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24 Abstract

25 This study investigated the long-term role and drivers of fire in the central European temperate 

26 spruce-beech forests from Prášilské jezero, Czech Republic. The results illustrate the complex 

27 relationship between broad-scale climate, vegetation composition, and local human activities on 

28 fire throughout the Holocene. Biomass burning was the highest (average 3 fires/1000 years) and 

29 most severe during the early Holocene when fire resistant taxa (Pinus, Corylus and Betula) 

30 dominated. Using a Generalized Additive Model to assess the response of dominant canopy taxa 

31 to changes in biomass burning and fire severity, response curves demonstrate a positive 

32 relationship (p < 0.01) between fire resistant taxa and increases in biomass burning. Norway 

33 spruce (Picea abies) established ~10,000 cal yr BP and expanded during peak biomass burning. 

34 Response curves show a slight negative relationship with Picea and increasing biomass burning, 

35 and a positive relationship with increasing fire severity. This suggests that central European 

36 spruce forests may not be significantly impacted by fire. Regional biomass burning dramatically 

37 decreased with the expansion of fire sensitive taxa (e.g. Fagus sylvatica) ~6500 cal yr BP, yet no 

38 dramatic reduction in local fire frequency occurred. This suggests either human activities or rare 

39 fire-promoting climatic events were important in shaping local fire regimes. Fire activity peaked 

40 (6 fires/1000 years) ~2500 cal yr BP and paralleled increases in anthropogenic pollen indicators. 

41 Fagus response curves illustrates a negative (p < 0.01) relationship with increasing biomass 

42 burning and fire severity suggesting that natural Fagus forests may be increasingly vulnerable to 

43 projected increases in wildfire occurrence. 

44

45 Keywords 
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47

48 Highlights

49 • First high-resolution fire-history record to discuss fire frequency from natural spruce-

50 beech temperate forests in the Šumava Mountains, central Europe

51 • Fire has been an important disturbance agent in central Europe for the past 10,000 years

52 • Climate and vegetation were the primary drivers of fire in the early Holocene

53 • Humans activities were likely secondary drivers of fire throughout the Holocene 

54 • Beech may be one of the most vulnerable species to projected increases in temperatures, 

55 heat stress, and risk of wildfires in central Europe.

56

57 1. Introduction 

58 Fire is an important disturbance agent driving changes in vegetation composition, ecosystem 

59 structure and function, and nutrient cycling (Boerner, 1983; Bowman et al., 2009; Carcaillet et 

60 al., 2002; Whitlock et al., 2003). Paleoecological studies have documented the vital role of 

61 climate, vegetation, and human activities on global fire activity over millennia (Marlon et al., 

62 2013; Power et al., 2008). Yet, knowledge gaps pertaining to the long-term role of fire in 

63 particular regions, specifically central Europe, still exist (Feurdean et al., 2012; Feurdean and 

64 Vannière, 2017). More important is the lack in understanding how forest canopy taxa will 

65 respond to changing fire regimes as a result of anthropogenically-induced climate change. 

66 Temperate forest fires in central Europe are often considered as a negligible ecosystem 

67 disturbance (Adámek et al., 2015) because of the assumed low flammability of deciduous forests 

68 (Ellenberg, 1982). Yet, over the past decade emerging literature has demonstrated that fires have 

69 occurred for millennia in central European forested ecosystems (e.g. Clark et al., 1989; Bobek et 
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70 al. 2017; Niklasson et al., 2010; Novák et al. 2012). However, crucial parameters of fire regimes 

71 i.e. fire frequency and drivers of biomass burning, are neither fully understood nor discussed 

72 (Niklasson et al., 2010), specifically from central European Norway spruce (Picea abies) and 

73 European beech (Fagus sylvatica) forests. 

74 Climate models predict more frequent and extreme climatic events such as heat-waves and 

75 droughts throughout Europe (Rajczak et al., 2013; Seneviratne et al. 2012), which can elevate fire 

76 risk and impact on vegetation (Camia et al., 2017; Lavelle et al., 2014; Linder et al., 2014). For 

77 instance, as a result of increasing temperature and drought, the susceptibility of mountain plant 

78 communities to mortality has increased (Allen et al., 2010). Because extreme climatic events also 

79 contribute to an increase in fire risk, composition and structure of particular plant communities 

80 may adapt to include more thermophilic species (Gottfried et al., 2012), thus favoring more fire-

81 prone ecosystems. As future projections suggest an increase in fire risk in central European 

82 ecosystems by the end of the 21st century (Lung et al., 2013), it is important to understand long-

83 term fire dynamics in order to determine how increasing wildfire activity may impact future 

84 temperate forests. 

85  Fire activity is determined by both top-down (e.g. climate) and bottom-up (e.g. 

86 vegetation and human activities) drivers which combine to create different fire regimes across 

87 varying spatial and temporal scales. Climate variability is considered to be the dominant top-

88 down driver of fire through its influence on broad-scale energy budgets and variations in 

89 moisture and temperature, which typically results in regional to continental-scale 

90 synchronization of fire activity (Falk et al., 2011). Local factors such as topography (i.e. slope 

91 and aspect) and fuel type (i.e. vegetation composition) typically create different mosaics of fire 

92 severities (Falk et al., 2011). However, human land use also significantly influences local fire 
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93 regimes (Gill and Taylor, 2009), yet estimating the extent and magnitude of human-caused fires 

94 and land-use activities on natural fire regimes has proven to be difficult (see Kaplan et al., 2016). 

95 Because top-down and bottom-up factors vary spatially and temporally (Courtney-Mustaphi et 

96 al., 2013; Gavin et al., 2003; Gedalof, 2011), long-term fire histories are necessary in order to 

97 investigate the relationship between drivers of fire and their influence on local fire regimes 

98 (Whitlock et al., 2010). 

99 As the role of fire in central European temperate forests is often deemed unimportant, 

100 there is a clear lack of understanding in: i) the relative importance and role of fire in these 

101 forests, and ii) the relationship between the dominant forest canopy taxa and changing fire 

102 regimes (i.e. changes in biomass burning and fire severities). To fill these gaps, we present a 

103 ~11,500-year high-resolution paleoecological reconstruction of vegetation dynamics and fire 

104 history from lacustrine sediments obtained from Prášilské jezero (Šumava Mountains, Czech 

105 Republic). This record explores for the first time drivers of fire dynamics in these primary 

106 temperate spruce-beech forests. The main objectives are to: 1) identify the key drivers of 

107 Holocene fire regimes; and 2) assess the response of the dominant forest canopy to changes in 

108 biomass burning and fire severities. 

