the lunch break in
the original route. Then, we define Π = (π(0), ..., π(l − 1), π(l), π(l + 1), ..., π(nr)) to be the route that
includes the dummy node π(l). If the technician takes the lunch break before traveling from π(l − 1)
to π(l + 1) in the original route, we fix it via dπ(l−1)π(l) = 0, ttπ(l−1)π(l) = 0, eπ(l−1)π(l)vt(p) = 0, and
dπ(l)π(l+1) = dπ(l−1)π(l+1), ttπ(l)π(l+1) = ttπ(l−1)π(l+1), eπ(l)π(l+1)vt(p) = eπ(l−1)π(l+1)vt(p). Moreover,
we connect the dummy node l to the CSs using the data (i.e., energy consumption and travel time
of the arcs) of node l − 1 to take into account the possibility of recharging before or after the lunch
break. If instead the technician takes the lunch break after traveling from π(l − 1) to π(l + 1), then
we set dπ(l−1)π(l) = dπ(l−1)π(l+1), ttπ(l−1)π(l) = ttπ(l−1)π(l+1), eπ(l−1)π(l)vt(p) = eπ(l−1)π(l+1)vt(p), and
dπ(l)π(l+1) = 0, ttπ(l)π(l+1) = 0, eπ(l)π(l+1)vt(p) = 0. Similarly, we connect the dummy node l using the
data of node l + 1 to include the charging operation before or after the break. Figure 6 illustrates an
FRVCP-TW for a route with three customers and three available CSs. This figure shows how we fix the
lunch break when it is taken before traveling from l − 1 to l + 1. Note also that we allow only one visit
to CSs between any two customers.

We use the following decision variables: variable επ(i)s is equal to 1 if the vehicle charges at CS s ∈
Svt(p) before visiting node π(i) ∈ Π. Variable φπ(i) tracks the SoC of the vehicle. If

∑
s∈Svt(p)

επ(i)s = 0,

φπ(i) is the SoC when the EV arrives at node π(i). On the other hand, if there exists an s ∈ Svt(p) such
that επ(i)s = 1, φπ(i) is the SoC when the vehicle arrives at CS s right before visiting node π(i). Variable

γπ(i)s represents the energy charged at CS s ∈ Svt(p) before visiting node π(i) ∈ Π. Variables qπ(i)s and
oπ(i)s represent the SoC when the EV arrives at and departs from CS s ∈ Svt(p) before visiting node

π(i) ∈ Π. Variables απ(i)sb and ρπ(i)sb are equal to 1 if the SoC is b ∈ B when the EV arrives at and

departs from the CS s ∈ Svt(p) before visiting node π(i) ∈ Π, respectively. Variable δπ(i)s represents the

time spent charging at CS s ∈ Svt(p) before visiting node π(i) ∈ Π. Variable τπ(i) represents the arrival

time at node π(i) ∈ Π. The MILP formulation is:

min
∑

π(i)∈Π\{π(0)}

∑
s∈Svt(p)

(
tcvt(p) · (dπ(i−1)s + dsπ(i) − dπ(i−1)π(i)) · επ(i)s + gcvt(p) · επ(i)s + ccs · δπ(i)s

)
(52)
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(𝑒2,𝑆2, 𝑡𝑡2,𝑆2)

(𝑒𝑆1,2,, 𝑡𝑡𝑆1,2)

(𝑒𝑆3,2, 𝑡𝑡𝑆3,2)

(𝑒𝑆2,2, 𝑡𝑡𝑆2,2)

(𝑒2,𝑆1,, 𝑡𝑡2,𝑆1)

(𝑒2,𝑆3, 𝑡𝑡2,𝑆3)

(𝑒2,𝑆2, 𝑡𝑡2,𝑆2)

(𝑒𝑆1,4, 𝑡𝑡𝑆1,4)

(𝑒𝑆3,4, 𝑡𝑡𝑆3,4)

(𝑒𝑆2,4, 𝑡𝑡𝑆2,4)

(𝑒4,𝑆2, 𝑡𝑡4,𝑆2) (𝑒𝑆2,1, 𝑡𝑡𝑆2,1)

(𝑒4,𝑆3, 𝑡𝑡4,𝑆3)

(𝑒𝑆3,1, 𝑡𝑡𝑆3,1)

(𝑒4,𝑆1, 𝑡𝑡4,𝑆1)

(𝑒𝑆1,1, 𝑡𝑡𝑆1,1)

(𝑒1,𝑆1, 𝑡𝑡1,𝑆1)

(𝑒𝑆1,0, 𝑡𝑡𝑆1,0)

(𝑒1,𝑆3, 𝑡𝑡1,𝑆3)
(𝑒𝑆3,0, 𝑡𝑡𝑆3,0)

(𝑒1,𝑆2, 𝑡𝑡1,𝑆2) (𝑒𝑆2,0, 𝑡𝑡𝑆2,0)

FRVCP-TW solutionl Lunch break

Figure 6: Example of an FRVCP-TW with lunch break for a route with three customers and three
available charging stations.

subject to

φπ(1) = Qvt(p) −
(
cftp(p)

