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We consider a non-local traffic model involving a convolution product. Unlike other studies, the considered kernel is discontinuous on R. We prove Sobolev estimates and prove the convergence of approximate solutions solving a viscous and regularized non-local equation. It leads to weak, C([0, T ], L 2 (R)), and smooth, W 2,2N ([0, T ] × R), solutions for the non-local traffic model.

Introduction

We consider the non-local traffic model introduced in [START_REF] Blandin | Well-posedness of a conservation law with non-local flux arising in traffic flow modeling[END_REF][START_REF] Goatin | Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity[END_REF] to account for the reaction of drivers to downstream traffic conditions. It consists in the following scalar conservation law, where the traffic velocity depends on a weighted mean of the density: We make the following assumptions for k = 1, 2, 3:

∂ t ρ + ∂ x (ρv(ρ * ω)) = 0, ( 1 
(A k ω ) ω ∈ C k ([0, η]
) is non-negative with support in [0, η] and is non-increasing on [0, η].

(A k v ) v ∈ C k (R + ) with v , . . . , v (k) bounded.
For traffic flow applications, it is reasonable to assume that v is non-increasing, even if monotonicity is not required in this paper. We also recall that a similar model, considering a weighted mean of downstream speeds, has been recently introduced in [START_REF] Friedrich | A Godunov type scheme for a class of LWR traffic flow models with non-local flux[END_REF]. More generally, model (1.1) belongs to the class of conservation laws with non-local flux functions, which appear in several applications, see for example [START_REF] Betancourt | On nonlocal conservation laws modelling sedimentation[END_REF][START_REF] Colombo | A class of nonlocal models for pedestrian traffic[END_REF][START_REF] Göttlich | Modeling, simulation and validation of material flow on conveyor belts[END_REF][START_REF] Gröschel | Regularity theory and adjoint-based optimality conditions for a nonlinear transport equation with nonlocal velocity[END_REF][START_REF] Sopasakis | Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics[END_REF]. We remark that most of the available well-posedness results concern equations involving smooth convolution kernels [START_REF] Aggarwal | Nonlocal systems of conservation laws in several space dimensions[END_REF][START_REF] Amorim | On the numerical integration of scalar nonlocal conservation laws[END_REF], and are based on the construction of finite-volume approximations and the use of Kružkov's doubling of variable technique [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF].

In particular, these results rely on the concept of entropy solutions. Only recently, alternative proofs based on fixed point theorems have been proposed for specific cases [START_REF] Keimer | Existence, uniqueness and regularity results on nonlocal balance laws[END_REF][START_REF] Rossi | Non Local Conservation Laws in Bounded Domains[END_REF], allowing to get rid of the entropy requirement.

In general, solutions to non-local equations may be discontinuous [START_REF] Li | Shock formation in a traffic flow model with Arrhenius look-ahead dynamics[END_REF], despite the expected regularizing effect of the convolution product. Therefore, given any initial datum ρ 0 ∈ L ∞ (R) ∩ L 1 (R), the solutions to the Cauchy problem for (1.1) are usually intended in the following weak form

Definition 1. A function ρ ∈ L ∞ ∩ L 1 (R + × R) is a solution of (1.1) with initial datum ρ 0 if +∞ 0 +∞ -∞ ρ∂ t ϕ + ρv(ρ * ω)∂ x ϕ (t, x) dxdt + +∞ -∞
ρ 0 (x)ϕ(0, x)dx = 0, (1.3) for all ϕ ∈ C ∞ c (R 2 ).

In this paper, we are interested in deriving regularity properties of solutions to (1.1). To this end, we will consider approximate solutions satisfying the viscous and regularized non-local equation

∂ t ρ ε + ∂ x (ρ ε v(ρ ε * ω ε )) = ε∂ 2 xx ρ ε , (1.4) 
where, for any ε ∈ ]0, 1], the smooth function ω ε is an extension of ω with the following regularities:

(A k ωε ) ω ε ∈ C k (R) is non-negative with a support in [-ε, η + ε], is non-decreasing on [-ε, x ε ], for some x ε ∈ ] -ε, 0], is non-increasing on [x ε , η + ε] and ω ε = ω on [0, η].
We set W ε := ω ε (x ε ) and we assume that lim ε→0 W ε = ω(0). Without loss of generality we can assume

W ε ≤ 2ω(0). (1.5) (B k ωε ) ω (j) ε (-ε) = ω (j) ε (η + ε) = 0 for j = 1, . . . , k and |ω ε (u)| ≤ 2W ε /ε on [-ε, 0] and |ω ε (u)| ≤ 2ω(η)/ε on [η, η + ε]. Remark 1. Given ω satisfying (A k ω ), we can construct a function ω ε satisfying (A k ωε ) and (B k ωε ).
To construct such extensions, for example in the simplest case where the derivatives of ω vanish at 0 and η, we use the function ϕ which is zero for x ≤ -1, 1 for x ≥ 0, non-decreasing and of class

C ∞ and we define ω ε (x) = ω(0)ϕ(x/ε) for x < 0 and ω(0)ϕ((η -x)/ε) for x > η.
Notice that a similar approximation was used in [START_REF] Colombo | On the singular local limit for conservation laws with nonlocal fluxes[END_REF] to establish a convergence property for the singular limit where the (smooth) convolution kernel is replaced by a Dirac delta, in the viscous case. Here, we will study the properties of smooth solutions ρ ε of this equation corresponding to a fixed initial datum ρ 0 , and then we will recover properties for ρ passing to the limit as ε → 0.