109

110 2. Study area

111 Prášilské jezero (49° 04′ 30.684” N, 13° 23′59.136” E, 1079 m a.s.l.) (Fig. 1) is located 

112 within the unmanaged portion of Šumava National Park within a relatively steep glacial cirque, 

113 which deglaciated ~14,000 years ago (Mentlík et al., 2010). Tree-covered flanks extend 200-300 

114 m above the lake. It is a small oligotrophic lake (3.7 ha) with a relatively large (52 ha) 

115 catchment, and a catchment area to lake volume ratio of 1.93 (Vrba et al., 1996, 2000). The 
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116 catchment bedrock is composed of metamorphic crystalline rocks with gneiss, migmatite, and 

117 quartzite with local areas of granite (Mentlík et al., 2010; Pelc and Šebesta, 1994). 

118 The surrounding vegetation is dominated by Norway spruce with minor components of 

119 European beech, rowan (Sorbus aucuparia L.), silver birch (Betula pendula Roth), sycamore 

120 maple (Acer pseudoplatanus L.), and silver fir (Abies alba Mill.).  The understory is dominated 

121 by common mountainous spruce forest vegetation such as grasses (Avenella flexuosa L., 

122 Calamagrostis villosa J.F. Gmel., Luzula sylvatica Huds.), herbs (Prenanthes purpurea L., 

123 Senecio ovatus Willd., Soldanella montana Willd., Trientalis europaea L.), and small shrubs 

124 (Rubus idaeus L., Vaccinium myrtillus L., V. vitis-idaea L.). Sedges and shade-tolerant species 

125 (Carex canescens L., C. echinata Murray, Juncus effusus L., J. filiformis L., Oxalis acetosella 

126 L.) occur in shady and mesic areas along the inflowing stream, Jezerní potok. Ferns (Athyrium 

127 distentifolium Tausch ex Opiz, Blechnum spicant L., Dryopteris dilatata Hoffm.) and ground 

128 pine (Lycopodium annotinum L.) are also common in the understory vegetation. 

129 Based on >50-year long meteorological data (Czech Hydrometeorological Institute) from 

130 the closest weather station, Churáňov (Fig. 1), the modern Šumava region is characterized as a 

131 semi-humid continental climate with wet and cold winters, and wet and mild summers with an 

132 interpolated mean annual temperature and precipitation of 4.5oC and 941 mm year-1.

133
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134

135 Fig. 1. Site map of Prášilské jezero (red ‘x’) located in the Šumava Mountains of south-western 

136 Czech Republic (red circle). The red stars (Heiri et al., 2015) and blue triangle (Fohlmeister et 

137 al., 2013) show the localities used to reconstruct central European Holocene-climate. 

138 Meteorological data from Churáňov weather station (blue star), located approximately 20 km 

139 from Prášilské jezero, were used in this study to create a local macrophysical climate model 

140 (Bryson, 2005). 

141

142 3. Methods

143 3.1 Core retrieval, sediment limnology and radiocarbon dating

144 In August 2015 a 2.18 m sediment profile comprising of one gravity core (PRA15-2GC) 

145 and two parallel and overlapping long-cores (PRA 15–2–1 and PRA 15–2–2) were collected 
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146 from the deepest (14.8 m) part of Prášilské jezero from a floating platform. The sediment-water 

147 interface was collected using a gravity corer (Boyle, 1995), and the longer profiles with a 

148 Russian corer (1.5 x 0.075 m). Sediments were taken back to the University of Liverpool where 

149 they were subsampled at high-resolution (contiguous 0.5 cm intervals). Samples were then 

150 shipped to Charles University where the paleoecological analyses were conducted. 

151 Age-depth relationships were established using ten 14C and a 210Pb series (Appleby, 

152 1978) (Table SI1). Age-depth relationships were modelled in a Bayesian framework using 

153 ‘BACON’ (Blaaw and Christen, 2011) using the 210Pb and 14C dates. All 14C dates were 

154 calibrated with the IntCal13 dataset (Reimer et al., 2013), and a Student-t distribution was used 

155 to account for scatter in the 14C measurements, and for statistical outliers (Blaauw and Christen, 

156 2011). The weighted mean modelled ages against depth were smoothed using a 21-point moving 

157 average (Fig. 2), and used to calculate sediment, pollen, and charcoal accumulation rates. 

158
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159

160 Fig. 2. Age-depth model for Prášilské jezero. Age-depth relationships were established using ten 

161 14C and a 210Pb series (Appleby, 1978). The ages were modelled in ‘BACON’ (Blaauw and 

162 Christen, 2011) using the IntCal13 dataset for 14C ages (Reimer et al., 2013). A Student-t 

163 distribution was used to account for both scatter in the measurements and statistical outliers. 

164

165 3.2 Plant macrofossils and pollen analysis

166 To investigate the connection between the local fire history and local vegetation 

167 development, plant macrofossils were analyzed at 1 – 2.5 cm resolution. Sample volume was 

168 measured by measuring the displacement of water (on average 6 cm3), and then washed through 

169 a 100-μm sieve following Birks (2007). Plant macrofossils (needles, seeds, buds, bud scales, 

170 etc.) were counted under a stereomicroscope at 15 – 45 x magnification and identified with the 

171 aid of identification keys (Cappers et al., 2006; Bojňanský and Fargašová, 2007; Katz et al., 
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172 1965; Tomlinson, 1985), and by comparing macrofossils with the reference material stored in the 

173 Herbarium at Charles University. Identifiable charred macrofossil particles >1 mm were counted 

174 in order to support the reconstruction of the local fire history (see section 3.3). Concentrations of 

175 plant macrofossils were adjusted to a constant volume of 10 cm3. Seeds from terrestrial herbs and 

176 small shrubs (Asteraceae, Epilobium angustifolium, Epilobium sp., Poaceae, Rubus agg.) were 

177 summed together to estimate landscape openness. 

178 Pollen analysis was conducted at 1 – 2 cm resolution to reconstruct the vegetation 

179 history. For each sample, 0.5 cm3 was processed using standard procedures (Faegri et al., 1989). 