∑
s∈Svt(p)

eπ(0)svt(p) · επ(1)s

)
−

(
cftp(p) · eπ(0)π(1)vt(p) · (1−

∑
s∈Svt(p)

επ(1)s)

)
(53)

φπ(i) = φπ(i−1) −
(
cftp(p)

∑
s∈Svt(p)

esπ(i−1)vt(p) · επ(i−1)s

)
−

(
cftp(p)

∑
s∈Svt(p)

eπ(i−1)svt(p) · επ(i)s

)
+

∑
s∈Svt(p)

γπ(i−1)s−

(
cftp(p) · eπ(i−1)π(i)vt(p) · (1−

∑
s∈Svt(p)

επ(i)s)

)
∀π(i) ∈ Π \ {π(0), π(1), π(nr)} (54)

φπ(nr) = φπ(nr−1) +
∑

s∈Svt(p)

γπ(nr−1)s +
∑

s∈Svt(p)

γπ(nr)s−

(
cftp(p)

∑
s∈Svt(p)

esπ(nr−1)vt(p) · επ(nr−1)s

)
−

(
cftp(p)

∑
s∈Svt(p)

(
eπ(nr−1)svt(p) + esπ(nr)vt(p)

)
· επ(nr)s

)
−

(
cftp(p) · eπ(nr−1)π(nr)vt(p) ·

(
1−

∑
s∈Svt(p)

επ(nr)s

))
(55)

φπ(nr−1) +
∑

s∈Svt(p)

γπ(nr−1)s −
(
cftp(p)

∑
s∈Svt(p)

esπ(nr−1)vt(p) · επ(nr−1)s

)
−

(
cftp(p)

∑
s∈Svt(p)

eπ(nr−1)svt(p) · επ(nr)s

)
≥ 0 (56)

φπ(i) −Qvt(p) · (1− επ(i)s) ≤ qπ(i)s ≤ φπ(i) +Qvt(p) · (1− επ(i)s) ∀π(i) ∈ Π \ {π(0)}, ∀s ∈ Svt(p) (57)∑
b∈B

b · απ(i)sb ≤
qπ(i)s

Qvt(p)

· 100 ∀π(i) ∈ Π \ {π(0)}, ∀s ∈ Svt(p) (58)

∑
b∈B

b · απ(i)sb ≥
qπ(i)s

Qvt(p)

· 100− 1 ∀π(i) ∈ Π \ {π(0)}, s ∈ Svt(p) (59)

oπ(i)s = qπ(i)s + γπ(i)s ∀π(i) ∈ Π \ {π(0)}, ∀s ∈ Svt(p) (60)∑
b∈B

b · ρπ(i)sb ≥
oπ(i)s

Qvt(p)

· 100 ∀π(i) ∈ Π \ {π(0)}, ∀s ∈ Svt(p) (61)

∑
b∈B

b · ρπ(i)sb ≤
oπ(i)s

Qvt(p)

· 100 + 1 ∀π(i) ∈ Π \ {π(0)}, ∀s ∈ Svt(p) (62)

∑
b∈B

απ(i)sb ≤ επ(i)s ∀π(i) ∈ Π \ {π(0)}, ∀s ∈ Svt(p) (63)

∑
b∈B

ρπ(i)sb ≤ επ(i)s ∀π(i) ∈ Π \ {π(0)}, ∀s ∈ Svt(p) (64)

γπ(i)s ≤ Qvt(p) · επ(i)s ∀π(i) ∈ Π, ∀s ∈ Svt(p) (65)∑
s∈Svt(p)

επ(i)s ≤ 1 ∀π(i) ∈ Π (66)

δπ(i)s =
∑
b∈B

asvt(p)bρπ(i)sb −
∑
b∈B

asvt(p)bαπ(i)sb ∀π(i) ∈ Π \ {π(0)}, ∀s ∈ Svt(p) (67)

τπ(i) ≥ τπ(i−1) + stπ(i−1) +

( ∑
s∈Svt(p)

επ(i)s ·
(
ttπ(i−1)s + ttsπ(i)

))
+
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(
ttπ(i−1)π(i) ·

(
1−

∑
s∈Svt(p)

επ(i)s

))
+

∑
s∈Svt(p)

δπ(i)s ∀π(i) ∈ Π \ {π(0)}, ∀s ∈ Svt(p) (68)

ecπ(i) ≤ τπ(i) ≤ lcπ(i) ∀π(i) ∈ Π \ {π(0), π(nr)} (69)

estp(p) ≤ τπ(i) ≤ lstp(p) ∀π(i) ∈ Π (70)

γπ(i)s ≥ 0, δπ(i)s ≥ 0 ∀π(i) ∈ Π, ∀s ∈ Svt(p) (71)

επ(i)s ∈ {0, 1} ∀π(i) ∈ Π, ∀s ∈ Svt(p) (72)

φπ(i) ≥ 0 ∀π(i) ∈ Π (73)

απ(i)sb ∈ {0, 1}, ρπ(i)sb ∈ {0, 1}, ∀π(i) ∈ Π, ∀s ∈ Svt(p), ∀b ∈ B (74)

qπ(i)s ≥ 0, oπ(i)s ≥ 0, ∀π(i) ∈ Π, ∀s ∈ Svt(p) (75)