We have the following result.

Theorem 1. We assume (A 2 ω )-(A 3 v ). Let ρ ε be a solution of (1.4) with initial datum ρ 0 . We

assume ρ 0 ∈ W 1,4 (R) ∩ H 2 (R). Then, for T > 0 sufficiently small, ρ ε converges in L 2 loc ([0, T ] × R) to a solution ρ ∈ C([0, T ], L 2 (R)) to equation (1.1) with initial datum ρ 0 . Furthermore, if ρ 0 ∈ W 1,2N (R), N ∈ N * , then ρ ∈ W 1,2N ([0, T ] × R), and if ρ 0 ∈ W 1,4N (R) ∩ H 1 (R) ∩ W 2,2N (R), then ρ ∈ W 2,2N ([0, T ] × R).
In particular, this provides an alternative proof of existence of weak solutions, locally in time.

To prove this result, in Section 2 we first establish estimates on the non-local term and we derive L p (R), p > 1, estimates for ρ ε , then we get estimates in W 1,2N (R) for ρ ε with respect to x. This allows to prove that there exists T > 0 such that the sequence ρ ε is uniformly bounded with respect to ε in L ∞ (R) on [0, T ]. Then we prove uniform space estimates in W 2,2N (R) for ρ ε , which allows to derive estimates on ∂ t ρ ε . The proof of Theorem 1 is deferred to Section 3.

Estimates

Here and in the following sections, we will denote by

ρ ∞ := ρ L ∞ ([0,T ]×R)
and by

ρ(t, •) ∞ := ρ(t, •) L ∞ (R) .
Moreover, notice that we have

(ρ * ω ε )(t, x) = R ρ(t, x + y)ω ε (y) dy = R ρ(t, y)ω ε (y -x) dy = η+ε -ε ρ(t, x + y)ω ε (y) dy = x+η+ε x-ε ρ(t, y)ω ε (y -x) dy.

Estimates of the non-local term

We start by proving the following estimates on the non-local term.

Proposition 1.

1. We assume (A 1 ωε ) and that ρ is a continuous function. For any

(t, x) ∈ R + × R, we have |∂ x (ρ * ω ε )(t, x)| ≤ 2 ρ(t, •) ∞ W ε . (2.1)
2. We assume (A 2 ωε ) -(B 1 ωε ) and that ρ is a C 1 function. For any t ≥ 0, p > 1, we have

R |∂ 2 xx (ρ * ω ε )| p (t, x) dx 1/p ≤ η 1/p η 0 |ω (u)| p/(p-1) du 1-1/p R ρ p (t, y) dy 1/p + |ω (η-)| + |ω (0+)| R ρ p (t, x) dx 1/p (2.2) +2 ω(η) + W ε R |∂ x ρ(t, x)| p dx 1/p . 3. We assume (A 2 ω ) -(B 2 ωε ) that ρ is a C 2 function. For any t ≥ 0, p > 1, we have R |∂ 3 xxx (ρ * ω ε )| p (t, x) dx 1/p ≤ η 1/p η 0 |ω (u)| p/(p-1) du 1-1/p R |∂ x ρ(t, y)| p dy 1/p + |ω (η-)| + |ω (0+)| R |∂ x ρ(t, x)| p dx 1/p (2.3) +2 ω(η) + W ε R |∂ 2 xx ρ(t, x)| p dx 1/p . Proof. 1. From ∂ x (ρ * ω ε )(t, x) = - x+η+ε x-ε ρ(t, y)ω ε (y -x) dy + ρ(t, x + η + ε)ω ε (η + ε) -ρ(t, x -ε)ω ε (-ε) = - x+η+ε x-ε ρ(t, y)ω ε (y -x) dy = - η+ε -ε ρ(t, u + x)ω ε (u) du, we obtain |∂ x (ρ * ω ε )(t, x)| ≤ ρ(t, •) ∞ η+ε -ε |ω ε (u)| du ≤ ρ(t, •) ∞ xε -ε ω ε (u) du - η+ε xε ω ε (u) du ≤ 2 ρ(t, •) ∞ W ε . 2. From ∂ 2 xx (ρ * ω ε )(t, x) = x+η+ε x-ε ρ(t, y)ω ε (y -x) dy -ρ(t, x + η + ε)ω ε (η + ε) + ρ(t, x -ε)ω ε (-ε) = x+η+ε x-ε ρ(t, y)ω ε (y -x) dy = η+ε -ε ρ(t, x + u)ω ε (u) du = 0 -ε ρ(t, x + u)ω ε (u) du + η 0 ρ(t, x + u)ω ε (u) du + η+ε η ρ(t, x + u)ω ε (u) du = ρ(t, x)ω ε (0) -ρ(t, x -ε)ω ε (-ε) - 0 -ε ∂ x ρ(t, x + u)ω ε (u) du + η 0 ρ(t, x + u)ω ε (u) du + ρ(t, x + η + ε)ω ε (η + ε) -ρ(t, x + η)ω ε (η) - η+ε η ∂ x ρ(t, x + u)ω ε (u) du = ρ(t, x)ω (0+) -ρ(t, x + η)ω (η-) + η 0 ρ(t, x + u)ω ε (u) du - 0 -ε ∂ x ρ(t, x + u)ω ε (u) du - η+ε η ∂ x ρ(t, x + u)ω ε (u) du, we have R |∂ 2 xx (ρ * ω ε )| p (t, x) dx 1/p ≤   R 0 -ε ∂ x ρ(t, x + u)ω ε (u) du p dx   1/p +   R η+ε η ∂ x ρ(t, x + u)ω ε (u) du p dx   1/p + R η 0 ρ(t, x + u)ω ε (u) du p dx 1/p + R ρ(t, x) p |ω (0+)| p dx 1/p + R ρ(t, x + η) p |ω (η-)| p dx 1/p . Notice that   R 0 -ε ∂ x ρ(t, x + u)ω ε (u) du p dx   1/p ≤   R 0 -ε |∂ x ρ(t, x + u)| p du 0 -ε |ω ε (u)| q dy p/q dx   1/p ≤ 0 -ε |ω ε (u)| p/(p-1) du 1-1/p   R η+ε -ε |∂ x ρ(t, x + u)| p du dx   1/p ≤ 0 -ε 2 W ε ε p/(p-1) du 1-1/p R x x-ε |∂ x ρ(t, y)| p dy dx 1/p ≤ 2 W ε ε ε 1-1/p R y+ε y dx |∂ x ρ(t, y)| p dy 1/p ≤ 2 W ε ε ε 1-1/p ε 1/p R |∂ x ρ(t, y)| p dy 1/p = 2W ε R |∂ x ρ(t, y)| p dy 1/p
using Hölder's inequality with q = p/(p -1) the conjugated exponent of p. Similarly