180 Prior-to pollen processing, a Lycopodium tablet was added to each sample as an exotic tracer to 

181 estimate pollen concentration and pollen accumulation rates (PAR; grains cm-2 yr-1) (Stockmarr, 

182 1972). A minimum of 500 pollen grains were counted in each sample with the aid of reference 

183 material and identification keys (Beug, 2004; Punt 1976 – 1996). Pollen counts were converted 

184 into pollen percentages based on the abundance of each pollen type relative to the sum of all 

185 identified terrestrial pollen. Total herb percentages were used to estimate landscape openness, 

186 while the summed percentages of Plantago lanceolata, Plantago.sp., Triticum-type, Secale-type, 

187 and Cerealia-type were used as traditional human indicator species. The pollen profile was 

188 divided into statistically significant pollen assemblage zones based on optimal splitting the sum-

189 of-squares using the broken-stick model (Bennett, 1996). The plant macrofossil and pollen 

190 records were visualized against the calibrated age-depth model using Tilia 2.0.41 software 

191 (Grimm, 2004). 

192

193 3.3 Charcoal analysis

194 3.3.1. Sample treatment and microscope analysis
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195 Microscopic and macroscopic charcoal particles were used to reconstruct both regional 

196 and local fire histories. Microscopic charcoal has been shown to be indicative of regional fire 

197 activity within a radius of 20 – 100 km of a site (MacDonald et al., 1991; Tinner et al., 1998; 

198 Whitlock and Larsen, 2001). Theoretical calibrations between fire and charcoal deposition 

199 suggest that macroscopic charcoal peaks most accurately reflect local fires (<3 km from coring 

200 site), while variations of total macroscopic charcoal abundance reflect regional biomass burning 

201 trends (~50 km from coring site) (Higuera et al., 2007, 2010; Peters and Higuera, 2007; Adolf et 

202 al., 2017). 

203 Microscopic charcoal was counted on pollen slides and was identified as being black, 

204 opaque, and angular in shape (Clark, 1988), while macroscopic charcoal was prepared (after 

205 Mooney and Tinner, 2011) by disaggregating contiguous 0.4 – 1 cm3 samples in a 20 ml solution 

206 of dilute sodium hexametaphosphate and 10 ml potassium hydroxide (5%). Macroscopic 

207 charcoal samples were washed gently through a 250-µm sieve and then bleached using 1 – 2 ml 

208 of sodium hypochlorite (8%: NaOCl) for the minimum time (up to 12 hours) necessary to 

209 achieve a consistent bleaching effect. The bleaching process was carefully monitored as bleach 

210 digests charcoal particles that are not fully charred, thus potentially reducing their size, 

211 particularly if the sample contains little organic material (Schlachter and Horn, 2010). The 

212 samples were then washed gently through a 125-µm sieve, and macroscopic charcoal particle 

213 counts were recorded with the use of a low power binocular microscope. Charcoal area 

214 measurements were made using digital greyscale images using a 137 – 255 greyscale threshold 

215 in ImageJ software (https://imagej.nih.gov/ij/). Macroscopic charcoal counts and area 

216 measurements were transformed to concentrations (particles cm-3) and accumulation rates 
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217 (particles cm-2 yr-1; mm2 cm-3). Macroscopic charcoal accumulation rate will be denoted as 

218 CHARC (the number of particles cm-2 yr-1) and CHARA (the area of particles mm2 cm-2 yr-1).  

219

220 3.3.2. Fire episode detection and change point analysis

221 To determine the regional fire history, the macroscopic charcoal records (CHARC and 

222 CHARA) were first interpolated to a constant temporal resolution (median: 28 years sample-1), 

223 and then broken into a low-frequency component (charcoal background (BCHAR)) and a peak 

224 component (CHARpeak) using the CharAnalysis software (Higuera et al., 2009). The BCHAR 

225 component was determined using a robust LOWESS regression with a moving-window width of 

226 600 years which resulted in a robust signal-to-noise index (SNI) >3.0 (Kelly et al., 2011). 

227 CHARpeak values were calculated as residuals from BCHAR, and CHARpeaks were evaluated 

228 using the 99th percentile of a Gaussian mixture model that aimed at separating peak samples 

229 representing actual fire events from surrounding noise in the CHARpeak series. The identified 

230 CHARpeakC were further screened with the minimum count peak-screening test (Gavin et al., 

231 2006; Higuera et al., 2010). CHARpeakA were screened with the method proposed by Finsinger et 

232 al. (2014) using the software, ARCO (‘charcoal ARea-COunts.’) v.1.0 (available at 

233 github.com/wfinsinger/ARCO). Fire frequencies (fires kyr-1) and fire-return intervals (FRI; the 

234 total number of years between adjacent fire episodes) were smoothed using a 1000-year window. 

235 Lastly, peak magnitude (the total charcoal abundance associated with each fire episode) was used 

236 as a qualitative measure of fire severity (Colombaroli et al., 2010; Feurdean et al., 2017; Keeley, 

237 2009; Minckley and Long, 2016; Robichaud, 2000).

238 Change point analysis was used to determine significant changes in biomass burning 

239 based on variations in both the mean and variance of the total CHAR records (Killick et al., 
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240 2012) using the ‘change point’ v2.2.2 package (Finsinger et al., 2016; Killick et al., 2014; R Core 

241 Development Team, 2012). We also tested the potential effect of sedimentation-rate change on 

242 change point detection following Finsinger et al. (2016). 

243

244 3.5 Regression analysis

245 In order to describe the relationship between the dominant forest canopy taxa and 

246 changes in fire regimes at Prášilské jezero, a Generalized Additive Model was used (GAM; 

247 Hastie and Tibshirani, 1986) using the ‘mgcv’ v1.8-12 package (Wood, 2006). A GAM is a 

248 semi-parametric extension of a generalized linear model that uses a link function to establish a 

249 relationship between the mean response variable (i.e. the dependent variable; PAR of the six 

250 dominant forest canopy taxa; Abies, Betula, Corylus, Fagus, Picea, and Pinus) and a smoothed 

251 predictor variable(s) (i.e. the independent variable; CHARA and peak magnitude) (Birks, 2012). 

252 The default setting for GAMs, a Gaussian error distribution and an identity link function, were 

253 used in this study. Both the response variables and the predicator variables were logged to 

254 stabilize the variance between the two datasets. P-values were implemented in the function 

255 summary.gam of the ‘mgcv’ R package, v1.8-12.

256

257 3.4 Climate model

258 Locally derived paleoclimate proxies are scarce in central Europe making it difficult to 

259 interpret macro-scale changes in climate and their influences on fuel and fire occurrence. 