The objective function (52) minimizes the total cost given by the sum of the travel and charging costs.
Constraints (53)–(56) define the SoC when the EV arrives at node π(i) ∈ Π if

∑
s∈Svt(p)

επ(i)s = 0, or to

CS s ∈ Svt(p) before visiting node π(i) ∈ Π, if επ(i)s = 1. Constraints (57)–(59) define the SoC when the
EV arrives at CSs. Constraints (60)–(62) define the SoC when the EV departs from CSs. Constraints
(63)–(65) ensure that charging is performed at the visited CSs. Constraints (66) state that at most one
CS is visited between any two vertices of the fixed route. Constraints (67) define the time spent charging
at CSs. Constraints (68) track the arrival time at each node. Constraints (69) ensure that every node is
visited within its TW. Constraints (70) impose the schedule of the technicians of profile tp(p). Finally,
constraints (71)–(75) define the domain of the decision variables.

B Detailed computational results

B.1 Detailed results for the E-FSMVRPTW

Tables 5 to 8 show the results of PMa on the small and large E-FSMFTW instances. In Table 5, we
compare the PMa results with the heuristic and optimal solutions reported in Hiermann et al. (2016). In
Tables 6–8, we compare the PMa results with those of the ALNS of Hiermann et al. (2016) and the HGA
of Hiermann et al. (2017). The last rows of the table summarize the average BKS gap, the number of
times each method found the BKS, and the average running time. Values in bold indicate that a method
found the BKS.
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Table 6: Results of PMa on large instances of Hiermann et al. (2016), Type A
Type A ALNS HGA PMa

Instance BKS Best Avg. t (min) Best Avg. t (min) Best Avg. t (min)
c101 7160.77 7180.42 7190.21 17.53 7160.77 7162.29 21.12 7162.01 7164.33 16.05
c102 7137.04 7154.50 7162.24 17.95 7137.04 7141.25 21.86 7139.65 7142.73 16.24
c103 7117.32 7126.29 7149.31 18.30 7117.32 7122.27 22.93 7120.27 7122.85 17.49
c104 7097.80 7100.22 7110.43 17.75 7097.80 7098.38 23.99 7099.88 7101.63 17.96
c105 7138.85 7155.23 7182.56 17.60 7138.85 7156.31 21.15 7141.53 7146.79 16.50
c106 7134.75 7146.88 7168.94 17.69 7134.75 7140.15 21.92 7137.65 7140.61 16.51
c107 7136.44 7156.18 7171.04 17.42 7136.44 7142.77 21.24 7138.49 7143.14 17.17
c108 7131.83 7141.49 7153.77 17.53 7131.83 7139.50 21.99 7133.30 7136.92 17.21
c109 7113.94 7120.33 7132.19 17.32 7113.94 7120.07 22.39 7123.07 7129.63 17.90
c201 5736.11 5737.57 5757.53 39.28 5736.11 5738.23 13.72 5737.57 5740.41 18.35
c202 5733.53 5744.65 5765.52 42.22 5733.53 5735.61 15.76 5738.95 5745.45 20.31
c203 5713.38 5726.08 5751.99 47.69 5713.38 5713.38 18.73 5719.31 5727.83 22.67
c204 5689.04 5705.82 5727.18 50.91 5689.04 5691.37 21.21 5703.78 5713.80 25.79
c205 5693.45 5703.48 5725.41 46.16 5693.45 5696.48 15.21 5694.58 5703.65 19.90
c206 5687.96 5708.77 5714.39 31.20 5687.96 5687.96 16.90 5689.08 5700.21 21.34
c207 5693.23 5697.99 5713.44 32.58 5693.23 5694.47 17.30 5694.88 5705.81 21.62
c208 5681.47 5685.40 5707.65 50.23 5681.47 5681.47 16.10 5682.60 5688.60 22.39
r101 4366.21 4426.85 4465.51 14.47 4372.29 4382.32 9.12 4366.21 4371.45 7.58
r102 4174.55 4245.82 4270.92 14.97 4186.74 4202.05 10.06 4174.55 4176.27 6.20
r103 4042.90 4103.35 4130.86 16.43 4048.37 4060.29 11.82 4042.90 4045.58 11.62
r104 3963.57 4007.28 4025.60 15.27 3966.74 3972.91 13.77 3963.57 3965.33 16.67
r105 4132.55 4181.80 4215.34 15.37 4145.27 4154.04 9.51 4132.55 4133.58 5.63
r106 4072.06 4120.23 4155.24 15.54 4078.17 4087.59 11.22 4072.06 4072.06 13.15
r107 4000.31 4057.06 4093.59 15.30 4000.69 4011.87 12.26 4000.31 4005.75 18.05
r108 3948.81 3992.57 4025.75 15.77 3961.92 3968.72 17.29 3948.81 3953.83 15.83
r109 4014.85 4067.14 4110.98 15.58 4023.64 4034.36 11.85 4014.85 4017.32 9.57
r110 3968.51 4024.71 4045.96 15.73 3973.72 3991.65 16.88 3968.51 3968.51 18.33
r111 3969.91 4023.38 4048.42 15.93 3984.77 3990.36 16.66 3969.91 3973.20 18.05
r112 3937.80 4001.87 4023.01 15.80 3942.66 3955.19 16.23 3937.80 3940.40 13.58
r201 3399.82 3413.93 3432.83 42.20 3399.82 3410.53 17.61 3510.07 3528.62 8.69
r202 3266.47 3270.49 3295.26 44.95 3266.47 3275.73 20.93 3341.76 3358.85 9.37
r203 3127.56 3136.47 3169.97 49.40 3127.56 3137.34 24.10 3196.99 3212.43 11.58
r204 3002.72 3008.01 3026.09 46.32 3002.72 3003.15 29.11 3065.71 3081.30 15.07
r205 3230.20 3234.26 3261.16 40.89 3230.20 3240.34 20.48 3317.45 3330.88 9.98
r206 3156.58 3172.50 3194.12 47.73 3156.58 3161.18 22.96 3248.15 3260.98 13.27
r207 3059.85 3079.39 3099.52 46.87 3059.85 3062.33 28.94 3127.43 3145.30 12.55
r208 2995.96 3010.51 3026.57 51.26 2995.96 2999.40 34.17 3053.61 3062.66 15.40
r209 3122.41 3142.72 3161.57 45.06 3122.41 3133.33 23.40 3196.65 3210.85 10.82
r210 3101.10 3110.90 3143.79 45.94 3101.10 3109.03 22.95 3167.78 3183.95 12.06
r211 3026.74 3041.93 3079.24 44.29 3026.74 3030.99 28.18 3093.66 3115.15 13.48