  R η+ε η ∂ x ρ(t, x + u)ω ε (u) du p dx   1/p ≤ 2ω(η) R |∂ x ρ(t, y)| p dy 1/p . Then we get R |∂ 2 xx (ρ * ω ε )| p (t, x) dx 1/p ≤2 ω(η) + W ε R |∂ x ρ(t, y)| p dy 1/p +   R x+η x ρ p (t, y) dy η 0 |ω ε (u)| q du p/q dx   1/p + |ω (η+)| + |ω (0-)| R ρ p (t, x) dx 1/p . Furthermore R x+η x ρ p (t, y) dy η 0 |ω (u)| q dy p-1 dx ≤ η 0 |ω (u)| p/(p-1) du p-1 R y y-η ρ p (t, y) dx dy ≤ η ε 0 |ω (u)| p/(p-1) du p-1 R ρ p (t, y) dy,
then we get the announced formula.

1 3. Remark that, since ω ε (-ε) = ω ε (η + ε) = 0, we have ∂ 3 xxx (ρ * ω ε )(t, x) = - η+ε -ε ρ(t, x + u)ω (3) ε (u) du = η+ε -ε ∂ x ρ(t, x + u)ω ε (u) du = ∂ 2 xx (∂ x ρ * ω ε )(t, x),
then applying 2., we get

R |∂ 3 xxx (ρ * ω)| p (t, x) dx 1/p ≤ η 1/p η 0 |ω (u)| p/(p-1) du 1-1/p R |∂ x ρ(t, y)| p dy 1/p + |ω (η-)| + |ω (0+)| R |∂ x ρ(t, x)| p dx 1/p +2 ω(η) + W ε R |∂ 2 xx ρ(t, x)| p dx 1/p .

L p estimates for the viscous case

We turn now to estimates on solutions solving the viscous and regularized non-local equation. First, we deal with L p estimates.

Proposition 2. We assume

(A 1 ω )-(A 1 v ). Let ρ ε be the solution of (1.4) with initial datum ρ 0 ∈ L p (R). If ρ ε ∈ L ∞ ([0, T ] × R) for some T > 0, then ρ ε ∈ L ∞ ([0, T ], L p (R)) ∩ L p ([0, T ] × R).
Proof. The equation (1.4) can be rewritten as

∂ t ρ ε + v(ρ ε * ω ε )∂ x ρ ε + ρ ε v (ρ ε * ω ε )∂ x (ρ ε * ω ε ) = ε∂ 2 xx ρ ε . (2.4) 
Multiplying (2.4) by ρ p-1 ε , then integrating with respect to x, we obtain

1 p d dt R ρ p ε (t, x) dx = - R ρ p-1 ε (t, x)v((ρ ε * ω ε )(t, x))∂ x ρ ε (t, x) dx - R ρ p ε (t, x)v ((ρ ε * ω ε )(t, x))∂ x (ρ ε * ω ε )(t, x) dx +ε R ρ p-1 ε (t, x)∂ 2 xx ρ ε (t, x) dx.
We observe that

R ρ p-1 ε v(ρ ε * ω ε ) ∂ x ρ ε dx = R ∂ x ρ p ε p v(ρ ε * ω ε ) dx = - R ρ p ε p ∂ x (v(ρ ε * ω ε )) dx = - R ρ p ε p v (ρ ε * ω ε )∂ x (ρ ε * ω ε ) dx and R ρ p-1 ε ∂ 2 xx ρ ε dx = -(p -1) R ρ p-2 ε (∂ x ρ ε ) 2 dx ≤ 0, therefore d dt R ρ p ε (t, x) dx ≤ (1 -p) R ρ p ε (t, x)v ((ρ ε * ω ε )(t, x))∂ x (ρ ε * ω ε )(t, x) dx. (2.5)
We use (2.1) to control the right hand side of (2.5) and we get

d dt R ρ p ε (t, x) dx ≤ C ε,p 1 R ρ p ε (t, x) dx, (2.6) which implies R ρ p ε (t, x) dx ≤ e C ε,p 1 t R ρ p ε (0, x) dx, (2.7) 
with

C ε,p 1 = 2(p -1) ρ ε ∞ W ε v ∞ . It gives sup t∈[0,T ] R ρ p ε (t, x) dx ≤ e C ε,p 1 T R ρ p ε (0, x) dx. (2.8)
By integration of (2.7) with respect to t ∈ [0, T ], we get

T 0 R ρ p ε (t, x) dx dt ≤ 1 C ε,p 1 e C ε,p 1 T -1 R ρ p ε (0, x) dx.
(2.9)

2.3 W 1,p estimates for p = 2N in the viscous case

We turn now to Sobolev estimates. Let N ∈ N * and set p = 2N .