260 However, previous paleoecological studies have demonstrated the effectiveness of 

261 macrophysical climate models (MCM) as independent climate data sources (Dreslerová, 2012; 

262 Higgins and MacFadden, 2009; Jamrichová et al., 2014; Kuneš et al., 2015; Riehl et al., 2009). 
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263 The MCM is an alternative to iterative general circulation models (GCMs) and uses a top-down 

264 approach rather than a bottom-up approach to model building. While MCMs are simpler than 

265 GCMs, MCMs illustrate the main trends in site-specific climatic changes. Essentially the MCM 

266 is a heat-budget model derived from the basic principles of synoptic climatology, and variations 

267 in atmospheric transparency, as well as orbital forcing (Bryson, 2005). The model calculates 

268 monthly values in 100-year intervals using modules that consist of internal boundary conditions 

269 (i.e., subtropical highs, jet streams and Intertropical convergence), external orbital forcing, and 

270 volcanic eruptions for the past 40,000 years. The modules are then assembled into a site-specific 

271 model that is calibrated by using a locally derived time series of meteorological data (here, the 

272 Churáňov weather station record). 

273 In addition, we compared the MCM model with independent paleoclimate records 

274 obtained from public repositories; a stacked reconstruction of July temperature from multiple 

275 sites across central Europe (Heiri et al., 2015), and a reconstruction of winter temperature from 

276 Spannagel Cave, Austria (Fohlmeister et al., 2013) (Fig. 1). 

277

278 4. Results

279 4.1 Reconstructed fire history

280 Macroscopic CHARC and CHARA are strongly correlated (Pearson’s r coefficient = 0.74, 

281 p-value < 0.001). CHARC and CHARA records show similar trends in biomass burning with the 

282 highest BCHAR values occurring during the early Holocene between 11,000 and ~6500 cal yr 

283 BP when CHAR abruptly decreased (Fig. 3). CHARA values increase again briefly ~6000 cal yr 

284 BP, between 4600 and ~3300 cal yr BP, and over the past ~1800 years. These periods of 

285 increased biomass burning correspond to the significant zones detected by change point analysis 
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286 (Fig. 4). Micro-CHAR similarly captures this general trend of increased values between 11,500 

287 and ~8500 cal yr BP, minimum values between 8000 and 500 cal yr BP, and increasing values 

288 over the past 500 years. 

289 The SNI generally exceeded the critical threshold of 3.0 suggesting the records are both 

290 suitable for peak-detection analysis during most periods of time (Kelly et al., 2011) (see 

291 Appendix Fig. 1). Overall, CHARC identified 30 fire episodes, while CHARA identified 24 fire 

292 episodes. Both CHARC and CHARA records show high fire frequencies centered in the early-to 

293 mid-Holocene (10,000 – 7000 cal yr BP) and late Holocene (past c. 1,000 years) (Fig. 3a and c), 

294 reflecting the regional biomass burning trends derived from the BCHAR record. However, the 

295 fire frequency records based on CHARC and CHARA differ between 7000 – ~1000 cal yr BP; 

296 whereas CHARC-inferred fire frequency is low, CHARA-inferred fire frequency is stable with the 

297 highest values around 2500 cal yr BP. Reconstructed fire frequency based on CHARA suggests 

298 an average of c. 3 fires/1000 years (FRI = ~333 years) between 10,000 – 7000 cal yr BP. CHARA 

299 fire frequencies were slightly lower (average of 2 fires/1000 years (FRI = ~500 years)) between 

300 6000 cal yr BP and present, except around ~2500 cal yr BP when CHARA fire frequency 

301 increased to an average of 6 fires/1000 years (FRI = ~166 years). 

302 While peak magnitudes varied in size (CHARC ranged between 0 and 15 particles cm-2 

303 peak-1; CHARA ranged between 0 and 3.9 particles cm-2 peak-1), the records show similar trends 

304 of higher peak magnitudes in the early- to mid-Holocene, and lower peak magnitudes after 

305 ~6500 cal yr BP. 

306
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307

308 Fig. 3. Reconstructed fire history for Prášilské jezero based on macroscopic charcoal counts 

309 (CHARC: A-B), macroscopic charcoal areas (CHARA: C-D), and microscopic charcoal counts 

310 (MicroCHAR: E). A) and C): smoothed fire-frequency records (yellow-red shading), peak-

311 magnitude records (black vertical bars), and significant fire episodes (red crosses) and non-



17

312 significant fire episodes (grey dots); B) and D): macroscopic charcoal accumulation rate (dark 

313 grey vertical bars), and the charcoal background records (BCHAR; red continuous line); E): 

314 MicroCHAR (dark grey vertical bars) values with a loess smoother using a window width of 11 

315 (red line). Pink vertical bands highlight periods of higher CHARA values as detected by change 

316 point analysis (see Fig. 4). Grey vertical lines are associated with the statistically significant 

317 pollen zones detected by broken stick analysis (labelled Z1 – Z7).

318

319

320 Fig. 4. Comparison between change point analysis based on macroscopic charcoal counts 

321 (CHARC; top), macroscopic charcoal area (CHARA; middle), and sample deposition time 
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322 (bottom) for Prášilské jezero. Vertical blue lines indicate change points in the CHAR records. 

323 Primary zones of elevated biomass burning are depicted by the areas shaded in pink. 

324 4.2 Reconstructed vegetation history

325 The pollen percentage profile was divided into seven statistically significant pollen-

326 assemblage zones. Zones 1 – 4 (11,500 – 6700 cal yr BP) are characterized by high percentages 

327 of Pinus, Corylus, Betula and herbs (Fig. 5). High concentrations of Pinus, Betula, herbs, and 

328 charred macrofossil remains (> 1 mm) were also found throughout Zones 1 – 4 (Fig. 5). High 

329 concentrations of Juncus macrofossil remains were also present during Zones 1 – 4 (See 

330 Appendix Fig. 2). During Zone 3 (10,000 – 8300 cal yr BP), Picea pollen percentages increased, 

331 as did Picea macrofossil concentrations and the appearance of Picea stomata, suggesting the 

332 local establishment and rise to dominance of Picea. Zone 4 (8300 – 6700 cal yr BP) illustrates 

333 the dominance of Picea when Corylus was still abundant (Fig. 5), and when biomass burning 

334 was at its highest (Fig. 3). Fagus pollen percentages increase towards the end of Zone 4 (~7000 

335 cal yr BP) suggesting the local establishment of beech. The boundary between Zones 4 and 5 (c. 