rc101 5250.72 5294.01 5346.49 14.13 5254.50 5261.36 9.06 5250.72 5252.98 6.62
rc102 5069.43 5121.53 5180.03 14.63 5069.43 5096.49 10.34 5099.78 5112.36 15.26
rc103 4897.58 4958.51 5007.37 14.53 4905.29 4929.17 9.41 4897.58 4906.22 13.83
rc104 4783.16 4804.00 4862.65 16.03 4783.16 4808.85 10.50 4789.16 4796.11 14.15
rc105 5044.93 5074.43 5117.09 14.48 5044.93 5063.17 9.95 5053.55 5056.93 10.22
rc106 4981.50 5028.28 5102.46 14.69 4991.29 5002.07 9.97 4981.50 4990.91 7.93
rc107 4836.81 4864.78 4913.90 15.24 4836.81 4859.83 10.66 4838.06 4846.06 12.10
rc108 4778.64 4814.33 4862.41 15.64 4800.17 4815.83 10.25 4778.64 4794.01 13.18
rc201 4337.60 4346.25 4361.17 14.27 4337.60 4343.47 21.58 4353.79 4368.88 20.88
rc202 4267.75 4273.74 4295.27 14.59 4267.75 4271.96 24.23 4279.09 4294.44 19.13
rc203 4147.68 4152.94 4186.28 15.98 4147.68 4152.79 26.63 4162.99 4176.54 22.14
rc204 4094.11 4113.49 4127.11 19.18 4094.11 4096.59 29.46 4098.58 4110.39 26.73
rc205 4242.63 4246.52 4273.59 14.86 4242.63 4248.30 23.58 4252.31 4273.58 21.30
rc206 4236.43 4237.75 4270.25 15.09 4236.43 4241.71 24.08 4247.68 4264.89 20.66
rc207 4169.59 4177.23 4199.60 16.20 4169.59 4174.39 26.14 4192.66 4199.96 21.78
rc208 4096.01 4097.04 4122.12 18.13 4096.01 4103.79 30.99 4109.01 4122.11 25.06

Avg. Gap (%) 0.56 1.19 0.06 0.24 0.55 0.76
Best 0 40 16

Avg. Time 25.68 18.75 15.77
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Table 7: Results of PMa on large instances of Hiermann et al. (2016), Type B
Type B ALNS HGA PMa