Proposition 3. We assume (A 2 ω )-(A 2 v ). Let ρ ε be the solution of (1.4) with initial datum

ρ 0 ∈ W 1,2N (R). If ρ ε ∈ L ∞ ([0, T ] × R) for some T > 0, then ρ ε ∈ L ∞ [0, T ], W 1,2N (R) and ρ ε , ∂ x ρ ε ∈ L ∞ [0, T ], L 2N (R) ∩ L 2N ([0, T ] × R).
Proof. We differentiate (2.4) with respect to x, it gives

∂ t ∂ x ρ ε + 2v (ρ ε * ω ε ) ∂ x (ρ ε * ω ε ) ∂ x ρ ε + v(ρ ε * ω ε ) ∂ 2 xx ρ ε +ρ ε v (ρ ε * ω ε ) (∂ x (ρ ε * ω ε )) 2 + ρ ε v (ρ ε * ω ε )∂ 2 xx (ρ ε * ω ε ) = ε∂ 3 xxx ρ ε . (2.10) 
Multiplying this relation by (∂ x ρ ε ) p-1 , then integrating with respect to x, we have

1 p d dt R (∂ x ρ ε ) p dx + 2 R v (ρ ε * ω ε ) ∂ x (ρ ε * ω ε ) (∂ x ρ ε ) p dx + R v(ρ ε * ω ε ) ∂ 2 xx ρ ε (∂ x ρ ε ) p-1 dx + R ρ ε v (ρ ε * ω ε ) (∂ x (ρ ε * ω ε )) 2 (∂ x ρ ε ) p-1 dx + R ρ ε v (ρ ε * ω ε ) ∂ 2 xx (ρ ε * ω ε ) (∂ x ρ ε ) p-1 dx = ε R (∂ x ρ ε ) p-1 ∂ 3 xxx ρ ε dx. Notice that R v(ρ ε * ω ε ) ∂ 2 xx ρ ε (∂ x ρ ε ) p-1 dx = 1 p R v(ρ ε * ω ε ) ∂ x (∂ x ρ ε ) p dx = - 1 p R v (ρ ε * ω ε ) ∂ x (ρ ε * ω ε ) (∂ x ρ ε ) p dx
and, since p is even,

R (∂ x ρ ε ) p-1 ∂ 3 xxx ρ ε dx = -(p -1) R (∂ 2 xx ρ ε ) 2 (∂ x ρ ε ) p-2 dx ≤ 0, thus d dt R (∂ x ρ ε ) p dx ≤ (1 -2p) R v (ρ ε * ω ε ) ∂ x (ρ ε * ω ε ) (∂ x ρ ε ) p dx -p R ρ ε v (ρ ε * ω ε ) (∂ x (ρ ε * ω ε )) 2 (∂ x ρ ε ) p-1 dx -p R ρ ε v (ρ ε * ω ε ) ∂ 2 xx (ρ ε * ω ε ) (∂ x ρ ε ) p-1 dx =: I ε 1 + I ε 2 + I ε 3 .
We estimate now each of these terms.

• By (2.1) we get

I ε 1 = (1 -2p) R v (ρ ε * ω ε ) ∂ x (ρ ε * ω ε ) (∂ x ρ ε ) p dx ≤ 2(2p-1) v ∞ ρ ε ∞ W ε R |∂ x ρ ε | p dx.
• Again by (2.1) we get

I ε 2 = p R ρ ε v (ρ ε * ω ε ) (∂ x (ρ ε * ω ε )) 2 (∂ x ρ ε ) p-1 dx ≤ p v ∞ (2 ρ ε ∞ W ε ) 2 R ρ ε |∂ x ρ ε | p-1 dx ≤ 4 v ∞ ρ ε 2 ∞ W 2 ε R ρ p ε dx + (p -1) R |∂ x ρ ε | p dx ,
where we have used Young's inequality uv ≤ 1 p u p + 1 q v q with q = p/(p -1).

• Similarly,

I ε 3 = p R ρ ε v (ρ ε * ω ε ) ∂ 2 xx (ρ ε * ω ε ) (∂ x ρ ε ) p-1 dx ≤ p v ∞ ρ ε ∞ R |∂ 2 xx (ρ ε * ω ε ) |∂ x ρ ε | p-1 | dx ≤ v ∞ ρ ε ∞ R |∂ 2 xx (ρ ε * ω ε )| p dx + (p -1) R |∂ x ρ ε | p dx .
We now observe that (u + v + w) p ≤ 3 p (u p + v p + w p ) for any u, v, w > 0 and p > 0.