336 6700 cal yr BP) marks the transition of Fagus becoming a secondary component of the canopy 

337 cover (comprising ~>20% of the canopy). Towards the end of Zone 5, Abies pollen percentages 

338 increase, yet Abies macrofossil concentrations do not appear until Zone 6. The earliest findings 

339 of human pollen indicator species occur in Zone 5. Around 2500 cal yr BP (middle of Zone 6; 

340 5100 – 1000 cal yr BP), human pollen indicator species increase briefly, then decrease, and then 

341 dramatically increase again starting ~1000 cal yr BP (onset of Zone 7). The latter half of Zone 6, 

342 as well as Zone 7 are characterized by the decline in Fagus and Abies pollen percentages, and the 

343 increase in herb pollen percentages and herb macrofossil concentrations (i.e. landscape 

344 openness). 
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346 Fig. 5. Reconstructed vegetation history of the dominant forest canopy taxa at Prášilské jezero 

347 using pollen percentages (filled coloured lines), and macrofossil data (black bars). Vegetation 

348 data are compared to significant fire episodes (red crosses), non-significant fire episodes (grey 

349 dots), peak magnitude (black vertical bars), CHARA (grey vertical bars), and the concentration of 

350 charred macrofossil remains (black vertical bars). All y-axes were clipped at 50%. Pink vertical 

351 bands highlight periods of higher CHARA values as detected by change point analysis (see Fig. 

352 4). Grey lines are associated with the statistically significant pollen zones detected by broken 

353 stick analysis (labelled Z1 – Z7).

354

355 4.3 Regression analysis

356 Response curves show that Betula, Corylus and Pinus have a statistically significant 

357 positive relationship (e.g. at the 95% confidence interval) with increased biomass burning (i.e. 

358 CHARA), whereas Fagus has a statistically significant negative relationship (Fig. 6a; Table 1). 

359 While not statistically significant, Corylys illustrates a positive relationship with increasing fire 

360 severities, while Betula, Fagus, and Pinus all have a negative relationship (Fig. 6b). Picea has a 

361 slightly negative relationship with increased biomass burning, and a slight positive relationship 

362 with increasing fire severities (Fig 6b), but these trends are not statistically significant. While 

363 Abies shows a relatively positive relationship to both increased biomass burning and fire 

364 severities, these relationship are too weak to make inferences about the species relationship with 

365 fire in this study (Fig. 6a). 

366
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367

368 Fig. 6. Taxa response curves illustrating the relationship between pollen accumulation rates of 

369 the six dominant forest canopy species and increases in biomass burning (i.e. CHARA)(A), and 

370 fire severity (i.e. peak magnitudes) (B). A) Response curves illustrate three different responses to 

371 changing fire regimes at Prášilské jezero, which correspond to fire resistance (Betula, Corylus, 

372 and Pinus), avoidance (Picea), and sensitive/intolerance (Fagus). B) Only Corylus and Picea 

373 illustrate a positive relationship with increasing fire severity. 

374

375

Species CHARA CHARA CHARA Peak Magnitude Peak Magnitude Peak Magnitude

names r2 adj. p-value df r2 adj. p-value df

Abies 0.03 0.009 2 0.0155 0.348 4.675
Betula 0.056 0.009 3.575 -0.003 0.623 2

Corylus 0.77 <0.001 2.742 0.0354 0.116 5.372
Fagus 0.162 <0.001 4.387 -0.002 0.508 2
Picea 0.008 0.419 3.342 0.003 0.191 2
Pinus 0.132 <0.001 4.38 -0.005 0.867 2

376

377 Table 1. Correlation between the dominant forest canopy taxa and macroscopic charcoal area 

378 (CHARA) and peak magnitudes at Prášilské jezero, as determined by a Generalized Additive 

379 Model. 
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380

381 4.4 Reconstructed climate 

382 The MCM model provided monthly means of temperature and evaporation in 100-year 

383 intervals (Fig. 7C, D, G). Specifically, we selected averages of monthly means for winter (DJF) 

384 and summer (JJA) temperature, and summer potential evaporation (AE/PE) in order to compare 

385 with regional climate data. Two main climatic phases are present in the MCM model after the 

386 postglacial warming from 11,500 to ~9500 cal yr BP. The first phase between 9500 and ~5500 

387 cal yr BP was characterized by relatively low winter temperatures, higher-than-present summer 

388 temperatures, and higher-than-present potential evaporation during the summer (i.e. warmer and 

389 drier-than-present summer conditions). The second phase between ~5500 cal yr BP and present  

390 was characterized by gradually increasing winter temperatures, decreasing summer temperatures, 

391 and decreasing potential evaporation during the summer (i.e. gradually cooler and wetter-than-

392 previous summer conditions). Overall, the MCM outputs reflect the long-term millennial-scale 

393 trends in winter and summer temperatures derived from regional proxy records (Fig. 7E, F). 

394
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395

396 Fig. 7. Reconstructed climate from central Europe. A) summer and B) winter insolation curves 

397 for 45oN (Berger and Loutre, 1991); C) reconstructed summer AE/PE based on the MCM model, 

398 (this study); D) reconstructed summer temperature based on the MCM model (this study); E) 

399 reconstructed July temperature based on a stacked chironomid record from multiple sites across 

400 central Europe (Heiri et al., 2015); F) reconstructed winter temperature based on δ18O isotopes 

401 from Spannagel Cave, Austria (Fohlmeister et al., 2013); G) reconstructed winter temperature 
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402 based on the MCM model (this study). Pink vertical bands highlight periods of higher CHARA 

403 values as detected by change point analysis (see Fig. 4). Grey vertical lines are associated with 

404 the statistically significant pollen zones detected by broken stick analysis (labelled Z1 – Z7).