Instance BKS Best Avg. t (min) Best Avg. t (min) Best Avg. t (min)
c101 2495.00 2495.00 2505.73 14.43 2495.00 2496.28 13.59 2496.02 2496.97 15.99
c102 2445.99 2445.99 2450.73 14.41 2445.99 2446.48 13.85 2448.76 2449.23 16.15
c103 2427.44 2438.54 2452.40 15.03 2427.44 2435.42 19.49 2436.07 2443.86 17.44
c104 2402.47 2404.97 2428.95 15.07 2402.47 2404.40 20.12 2405.25 2408.51 17.91
c105 2472.60 2472.93 2475.95 14.45 2472.60 2473.14 17.21 2472.60 2475.59 16.39
c106 2456.74 2462.54 2468.13 14.71 2456.74 2459.90 16.63 2459.16 2463.88 16.46
c107 2457.89 2458.37 2461.32 14.60 2457.89 2457.98 16.53 2457.89 2458.08 17.06
c108 2448.08 2450.17 2463.02 14.33 2448.08 2451.13 18.82 2448.58 2453.25 17.11
c109 2430.58 2436.41 2452.57 15.07 2431.36 2432.77 19.22 2431.17 2437.87 17.84
c201 1730.41 1730.41 1739.26 35.76 1730.41 1730.41 14.51 1730.41 1730.41 7.71
c202 1729.73 1737.57 1745.24 38.14 1729.73 1730.05 16.40 1729.73 1729.99 8.09
c203 1713.38 1716.29 1742.76 39.38 1713.38 1713.38 18.46 1719.31 1723.66 10.34
c204 1689.04 1699.07 1709.43 37.02 1689.04 1690.01 21.42 1703.20 1706.75 15.70
c205 1693.45 1697.01 1715.09 37.83 1693.45 1694.83 15.38 1694.58 1695.10 7.69
c206 1687.96 1693.15 1712.38 36.78 1687.96 1687.96 16.68 1689.08 1694.06 9.88
c207 1693.23 1694.61 1710.70 35.05 1693.23 1694.47 16.92 1694.36 1696.40 10.70
c208 1681.47 1681.47 1707.11 36.46 1681.47 1681.47 16.56 1682.60 1684.91 10.42
r101 2249.14 2261.21 2281.28 13.68 2249.24 2258.24 7.75 2253.04 2253.33 4.26
r102 2047.89 2073.03 2095.87 14.45 2047.89 2063.58 8.80 2049.99 2051.42 3.63
r103 1886.27 1894.98 1927.52 15.11 1898.26 1906.46 9.50 1887.13 1891.20 6.40
r104 1745.75 1747.65 1775.33 15.28 1754.22 1766.32 10.63 1745.75 1752.01 16.65
r105 1997.75 2010.31 2030.12 15.08 2007.40 2013.63 8.79 2002.59 2004.68 4.08
r106 1921.42 1934.00 1963.88 14.51 1925.56 1948.02 9.52 1922.12 1925.28 6.17
r107 1809.54 1824.88 1844.20 15.50 1824.68 1842.49 10.21 1811.88 1813.81 17.51
r108 1712.40 1729.18 1753.09 16.27 1712.40 1732.21 10.93 1717.11 1721.70 16.15
r109 1852.35 1871.54 1904.12 15.37 1861.15 1877.84 9.75 1852.35 1856.96 11.91
r110 1747.70 1759.69 1793.48 15.54 1766.10 1786.94 10.67 1747.70 1750.49 8.87
r111 1761.26 1786.97 1808.36 15.66 1769.41 1793.86 10.62 1761.26 1766.75 15.65
r112 1694.66 1721.79 1746.02 15.77 1705.89 1717.98 10.74 1694.66 1704.38 13.69
r201 1591.35 1594.58 1618.25 31.21 1591.35 1597.16 14.57 1729.91 1739.18 10.41
r202 1461.63 1468.05 1479.42 29.61 1461.63 1468.59 18.31 1541.76 1565.02 8.45
r203 1327.56 1340.00 1354.24 30.70 1327.56 1334.67 20.54 1396.99 1412.43 10.62
r204 1202.72 1203.89 1211.63 27.35 1202.72 1205.19 26.38 1265.71 1280.87 13.04
r205 1429.32 1430.70 1455.08 30.16 1429.32 1433.53 17.53 1517.45 1530.88 9.13
r206 1355.90 1361.69 1376.34 31.35 1355.90 1357.28 19.56 1448.15 1464.26 12.19
r207 1256.22 1256.22 1268.66 28.18 1257.88 1260.31 24.61 1327.43 1345.30 11.21
r208 1195.96 1198.39 1208.89 29.02 1195.96 1198.80 28.35 1253.61 1262.66 14.33
r209 1321.76 1333.33 1345.50 30.30 1321.76 1329.72 20.01 1396.65 1411.24 10.63
r210 1298.78 1314.16 1324.07 30.07 1298.78 1301.00 19.12 1367.78 1387.56 10.63
r211 1226.74 1231.38 1244.73 26.30 1226.74 1233.22 23.49 1293.66 1320.07 12.37

rc101 2499.98 2548.84 2560.33 13.71 2501.78 2514.33 8.63 2499.98 2503.77 3.83
rc102 2315.01 2330.50 2359.92 14.35 2315.01 2326.17 9.07 2326.25 2330.96 4.11
rc103 2104.93 2105.84 2136.78 14.14 2116.31 2126.76 9.79 2104.93 2108.43 4.41
rc104 1973.51 1986.35 2002.33 15.56 1973.78 1980.44 10.48 1975.71 1979.18 7.06
rc105 2248.20 2259.97 2287.95 13.87 2250.37 2259.34 9.18 2251.25 2256.57 3.96
rc106 2185.50 2209.73 2232.05 14.50 2194.61 2213.35 9.71 2187.30 2188.30 4.07
rc107 2012.53 2037.25 2050.20 15.43 2012.53 2043.64 9.69 2026.09 2030.95 7.28
rc108 1962.87 1962.87 1995.41 14.99 1967.99 1974.87 9.98 1969.64 1971.36 8.44
rc201 1899.99 1899.99 1931.42 15.69 1899.99 1912.42 10.71 1953.90 1966.34 8.26
rc202 1805.24 1807.30 1825.07 16.19 1805.24 1807.50 14.68 1847.98 1863.52 10.82
rc203 1637.32 1642.43 1660.93 19.00 1637.32 1649.11 15.48 1658.04 1678.16 9.86
rc204 1520.59 1521.80 1543.04 22.13 1520.59 1526.04 19.91 1533.09 1545.23 14.09
rc205 1747.39 1753.79 1774.22 19.03 1747.39 1758.96 13.08 1811.93 1825.84 15.25
rc206 1742.98 1751.75 1767.75 17.79 1742.98 1757.36 13.91 1790.46 1807.41 14.13
rc207 1603.23 1616.96 1640.23 19.07 1603.23 1611.17 15.34 1674.53 1679.85 12.78
rc208 1495.34 1497.95 1520.76 22.03 1495.34 1499.75 21.06 1510.60 1537.60 13.47