(2.11) Indeed, from the binomial expansion we get

(u + v + w) p = (u + (v + w)) p = p k=0 p k u k (v + w) p-k = p k=0 p k u k p-k l=0 p -k l v l w p-k-l .
Observing that u k v l w p-k-l ≤ u p + v p + w p and that 

R |∂ 2 xx (ρ ε * ω)| p dx ≤ 3 p η η 0 |ω (u)| p/(p-1) du p-1 R ρ p ε (t, x) dx +3 p |ω (η-)| + |ω (0+)| p R ρ p ε (t, x) dx +6 p ω(η) + W ε p R |∂ x ρ ε (t, x)| p dx, (2.12 
)

thus p R ρ ε v (ρ * ω ε ) ∂ 2 xx (ρ ε * ω ε ) (∂ x ρ ε ) p-1 dx ≤ C ε,p 2 R ρ p ε dx + C ε,p 3 R |∂ x ρ ε | p dx, with C ε,p 2 = v ∞ ρ ε ∞ 3 p η η 0 |ω (u)| p/(p-1) du p-1 + |ω (η-)| + |ω (0+)| p and C ε,p 3 = v ∞ ρ ε ∞ p -1 + 6 p ω(η) + W ε p .
These bounds give finally the estimate

d dt R (∂ x ρ ε (t, x)) p dx ≤ C ε,p 4 R |∂ x ρ ε (t, x)| p dx + C ε,p 5 R ρ p ε (t, x) dx. with C ε,p 4 = 2(2p -1) v ∞ ρ ε ∞ W ε + 4(p -1) v ∞ ρ ε 2 ∞ W 2 ε + C ε 3 and C ε,p 5 = 4 v ∞ ρ ε 2 ∞ W 2 ε + C ε 2 . With (2.6), we get d dt R |∂ x ρ ε (t, x)| 2N dx + R ρ 2N ε (t, x) dx ≤ C ε,p 6 R |∂ x ρ ε (t, x)| 2N dx + R ρ 2N ε (t, x) dx , (2.13) with C ε,p 6 = max(C ε,p 4 , C ε,p 5 + C ε,p 1 ), which implies R |∂ x ρ ε (t, x)| 2N dx + R ρ 2N ε (t, x) dx ≤ e C ε,p 6 t R |∂ x ρ ε (0, x)| 2N dx + R ρ 2N ε (0, x) dx . (2.14) Then sup t∈[0,T [ R |∂ x ρ ε (t, x)| 2N dx + R ρ 2N ε (t, x) dx ≤ e C ε,p 6 T R |∂ x ρ ε (0, x)| 2N dx + R ρ 2N ε (0, x) dx . (2.15)
Integrating (2.14) with respect to t on [0, T ], we get

T 0 R |∂ x ρ ε (t, x)| 2N dx dt + T 0 R ρ 2N ε (t, x) dx dt ≤ 1 C ε,p 6 e C ε,p 6 T -1 R |∂ x ρ ε (0, x)| 2N dx + R ρ 2N ε (0, x) dx .
(2.16)

L ∞ bound on an interval [0, T ]

With the previous estimates, we are now able to prove an L ∞ bounds for the sequence {ρ ε } ε on an interval [0, T ].

Proposition 4. We assume (A 2 ω )-(A 2 v ). Let ρ ε be the solution of (1.4) with initial datum ρ 0 ∈ H 1 . Then there exists a constant

T > 0 such that ρ ε ∈ L ∞ [0, T ] × R for any ε > 0, T < T . Furthermore ρ ε ∈ L ∞ [0, T ], W 1,2N (R) and ρ ε , ∂ x ρ ε ∈ L ∞ [0, T ], L 2N (R) ∩ L 2N ([0, T ] × R) (2.17)
and this sequence is uniformly bounded in these spaces with respect to ε.

Proof. Let ρ ε be a smooth solution of (1.4) with the same initial datum ρ 0 ∈ H 1 . The relation (2.13) for N = 1 gives

d dt R |∂ x ρ ε (t, x)| 2 dx + R ρ 2 ε (t, x) dx ≤ C max 1, ρ ε (t, •) 2 ∞ R |∂ x ρ ε (t, x)| 2 dx + R ρ 2 ε (t, x) dx ,
for some constant C that does not depend on ε (since

W ε is uniformly bounded). If no uniform L ∞ -bound on ρ ε is available, we can use the Sobolev injection of H 1 (R) in L ∞ (R) and get d dt ρ ε (t, •) 2 H 1 ≤ C ρ ε (t, •) 2 H 1 + C ρ ε (t, •) 4 H 1 , eventually updating the constant C. We set u ε (t) = ρ ε (t, •) 2 H 1 , then u ε ≤ C(u ε + u 2 ε ), which leads to u ε u ε - u ε 1 + u ε ≤ C.
We obtain

u ε (t) ≤ C 0 e Ct 1 -C 0 e Ct , for any 0 ≤ t < - ln C 0 C , with C 0 = u 0 1 + u 0 < 1, u 0 = ρ 0 2 H 1 .
Notice that the initial datum is the same for all the sequence and then u 0 and C 0 do not depend on ε. Setting T < T := -ln C 0 C , we have

ρ ε (t, •) 2 H 1 ≤ C ρ 0 2 H 1 , for any 0 ≤ t ≤ T, ε > 0.
Therefore, by Sobolev injection,

ρ ε ∈ L ∞ ([0, T ] × R).
Using the estimates of Propositions 2 and 3, we get (2.17) with bounds independents of ε.

2.5 W 2,p estimate for p = 2N

To pass to the limit, we need also estimates in W 2,p , which will provide, in the next section, with the help of the equation, the necessary regularity in time. As in Section 2.3, let N ∈ N * and set p = 2N .