405   

406 5. Discussion

407 5.1. Using charcoal area to infer the local fire history 

408 Reconstructed CHARC and CHARA from Prášilské jezero illustrate similar long-term 

409 patterns of higher biomass burning in the early-to mid-Holocene, and lower biomass burning 

410 after 6500 cal yr BP (Fig. 3). The similarity supports previous studies reporting a strong 

411 correlation between macroscopic charcoal count and area data (Finsinger et al. 2014; Tinner and 

412 Hu, 2003). 

413 Unlike the similarities in CHARC and CHARA, there appears to be differences in the 

414 reconstructed fire episodes and fire frequency using both macroscopic charcoal counts versus 

415 area. These differences could be associated with lab treatment and/or different user-defined 

416 parameters within the software used (e.g. CharAnalysis and ARCO). For example, low count 

417 sums in proxy data have been shown to reduce strongly the accuracy of palaeoecological 

418 reconstructions (Finsinger and Tinner, 2005; Heiri and Lotter, 2001; Maher, 1972; Maher et al., 

419 2012). Charcoal counts were consistently low at Prášilské jezero and did not meet the preferred 

420 rule of thumb that non-peak samples have >10 charcoal pieces and peak samples have at least 20 

421 charcoal particles (Higuera et al., 2010). This likely made the identification of statistically 

422 significant peaks difficult. Patterns of fire frequencies have been shown to vary little based on 

423 charcoal counts and area data both without peak-screening tests (Ali et al., 2009), and with peak-

424 screening tests (Finsinger et al., 2014). By contrast, here we demonstrate that patterns of fire 
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425 frequencies and detected peak episodes differ substantially between charcoal counts and area 

426 data. We suggest that low charcoal counts could have contributed to the different reconstructed 

427 fire frequencies and detected fire episodes. Despite these limitations, here we infer relationships 

428 between vegetation-dynamics and fire-frequency changes based on charcoal area rather than 

429 charcoal counts. While it might be difficult to determine the spatial scales of fire frequency and 

430 fire return interval (FRI) with CHAR records comprising particles >150 μm as in our study 

431 (Adolf et al., 2017), support for this comes from the area-based screening-peak test (Finsinger et 

432 al., 2014), which should reduce the influence of small charcoal particles derived from regional 

433 background of CHAR (Tinner et al., 1998; Adolf et al., 2017).

434

435 5.2 Drivers of fire regimes in central European montane spruce-beech forests

436 The history of fire in Europe is a complex product of top-down (i.e. climate) and bottom-

437 up (i.e. vegetation dynamics and human activities) drivers (Pyne, 2000). The Prášilské jezero fire 

438 history reflects how these drivers facilitated in changing fire regimes over time. In the early 

439 Holocene, broad-scale climatic forces such as the high contrast between colder-than-present 

440 winters and warmer-than-present summers (Perșoiu et al., 2017), and high summer insolation 

441 induced warmer- and drier-than-present conditions (Fig. 7; Davis et al., 2003, Heiri et al., 2003, 

442 Litt et al., 2009), resulted in fuel type more conducive for high and regionally synchronous 

443 biomass burning. Fuel composition at Prášilské jezero was dominated by Pinus and Corylus in 

444 addition to continuous fire-promoting fuels in the form of understory herbs in the early Holocene 

445 (Fig. 5). While pollen and macrofossil analysis were unable to conclude whether P. mugo or P. 

446 sylvestris dominated in the early Holocene, both P. mugo and P. sylvestris are favored by 

447 frequent, low-intensity surface fires (Zackrisson, 1977; Delcourt and Delcourt, 1987; Engelmark 



26

448 et al. 1994; Adámek et al., 2015). Thus either species would have benefited from the frequent 

449 fire activity documented in the early Holocene. Corylus avellana is also known to colonize early 

450 and spread quickly after fires (Delarze et al., 1992). However, because Corylus maxima also 

451 occurred during previous Interglacials when conditions were drier-than-present (Wright, 1977), 

452 the high abundance of Corylus in the early Holocene further supports that conditions were drier-

453 than-present. We thus interpret causality between relatively high fire frequency, high Corylus 

454 abundance, and drier-than-present conditions at Prášilské jezero in the early Holocene, 

455 supporting earlier formulated hypotheses (Huntley, 1993; Finsinger et al., 2006). High fire 

456 activity and increased abundances of Corylus and Pinus have also been observed throughout 

457 central Europe during this time (Feurdean et al., 2013; 2017; Finsinger et al 2006; Tinner et al., 

458 1999). 

459 Picea abies established and expanded during the early Holocene when regional biomass 

460 burning and local fire severity were the highest of the entire record. Regionally, Picea abies 

461 persisted throughout the Holocene in the Carpathians, enduring a low-to-moderate fire regime 

462 and a variable FRI of 200 – 300 years (Feurdean et al., 2017), and 1000 – 4000 years (Finsinger 

463 et al. 2016), which agrees with the estimated fire reoccurrence period in central European 

464 mountain spruce forests (Tinner et al., 1999; Beer and Tinner, 2008). Previous paleoecological 

465 studies documenting the expansion of Picea abies during periods of increasing fire activity 

466 (Brown and Giesecke, 2014; Carcaillet et al., 2007) suggest that the combined effect of increased 

467 fuel loads and periodic summer drought resulted in dry surface layers suitable for combustion 

468 (Brown and Gisecke, 2014). Thus, the drier-than-present climatic conditions could have 

469 supported the high biomass burning when Picea abies dominated in the early Holocene. Our 

470 results support the findings of Feurdean et al. (2017) and Finsinger et al. (2016) in that Picea was 
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471 able to expand and persist in the early Holocene because climate conditions were dry enough 

472 (high summer AE/PE ration; Fig. 7C) to sustain high regional biomass burning with a relatively 

473 high fire frequency and moderate-scale fire severity. 

474 High biomass burning may have also been a result of Upper Paleolithic and Mesolithic 

475 hunter and gatherers and their land-use activities, whom occupied the Šumava Mountains 

476 between 13,950 - 7500 cal yr BP (Čuláková et.al., 2012b; Vencl, 2006; Fröhlich, 2009; Šida et 

477 al., 2011; Eigner et al., 2017). Mesolithic finds have been connected with the seasonal 

478 exploitation of food resources, such as fishing and hunting, and the late summer source of berries 

479 e.g. Vaccinium and Oxycoccus (Oliver, 2007), which mature later at higher elevations >500 m 

480 a.s.l. Additionally, they would have exploited the high abundances of Corylus nuts (Divišová and 

481 Šída, 2015), which was one of the dominant canopy species found regionally in the early 

482 Holocene (Svobodová et al., 1996; 2000; 2002). While estimating the extent and magnitude of 

483 fires caused by hunters and gatherers is difficult, Kaplan et al. (2016) suggest that hunter-

484 gatherers had mastered fire as a tool for landscape management, and for improving hunting and 

485 foraging opportunities during the Last Glacial Maximum (LGM). However, increased burn area 

486 during the LGM generally resulted in large reductions in forest cover (Kaplan et al., 2016). 