Avg. Gap (%) 0.48 1.52 0.12 0.55 1.59 2.07
Best 7 39 11

Avg. Time 21.47 15.05 11.12
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Table 8: Results of PMa on large instances of Hiermann et al. (2016), Type C
Type C ALNS HGA PMa

Instance BKS Best Avg. t (min) Best Avg. t (min) Best Avg. t (min)
c101 1809.93 1810.12 1816.06 14.08 1809.93 1809.97 7.06 1811.15 1813.32 2.64
c102 1759.73 1759.73 1766.14 14.36 1759.73 1759.73 7.91 1762.50 1767.80 3.03
c103 1744.92 1755.02 1759.20 15.09 1744.92 1745.33 11.06 1744.92 1750.74 8.60
c104 1717.33 1719.67 1735.86 15.60 1717.33 1718.73 10.10 1721.57 1722.18 13.77
c105 1783.25 1783.25 1785.43 14.51 1783.25 1783.92 7.19 1784.48 1785.57 3.17
c106 1772.74 1774.77 1777.67 14.64 1772.74 1773.57 8.09 1775.08 1776.92 3.54
c107 1764.02 1764.02 1768.33 14.57 1764.02 1765.09 7.90 1764.25 1767.63 4.29
c108 1760.63 1761.41 1769.76 14.80 1760.63 1762.95 8.79 1760.86 1765.29 7.44
c109 1738.93 1740.18 1749.07 15.30 1738.93 1740.78 9.17 1741.89 1743.78 15.56
c201 1210.41 1210.41 1213.63 31.30 1210.41 1210.41 13.84 1210.41 1210.41 5.04
c202 1209.73 1209.73 1220.97 34.17 1209.73 1209.86 15.72 1209.73 1209.90 6.86
c203 1207.95 1212.34 1227.69 33.07 1207.95 1208.22 17.96 1208.74 1209.02 8.48
c204 1175.94 1179.25 1199.37 32.15 1175.94 1177.50 20.00 1183.20 1189.03 12.38
c205 1188.92 1188.92 1195.24 31.64 1188.92 1192.69 15.94 1192.54 1193.18 6.50
c206 1183.42 1183.42 1192.30 31.01 1183.42 1183.42 17.40 1188.81 1188.81 7.98
c207 1183.42 1183.42 1190.37 31.44 1183.42 1183.42 17.17 1187.49 1187.49 8.19
c208 1181.47 1181.47 1192.96 30.82 1181.47 1181.47 16.70 1182.60 1187.13 8.94
r101 1954.00 1961.02 1977.89 14.36 1954.56 1957.89 7.82 1959.04 1959.07 3.92
r102 1757.13 1765.36 1791.03 14.67 1757.91 1760.92 8.64 1761.48 1763.72 3.42
r103 1584.58 1601.23 1618.81 15.52 1589.17 1603.05 9.65 1586.58 1587.07 5.12
r104 1417.69 1424.30 1448.31 16.20 1417.69 1435.56 10.97 1423.54 1428.86 12.56
r105 1699.34 1704.36 1728.12 14.68 1708.92 1714.26 9.10 1704.17 1706.48 3.86
r106 1603.24 1611.62 1635.42 14.67 1603.24 1623.31 9.55 1607.71 1610.13 4.03
r107 1482.74 1490.04 1514.01 15.99 1493.27 1500.84 10.27 1487.70 1490.47 11.43
r108 1386.74 1399.27 1417.39 16.42 1389.46 1399.22 10.58 1388.59 1392.37 9.64
r109 1546.83 1560.34 1580.14 15.65 1552.48 1566.61 10.03 1547.48 1549.52 10.48
r110 1419.27 1446.48 1471.66 15.64 1434.84 1447.59 10.43 1419.27 1422.42 5.25
r111 1434.87 1457.68 1479.75 16.16 1441.99 1460.14 10.53 1434.87 1436.55 5.61
r112 1379.95 1389.87 1403.82 16.10 1385.84 1398.31 10.98 1380.66 1386.53 16.90
r201 1366.63 1366.63 1378.77 29.69 1368.94 1378.37 13.30 1495.06 1502.75 12.49
r202 1236.97 1236.97 1249.65 29.13 1245.49 1249.56 17.10 1335.25 1351.33 13.40
r203 1102.56 1104.85 1124.07 30.23 1102.56 1107.65 19.49 1172.27 1190.38 13.02
r204 977.72 977.72 983.97 26.81 977.72 978.93 24.84 1033.28 1041.05 11.62
r205 1197.20 1217.77 1232.63 29.15 1197.20 1205.62 17.35 1292.45 1304.49 9.66
r206 1130.90 1136.83 1155.47 30.95 1130.90 1133.39 18.26 1223.15 1238.63 13.19
r207 1031.22 1031.22 1057.22 26.31 1031.22 1033.95 23.80 1102.43 1119.45 12.30
r208 970.96 971.15 984.87 28.21 970.96 973.34 28.08 1031.22 1038.18 18.31
r209 1092.26 1099.24 1117.68 29.62 1092.26 1100.36 18.11 1171.65 1185.83 11.85
r210 1069.71 1087.21 1100.27 29.88 1069.71 1077.86 18.35 1142.78 1153.78 11.55
r211 1001.74 1006.38 1026.07 25.93 1001.74 1005.16 22.23 1068.66 1093.57 15.19