Proposition 5. We assume

(A 2 ω )-(A 3 v ). Let ρ ε be the solution of (1.4) with initial datum ρ 0 ∈ W 1,4N (R) ∩ H 1 (R) ∩ W 2,2N (R). Let T > 0 as in Proposition 4. Then ρ ε ∈ L ∞ [0, T ], W 2,2N (R) and ρ ε , ∂ x ρ ε , ∂ 2 xx ρ ε ∈ L ∞ [0, T ], L 2N (R) ∩ L 2N ([0, T ] × R)
and this sequence is bounded in these spaces with respect to ε.

Proof. We differentiate (2.10) with respect to x, which gives

∂ t ∂ 2 xx ρ ε + 3v (ρ ε * ω ε ) (∂ x (ρ ε * ω ε )) 2 ∂ x ρ ε + 3v (ρ ε * ω ε ) ∂ 2 xx (ρ ε * ω ε ) ∂ x ρ ε +3v (ρ ε * ω ε ) ∂ x (ρ ε * ω ε ) ∂ 2 xx ρ ε + v(ρ ε * ω ε ) ∂ 3 xxx ρ ε + ρ ε v (3) (ρ ε * ω ε ) (∂ x (ρ ε * ω ε )) 3 (2.18) +3ρ ε v (ρ ε * ω ε ) ∂ x (ρ ε * ω ε ) ∂ 2 xx (ρ ε * ω ε ) + ρ ε v (ρ ε * ω ε )∂ 3 xxx (ρ ε * ω ε ) = ε∂ 4 xxxx ρ ε .
Multiplying this relation by (∂ 2 xx ρ ε ) p-1 , then integrating with respect to x, we obtain

1 p d dt R (∂ 2 xx ρ ε ) p dx + 3 R v (ρ ε * ω ε ) (∂ x (ρ ε * ω ε )) 2 ∂ x ρ ε (∂ 2 xx ρ ε ) p-1 dx +3 R v (ρ ε * ω ε ) ∂ 2 xx (ρ ε * ω ε ) ∂ x ρ ε (∂ 2 xx ρ ε ) p-1 dx + 3 R v (ρ ε * ω ε ) ∂ x (ρ ε * ω ε ) (∂ 2 xx ρ ε ) p dx + R v(ρ ε * ω ε ) ∂ 3 xxx ρ ε (∂ 2 xx ρ ε ) p-1 dx + R ρ ε v (3) (ρ ε * ω ε ) (∂ x (ρ ε * ω ε )) 3 (∂ 2 xx ρ ε ) p-1 dx +3 R ρ ε v (ρ ε * ω ε ) ∂ x (ρ ε * ω ε ) ∂ 2 xx (ρ ε * ω ε ) (∂ 2 xx ρ ε ) p-1 dx + R ρ ε v (ρ ε * ω ε )∂ 3 xxx (ρ ε * ω ε ) (∂ 2 xx ρ ε ) p-1 dx = ε R ∂ 4 xxxx ρ ε (∂ 2 xx ρ ε ) p-1 dx. Now R v(ρ ε * ω ε ) ∂ 3 xxx ρ ε (∂ 2 xx ρ ε ) p-1 dx = 1 p R v(ρ ε * ω ε ) ∂ x (∂ 2 xx ρ ε ) p dx = - 1 p R v (ρ ε * ω ε ) ∂ x (ρ ε * ω ε ) (∂ 2 xx ρ ε ) p dx, therefore d dt R (∂ 2 xx ρ ε ) p dx = -3p R v (ρ ε * ω ε ) (∂ x (ρ ε * ω ε )) 2 ∂ x ρ ε (∂ 2 xx ρ ε ) p-1 dx -3p R v (ρ ε * ω ε ) ∂ 2 xx (ρ ε * ω ε ) ∂ x ρ ε (∂ 2 xx ρ ε ) p-1 dx +(1 -3p) R v (ρ ε * ω ε ) ∂ x (ρ ε * ω ε ) (∂ 2 xx ρ ε ) p dx -p R ρ ε v (3) (ρ ε * ω ε ) (∂ x (ρ ε * ω ε )) 3 (∂ 2 xx ρ ε ) p-1 dx -3p R ρ ε v (ρ ε * ω ε ) ∂ x (ρ ε * ω ε ) ∂ 2 xx (ρ ε * ω ε ) (∂ 2 xx ρ ε ) p-1 dx -p R ρ ε v (ρ ε * ω ε )∂ 3 xxx (ρ ε * ω ε ) (∂ 2 xx ρ ε ) p-1 dx +εp R ∂ 4 xxxx ρ ε (∂ 2 xx ρ ε ) p-1 dx =: J 1 + J 2 + J 3 + J 4 + J 5 + J 6 + J 7 .
We estimate now each of these terms.