487 However, in the early Holocene, there was no significant reduction in forest cover, nor any 

488 significant increase in herbaceous pollen (i.e. landscape openness) (Carter et al., 2018), or 

489 traditional anthropogenic pollen indicators at Prášilské jezero (Fig. 5). Additionally, Corylus 

490 maxima also occurred during previous Interglacials (Wright, 1977) when human activities were 

491 unlikely to have been a factor (Finsinger et al., 2006). Thus, despite the archeological evidence 

492 suggesting humans occupied the region during the early Holocene, we conclude that because the 

493 trend in biomass burning was similar to other records across Europe (Feurdean et al., 2012; 
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494 Finsinger et al., 2006; Olsson et al., 2010; Vanniére et al., 2016), as well as with global biomass 

495 burning syntheses (Marlon et al. 2013; Power et al. 2008), climate and type of fuel were the 

496 primary drivers of biomass burning at the regional-to-subcontinental-scale, but acknowledge that 

497 local-scale human activities could have influenced the local fire regime (see Valese et al., 2014). 

498 During the mid-Holocene, broad-scale changes in climate resulted in major shifts in 

499 vegetation composition, and subsequently a decline in global biomass burning (Marlon et al., 

500 2013; Power et al., 2008). As summer insolation decreased, winter insolation increased resulting 

501 in the long-term trend of increasing winter temperature (Fig. 7F, G). This led to the decline in the 

502 strength of the westerlies inducing wetter and milder-than-previous winter conditions across 

503 Europe (Benito et al., 2015). Pollen-based climate reconstructions highlight winter temperature 

504 as the most important driver of mid-to late-Holocene warming in Europe (Mauri et al., 2015). 

505 Because Fagus sylvatica is sensitive to cold winter temperatures and spring frost (Cheddadi et 

506 al., 2017), it is likely that the spread of Fagus across Europe during the mid-Holocene, while not 

507 spatially synchronous, may have been limited by colder-than-present winter temperatures (Fig. 

508 7F, G). Feurdean et al. (2017) attributed the expansion of Fagus to either climate or a 

509 combination of climate, fire, and human disturbances. Yet, Giesecke et al. (2007; 2017) suggest 

510 that no single variable, such as climate, disturbances, or intrinsic biological factors can explain 

511 the changes in Fagus distribution and abundance. Regardless of the causes leading to the 

512 expansion of Fagus on regional to subcontinental-scales, the reconstructed CHARC and CHARA 

513 corroborate the notion that once beech established as one of the main canopy species, regional 

514 biomass burning declined illustrating bottom-up controls on biomass burning (Fig. 5). 

515 Because regional biomass burning decreased with the expansion of beech forests, it can 

516 be assumed that the local fire frequency would also decrease, yet the local fire frequency 
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517 remained relatively similar to that seen during the early Holocene (Fig. 3). Submontane beech 

518 forests in central Europe are considered to have a low frequency fire regime with few fires 

519 occurring under extreme climatic conditions (Xanthopolous et al., 2012). For example, beech 

520 forests in the Southern Alps experienced numerous, large fires under hot and dry weather during 

521 the extremely dry summer of 2003 (Ascoli et al., 2013). Thus, the relatively stable local fire 

522 frequency may be explained by complex interactions between climate and local human activities. 

523 Chironomid- and pollen-based temperature reconstructions from Europe illustrate that summer 

524 temperatures reached a maximum between ~6500 cal yr BP (Heiri et al., 2003) and 6000 cal yr 

525 BP (Davis et al., 2003), which would have led to an increase in fire potential as a result of drier 

526 fuel loads (Daniau et al., 2012). Coincidentally, between 6500 and 6000 cal yr BP, two local fire 

527 events occurred simultaneous with a brief increase in regional biomass burning (Fig. 3). We 

528 therefore suggest that the increase in biomass burning and two local fire events between 6500 

529 and 6000 cal yr BP may be explained by fire conducive climatic conditions, despite the change 

530 in more mesic fuel type during the mid-Holocene. 

531 However, climate alone cannot explain the relatively stable local fire frequency, as the 

532 continuous presence of human pollen indicators beginning ~6500 cal yr BP could also suggest 

533 Neolithic human-induced influences on the fire regime in the region (Fig. 5). Despite the fact 

534 that there is no direct evidence of human activities ca. 35 – 40 km from Prášilské jezero ~6500 

535 cal yr BP (Dreslerová, 2016; Sommer, 2006), the timing of human indicators from Prášilské 

536 jezero agrees with other records from the region suggesting Neolithic presence (Svobodová et 

537 al., 2001; Svobodová 2002; 2004). Moreover, the appearance of hill-forts and hill-top settlements 

538 in the region, as well as archaeological evidence from two sites ~5 km from Prášilské jezero 

539 suggests the local settlement and occupation of humans during the Bronze and Iron Ages ~3000 
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540 and at ~2200 cal yr BP (Čuláková et al. 2012a; unpublished data; Dreslerová, D. unpublished 

541 data), which correlates with the increases in human indicator pollen types (Fig. 5). Thus, the 

542 increase in local fire frequency and fire occurrence ~2500 cal yr BP can be explained by the 

543 presence of local Iron Age activities (Fig. 3). Cooler and wetter-than-previous summer 

544 conditions likely inhibited regional fire occurrence (Fig. 7C, D, E), which is why this time period 

545 was not identified as a statistically significant zone according to change-point analysis (Fig.4), 

546 and why fires were of low severity as suggested by peak magnitudes (Fig. 3). However, fire 

547 frequency was sufficiently high to trigger landscape openness and alter the forest canopy 

548 composition with a slight decrease in spruce and brief increases in early-successional species 

549 (i.e. Pinus and Betula) around 2500 cal yr BP (Fig. 5). As suggested by Kaplan et al. (2016), the 

550 reductions in forest canopy in combination with increases in fire frequency ~2500 cal yr BP 

551 further support human presence. Human activities over the last 500 years have significantly 

552 altered the local forest composition, as shown by the general decline in Fagus and Abies, and 

553 subsequent increase in landscape openness (Fig. 5). The decline in these two species over the 

554 past 500 years is the result of intensive deforestation related to the glass industry and expansion 

555 of pasture-land (Beneš, 1996).

556

557 5.3 Dominant forest canopy responses to varying fire regimes in central Europe

558 Fire parameters such as fire frequency, severity, and drivers of biomass burning are not 

559 fully understood in central European primary spruce-beech forests. Vegetation composition and 

560 their species-level morphological traits significantly influenced the fire regime at Prášilské jezero 

561 throughout the Holocene by creating mosaics of different fire regenerative strategies. 