rc101 2116.92 2142.24 2153.24 13.80 2119.70 2134.84 8.96 2120.77 2120.99 3.66
rc102 1945.31 1957.11 1972.85 14.68 1945.31 1959.96 9.60 1946.22 1948.38 3.67
rc103 1725.73 1736.25 1764.22 14.54 1733.70 1745.83 10.03 1726.34 1727.08 4.00
rc104 1584.79 1595.44 1614.09 15.80 1584.79 1596.48 10.40 1592.48 1600.62 6.59
rc105 1870.80 1885.63 1900.42 14.14 1870.80 1881.65 9.67 1873.75 1877.12 3.83
rc106 1808.96 1823.89 1844.99 15.18 1808.96 1814.28 9.90 1811.86 1812.94 4.00
rc107 1635.51 1639.84 1675.58 15.31 1635.51 1656.95 10.19 1643.52 1646.70 4.83
rc108 1578.51 1578.51 1601.47 14.98 1583.08 1586.20 10.91 1583.70 1585.13 6.03
rc201 1588.25 1589.99 1617.52 15.64 1588.25 1598.69 11.07 1626.41 1642.50 6.68
rc202 1481.05 1485.13 1497.99 16.72 1481.05 1483.05 15.40 1523.43 1533.44 6.39
rc203 1310.37 1310.37 1333.25 19.35 1310.48 1316.19 16.57 1333.75 1347.73 8.54
rc204 1182.32 1183.16 1193.93 22.69 1182.32 1186.42 21.22 1193.09 1204.59 13.10
rc205 1422.39 1424.75 1440.00 20.95 1422.39 1426.02 14.55 1480.90 1491.38 9.91
rc206 1429.47 1431.21 1439.17 18.11 1429.47 1434.12 14.54 1474.83 1480.37 10.18
rc207 1273.23 1277.71 1299.14 21.30 1273.23 1280.53 15.47 1328.24 1337.71 9.22
rc208 1159.70 1161.57 1171.52 22.91 1159.70 1163.21 22.02 1175.60 1195.11 11.47

Avg. Gap (%) 0.41 1.51 0.11 0.52 1.91 2.39
Best 15 40 5

Avg. Time 20.83 13.61 8.45
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B.2 Results for TRSP-CEV instances

Table 9 shows the PMa results for the small TRSP-CEV instances with five and ten customers. The
naming convention (TRSP-CEV-n-id) indicates the number of customers n and the instance id. For
example, TRSP-CEV5-1 refers to the first instance with five customers. We compare our results with
the optimal solutions found by Gurobi using the MILP formulation presented in Section 3.1 with β = 2.
For the PMa results, we report the best solution, the average solution (Avg.), and the average computing
time (t in seconds) over ten runs. The last rows of the table summarize the average gap, the number of
times PMa found the optimal solution, and the average running time.

Table 9: Results of PMa on small instances of TRSP-CEV
Gurobi PMa

Instance Opt. t(s) Best Avg. t(s)
TRSP-CEV5-1 805.30 2.11 805.30 805.30 0.01
TRSP-CEV5-2 806.31 6.56 806.31 806.31 0.02
TRSP-CEV5-3 801.26 6.83 801.26 801.26 0.03
TRSP-CEV5-4 802.52 5.07 802.51 802.51 0.00
TRSP-CEV5-5 801.63 909.41 801.63 801.63 0.02

TRSP-CEV10-1 810.14 2367.25 810.14 810.14 1.90
TRSP-CEV10-2 1625.13 56012.63 1625.13 1625.13 3.33
TRSP-CEV10-3 807.61 1563.10 807.61 807.61 1.87
TRSP-CEV10-4 802.10 4589.40 802.10 802.10 0.03
TRSP-CEV10-5 803.01 8107.00 803.01 803.01 0.04

Avg. Gap (%) 0.00 0.00
Number of optimal solutions 10

Avg. Time 7356.94 0.73

Table 10 shows the PMa results for the large TRSP-CEV instances. For each instance and EV
percentage, we report (i) the best solution, (ii) the average cost (Avg.), and (iii) the average computing
time (t in minutes). The averages are computed over 10 runs. The last rows of the table summarize the
average gap and the average running time. The value NF indicates that no feasible solution was found.