• Using (2.1) and Young's inequality, we get 

|J 1 | = 3p R v (ρ ε * ω ε ) (∂ x (ρ ε * ω ε )) 2 ∂ x ρ ε (∂ 2 xx ρ ε ) p-1 dx ≤ 3p v ∞ 2 ρ ε ∞ W ε 2 R |∂ x ρ ε | |∂ 2 xx ρ ε | p-1 dx ≤ 12 v ∞ ρ ε 2 ∞ W 2 ε R |∂ x ρ ε | p dx + (p -1) R |∂ 2 xx ρ ε | p dx • |J 2 | = 3p R v (ρ ε * ω ε ) ∂ 2 xx (ρ ε * ω ε ) ∂ x ρ ε (∂ 2 xx ρ ε ) p-1 dx ≤ 3p v ∞ R |∂ 2 xx (ρ ε * ω ε )| |∂ x ρ ε | |∂ 2 xx ρ ε | p-1 dx ≤ 3 v ∞ 1 2 R |∂ 2 xx (ρ ε * ω ε )| 2p dx + 1 2 R |∂ x ρ ε | 2p dx + (p -1) R |∂ 2 xx ρ ε | p dx using the inequality uvw ≤ 1 p 1 u p 1 + 1 p 2 v p 2 + 1 p 3 w p 3 , with 1 p 1 + 1 p 2 + 1 p 3 = 1, ( 2 
|J 2 | ≤ 3 2p+1 2 v ∞ η η 0 |ω (u)| 2p/(2p-1) du 2p-1 R ρ 2p ε dx + 3 2p+1 2 v ∞ |ω (η-)| + |ω (0+)| 2p R ρ 2p ε dx +3 2p+1 2 2p-1 v ∞ ω(η) + 2ω(0) 2p R |∂ x ρ ε | 2p dx + 3 2 v ∞ R |∂ x ρ ε | 2p dx + 3(p -1) v ∞ R |∂ 2 xx ρ ε | p dx. • |J 3 | = (3p -1) R v (ρ ε * ω ε ) ∂ x (ρ ε * ω ε ) (∂ 2 xx ρ ε ) p dx ≤ 2(3p -1) v ∞ ρ ε ∞ W ε R |∂ 2 xx ρ ε | p dx. • |J 4 | = p R ρ ε v (3) (ρ ε * ω ε ) (∂ x (ρ ε * ω ε )) 3 (∂ 2 xx ρ ε ) p-1 dx ≤ p v (3) ∞ 2 ρ ε ∞ W ε 3 R ρ ε |∂ 2 xx ρ ε | p-1 dx ≤ 8 v (3) ∞ ρ ε 3 ∞ W 3 ε R ρ p ε dx + (p -1) R |∂ 2 xx ρ ε | p dx using Young's inequality. 1 • |J 5 | = 3p R ρ ε v (ρ ε * ω ε ) ∂ x (ρ ε * ω ε ) ∂ 2 xx (ρ ε * ω ε ) (∂ 2 xx ρ ε ) p-1 dx ≤ 6p v ∞ ρ ε 2 ∞ W ε R |∂ 2 xx (ρ ε * ω ε )| |∂ 2 xx ρ ε | p-1 dx ≤ 6 v ∞ ρ ε 2 ∞ W ε R |∂ 2 xx (ρ ε * ω ε )| p dx + (p -1) R |∂ 2 xx ρ ε | p dx ≤ 6 v ∞ ρ ε 2 ∞ W ε   3 p η η 0 |ω (u)| p/(p-1) du p-1 R ρ p ε dx + 3 p |ω (η-)| + |ω (0+)| p R ρ p ε dx + 6 p ω(η) + 2ω(0) p R |∂ x ρ ε | p dx + (p -1) R |∂ 2 xx ρ ε | p dx   using relation (2.12). 2 • |J 6 | = p R ρ ε v (ρ ε * ω ε )∂ 3 xxx (ρ ε * ω ε ) (∂ 2 xx ρ ε ) p-1 dx ≤ p ρ ε ∞ v ∞ R |∂ 3 xxx (ρ ε * ω ε )| |∂ 2 xx ρ ε | p-1 dx ≤ ρ ε ∞ v ∞ R |∂ 3 xxx (ρ ε * ω ε )| p dx + (p -1) R |∂ 2 xx ρ ε | p dx .
Estimate (2.3) of Proposition 1 and the inequality (2.11) give

R |∂ 3 xxx (ρ ε * ω ε )| p (t, x) dx ≤ 3 p η η 0 |ω (u)| p/(p-1) du p-1 R |∂ x ρ ε (t, x)| p dx +3 p |ω (η-)| + |ω (0+)| p R |∂ x ρ ε (t, x)| p dx +6 p ω(η) + 2ω(0) p R |∂ 2 xx ρ ε (t, x)| p dx.
Then

|J 6 | ≤ ρ ε ∞ v ∞   3 p η η 0 |ω (u)| p/(p-1) du p-1 R |∂ x ρ ε (t, x)| p dx + 3 p |ω (η-)| + |ω (0+)| p R |∂ x ρ ε (t, x)| p dx + 6 p ω(η) + 2ω(0) p R |∂ 2 xx ρ ε (t, x)| p dx + (p -1) R |∂ 2 xx ρ ε (t, x)| p dx   . • J 7 = εp R ∂ 4 xxxx ρ ε (∂ 2 xx ρ ε ) p-1 dx = -εp(p -1) R ∂ 3 xxx ρ ε 2 (∂ 2 xx ρ ε ) 2(N -1) dx ≤ 0.
The above estimates give an estimate of the form

d dt R (∂ 2 xx ρ ε (t, x)) p dx ≤ C ε,p 7 R |∂ 2 xx ρ ε (t, x)| p dx + R |∂ x ρ ε (t, x)| p dx + R ρ p ε (t, x) dx R |∂ x ρ ε (t, x)| 2p dx + R ρ 2p ε (t, x) dx   , where C p 7 = C p 7 p, v ∞ , v ∞ , v (3) ∞ , sup ε ρ ε ∞ W ε , C p ω , C 2p ω and C p ω = max 3 p η η 0 |ω (u)| p/(p-1) du p-1 , 3 p |ω (η-)| + |ω (0+)| p , 6 p ω(η) + 2ω(0) p .
Note that C p 7 is a constant since ρ ε ∞ W ε is bounded with respect to ε thanks to Proposition 4 and 1.5. This estimate, combined with (2.13) and (2.14), give then