Table 10: Results of PMa on large instances of TRSP-CEV
% of EVs 0% 20% 40% 60% 80% 100%

Instance Best Avg. t(min) Best Avg. t(min) Best Avg. t(min) Best Avg. t(min) Best Avg. t(min) Best Avg. t(min)

urban 18 4146.03 4151.83 15.65 4075.87 4084.71 15.62 4011.38 4012.24 15.65 4011.08 4012.06 15.65 4010.89 4011.79 15.64 4010.21 4011.29 15.66
urban 19 4896.89 4902.50 18.72 4860.62 4864.56 18.85 4818.00 4823.99 18.74 4813.67 4815.30 18.81 4813.60 4815.08 18.71 4813.16 4814.15 18.74
urban 21 3326.54 3342.79 14.83 3250.57 3259.42 14.82 3210.32 3210.99 14.86 3209.13 3210.66 14.92 3209.13 3210.45 14.83 3209.13 3210.26 14.83
urban 22 4143.85 4154.02 17.58 4079.63 4091.19 17.57 4011.78 4015.26 17.56 4011.09 4012.22 17.55 4011.22 4012.14 17.58 4010.38 4011.77 17.55
semi urban 18 4360.36 4369.74 26.41 4153.46 4166.51 26.51 4025.11 4026.49 26.38 4022.85 4025.56 26.50 4023.76 4025.32 26.47 4022.70 4025.23 26.65
semi urban 19 3395.10 3400.19 18.36 3274.29 3282.86 18.34 3212.98 3213.42 18.35 3212.41 3212.77 18.33 3212.20 3212.64 18.35 3212.11 3212.50 18.59
semi urban 20 7631.26 7651.25 36.93 7485.31 7509.84 36.73 7338.37 7353.63 36.67 7267.54 7296.12 36.19 7233.04 7235.45 36.39 7231.59 7234.64 36.60
semi urban 21 6849.46 6878.22 31.83 6639.11 6665.28 31.96 6510.51 6555.98 30.99 6452.27 6461.16 31.46 6437.38 6452.86 31.10 6439.42 6449.42 31.79
semi urban 22 6056.08 6073.94 32.09 5854.48 5872.35 31.94 5679.32 5685.31 30.84 5632.04 5634.27 32.10 5633.62 5634.04 32.45 5630.98 5632.55 31.27
rural 18 7297.66 7303.59 19.39 7089.58 7107.61 19.39 6948.50 6953.87 19.38 6924.40 6929.84 19.36 6900.19 6904.27 19.39 NF NF NF
rural 19 4557.25 4557.78 16.20 4327.21 4336.61 16.15 4242.39 4246.90 16.15 4252.06 4254.65 16.17 4252.06 4254.13 16.36 NF NF NF
rural 20 6530.05 6530.41 14.43 6325.86 6326.84 15.81 6089.57 6190.33 21.63 6044.53 6047.70 21.92 6020.81 6036.80 17.73 NF NF NF
rural 21 8551.71 8590.10 21.12 NF NF NF NF NF NF NF NF NF NF NF NF NF NF NF
rural 22 6571.22 6599.66 18.22 6331.74 6350.65 18.25 6124.44 6159.62 18.06 6025.45 6029.21 18.11 5859.00 5860.30 18.08 NF NF NF
Avg. Gap (%) 0.24 0.25 0.29 0.08 0.07 0.05
Avg. Time (min) 21.55 21.69 21.94 22.08 21.78 23.52
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reuses/carte-des-bornes-de-recharge-pour-vehicules-electriques. Accessed 17 April 2018.

Renault (2014). Renault ZE. https://www.renault.fr/vehicules/vehicules-electriques/kangoo-ze/
batterie-et-recharge.html. Accessed 17 April 2018.

Resende, M. G., & Ribeiro, C. C. (2016). Optimization by GRASP: Greedy Randomized Adaptive Search
Procedures. Springer.

Rousseau, L.-M., Gendreau, M., & Pesant, G. (2002). Using constraint-based operators to solve the
vehicle routing problem with time windows. Journal of Heuristics, 8 , 43–58.

Sassi, O., Cherif-Khettaf, W., & Oulamara, A. (2015). Iterated tabu search for the mix fleet vehicle
routing problem with heterogenous electric vehicles. In H. A. Le Thi, T. Pham Dinh, & N. T. Nguyen
(Eds.), Modelling, Computation and Optimization in Information Systems and Management Sciences
(pp. 57–68). Springer.

Savelsbergh, M. W. (1992). The vehicle routing problem with time windows: Minimizing route duration.
ORSA Journal on Computing , 4 , 146–154.

Schneider, M., Stenger, A., & Goeke, D. (2014). The electric vehicle-routing problem with time windows
and recharging stations. Transportation Science, 48 , 500–520.

Schneider, M., Stenger, A., & Hof, J. (2015). An adaptive VNS algorithm for vehicle routing problems
with intermediate stops. OR Spectrum, 37 , 353–387.

Sierzchula, W. (2014). Factors influencing fleet manager adoption of electric vehicles. Transportation
Research Part D: Transport and Environment , 31 , 126–134.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window
constraints. Operations Research, 35 , 254–265.

Taefi, T. T., Kreutzfeldt, J., Held, T., & Fink, A. (2015). Strategies to increase the profitability of electric
vehicles in urban freight transport. In E-Mobility in Europe (pp. 367–388). Springer.
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