d dt R |∂ 2 xx ρ ε (t, x)| 2N dx + R |∂ x ρ ε (t, x)| 2N dx + R ρ 2N ε (t, x) dx ≤ C 2N 8 R |∂ 2 xx ρ ε (t, x)| 2N dx + R |∂ x ρ ε (t, x)| 2N dx + R ρ 2N ε (t, x) dx +C 2N 7 e C 2N 9 t R |∂ x ρ(0, x)| 4N dx + R |ρ(0, x)| 4N dx , where C 2N 8 = C 2N 7 + sup ε C ε,2N 6 , C 2N 9 = sup ε C ε,2N 6 . Note that C ε,2N 6 
is bounded with respect to ε thanks to Proposition 4 and 1.5. Since an inequality of the form

u (t) ≤ K 1 u(t) + K 2 e K 3 t
implies the estimate 3 Proof of Theorem 1

u(t) ≤ u(0)e K 1 t + K 2 e K 1 t t 0 e (K 3 -K 1 )s ds ≤ u(0)e K 1 t + K 2 K 3 e (K 1 +K 3 )t -e K 1 t , we get the estimate R |∂ 2 xx ρ ε (t, x)| 2N dx + R |∂ x ρ ε (t, x)| 2N dx + R ρ 2N ε (t, x) dx ≤ R |∂ 2 xx ρ(0, x)| 2N dx + R |∂ x ρ(0, x)| 2N dx + R ρ 2N (0, x) dx e C 2N 8 t + C 2N 7 C 2N 9 R |∂ x ρ(0, x)| 4N dx + R |ρ(0, x)| 4N dx e (C 2N 8 +C 2N 9 )t -e C 2N 8 t , which implies sup t∈[0,T ] R |∂ 2 xx ρ ε (t, x)| 2N dx + R |∂ x ρ ε (t, x)| 2N dx +
In this section, we pass to the limit as ε → 0 and we show that the limit function ρ satisfies equation (1.1).

Using Proposition 2, the sequence {ρ ε } ε is bounded in L ∞ ([0, T ], L 2 (R)). Using Proposition 3, the sequence {∂ x ρ ε } ε is bounded in L ∞ ([0, T ], L 2 (R)). Using Propositions 1 and 4, the sequences v(ρ ε * ω ε ) ε , v (ρ ε * ω ε ) ε and ∂ x (ρ ε * ω ε ) ε are bounded in L ∞ ([0, T ] × R). Then

∂ x (ρ ε v(ρ ε * ω ε )) = ∂ x ρ ε • v(ρ ε * ω ε ) + ρ ε v (ρ ε * ω ε ) ∂ x (ρ ε * ω ε )
is bounded in L ∞ ([0, T ], L 2 (R)). Using Proposition 5, we also have a bound with respect to ε for ∂ 2 xx ρ ε in the space L ∞ ([0, T ], L 2 (R)), then

∂ t ρ ε = ε∂ 2 xx ρ ε -∂ x (ρ ε v(ρ ε * ω ε )) ∈ L ∞ ([0, T ], L 2 (R))
uniformly with respect to ε. In particular, ρ ε ∈ C([0, T ], L 2 (R)) and the sequence is bounded in implying that ρ is a solution of (1.1).

  , x + y)ω(y) dy = x+η x ρ(t, y)ω(y -x) dy.(1.2)

1 k

 1 2 p-k = 3 p , we get the result. Estimate (2.2) of Proposition 1 and inequality (2.11) give

2 9 R 2 0 R 2 9 R

 292029 xx ρ(0, x)| 2N dx + R |∂ x ρ(0, x)| 2N dx + R ρ 2N (0, x) dx e C |∂ x ρ(0, x)| 4N dx + R |ρ(0, x)| 4N dx e (xx ρ ε (t, x)| 2N dx dt + T |∂ x ρ ε (t, x)| 2N dx dt + xx ρ(0, x)| 2N dx + R |∂ x ρ(0, x)| 2N dx + R ρ 2N (0, x) dx T e C |∂ x ρ(0, x)| 4N dx + R |ρ(0, x)| 4N dx e (C 2N 8 +C 2N 9 )T T.

  this space. Since ∂ t ρ ε , ∂ x ρ ε ∈ L ∞ ([0, T ], L 2 (R)) with uniform bounds with respect to ε, then {ρ ε } ε is bounded in H 1 loc ([0, T ] × R).Up to the extraction of a subsequence, the sequence {ρ ε } ε converges to some ρ in L 2 loc ([0, T ] × R) and a.e. We have now to prove that the limitρ ∈ C([0, T ], L 2 (R)) is a solution of (1.1). Since (ρ ε * ω ε )(t, x) -(ρ * ω)(t, x) = 0 -ε ρ ε (t, x + y)ω ε (y) dy + η 0 (ρ ε -ρ)(t, x + y)ω(y) dy + η+ε η ρ ε (t, x + y)ω ε (y) dytends to 0 when ε goes to zero, we haveρ ε v(ρ ε * ω ε ) → ρv(ρ * ω) a.e.Therefore using dominated convergence Theorem, we get ρ ε v(ρ ε * ω ε ) → ρv(ρ * ω) in L 1 loc ([0, T ]×R),