562 Specifically, we found three types of fire regenerative strategies; taxa that are classified as either 
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563 fire resistant, avoidant, or sensitive/intolerant (Fig. 6). Fire resistant taxa typically have thick 

564 bark which protects the cambium and increases the species’ chance of survival (Nikolov and 

565 Helmisaari, 1992; Richardson and Rundel, 1998). Fires are typically more frequent when fire 

566 resistant taxa dominate because of their low fire-induced mortality rates (Wooster and Zhang, 

567 2004; Rogers et al., 2015). Not surprising, during the early Holocene when biomass burning was 

568 the highest and fire severity was of moderate-scale, fire resistant taxa (Pinus, Betula, and 

569 Corylus) dominated the landscape (Fig. 5). Modeled fire resistant taxa response curves clearly 

570 demonstrate a positive response (p <0.01) to increasing biomass burning (Table 1). Pinus 

571 sylvestris is currently widespread throughout northern and central Europe (Fernandes, 2009), and 

572 was the dominant tree species in Europe during the early Holocene (Giesecke et al., 2017). We 

573 infer the species was likely present at Prášilské jezero in the early Holocene. P. sylvestris 

574 responds favorably to fire as it possesses fire resistant morphological traits that enabled it to 

575 survive the low-to-moderate fire intensities (Zackrisson, 1977) documented in the early 

576 Holocene (Fig. 3). Pinus response curves demonstrate a negative relationship with increasing fire 

577 severity (Fig. 6), further supporting that this species dominated in the early Holocene because of 

578 the moderate-scale fire regime. Betula and Corylus are also considered fire resistant taxa because 

579 of their morphological traits which allow the species to quickly colonize post-disturbance soils 

580 and resprout vegetatively (Bradshaw et al. 2010; Delarze et al., 1992; Niklasson & Granström 

581 2000; Feurdean et al., 2017). Betula is able to outcompete other species on freshly exposed 

582 mineral soil (Clark et al., 1989), and Corylus is considered a fire-enhanced shrub (Tinner et al., 

583 2000). Interestingly, while not significant the Corylus response curve suggest a positive 

584 relationship with increasing fire severity (Fig. 6). Together, the fire resistant morphological traits 
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585 described above support the recruitment and dominance of Pinus (likely P. sylvestris), Betula, 

586 and Corylus during the early Holocene. 

587 Fire avoidant taxa typically lack fire-adapted traits such as thick bark, and are usually 

588 found in mesic environments where fires are infrequent (Rogers et al., 2015). Picea abies is 

589 considered a fire avoider because it lacks morphological traits that allow it to survive or 

590 recolonize quickly after a fire (Feurdean et al., 2017; Zackrisson, 1977; Pennanen, 2002). 

591 Specifically, Picea abies has thin bark and shallow roots making it susceptible to both drought 

592 and fire (Zackrisson, 1977). However, its low hanging branches create ladder fuels conducive for 

593 crown fires during extreme climatic events (Grooth et al., 2013; Rogers et al., 2015; Feurdean et 

594 al., 2017). Because of these morphological traits, we would expect a drastic change in biomass 

595 burning with the arrival and expansion of Picea. Yet, the establishment and expansion of Picea 

596 occurred when fire resistant taxa were still abundant (Fig. 5), and when biomass burning was at 

597 its highest and most severe of the entire record (Fig. 3). Our results agree with other 

598 paleoecological records that also document an increase in Picea during a period of high fire 

599 activity (Carcaillet et al., 2007; Brown and Gisecke, 2014; Clear et al., 2015). However, there 

600 appears to be some discrepancy regarding spruces’ relationship with fire. For example, both 

601 Clear et al. (2015) and Finsinger et al. (2016) documented the subsequent decline in fire activity 

602 once Picea established as the dominant canopy, which differs from our findings. Feurdean et al. 

603 (2017) also documented the decline in Picea abies abundance during times of increased fire 

604 severity/area burned in the Carpathians Mountains. Lastly, Ohlson et al. (2011) synthesized 75 

605 macroscopic charcoal records throughout Scandinavia and found that the expansion of Picea in 

606 the late Holocene caused the decline in fire activity across the region by altering microclimate 

607 conditions. While not statistically significant, the modeled response curve for Picea abies does 
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608 not show a dramatic decrease to increasing biomass burning (Fig. 6; Table 1). Rather, response 

609 curves illustrate a positive relationship between Picea and increasing fire severity (Fig. 6). 

610 Rogers et al. (2015) found that fire avoidant forests in Eurasian boreal forests exhibit 

611 significantly higher severity metrics than fire resistant forests, highlighting the contradictions in 

612 fire-related traits of Picea abies. The modeled response of Picea may suggest that central 

613 European temperate spruce forests may not be as severely impacted by high levels of biomass 

614 burning, and may benefit from infrequent high-severity fires. However, additional research is 

615 needed to validate this relationship. 

616 Lastly, similar to fire avoidant taxa, fire sensitive/intolerant taxa do not have fire-adaptive 

617 traits. Fagus sylvatica is considered to be fire sensitive because of its morphological traits such 

618 as relatively thin bark and shallow root systems, and the lack of persistent resprouting 

619 capabilities (Peters, 1997; Packham et al., 2012). Not surprising, the greatest change in regional 

620 biomass burning occurred when Fagus expanded ~6500 cal yr BP. The modeled Fagus response 

621 clearly illustrates this statistically significant negative relationship with increases in biomass 

622 burning, as well as with increasing fire severity (Table 1). These modeled results are similar to 

623 those made by Tinner et al. (2000) who demonstrated a negative relationship with Fagus pollen 

624 and increasing charcoal influxes. The authors classified Fagus as fire sensitive because fires 

625 typically result in considerable decreases in the species, but surprisingly does not result in local 

626 extinction (Tinner et al., 2000). Recent field observations demonstrate the potential of beech in 

627 taking advantage of newly exposed soils after a single, mixed severity fire event (van Gils et al. 

628 2010; Maringer et al., 2012; Ascoli et al., 2013), by favoring seed germination and seedling 

629 emergence, and promoting diffuse light conditions via canopy openings (Ascoli et al., 2015). 

630 Several paleoecological records from central Europe also demonstrate the benefit of mixed 
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631 severity fire regimes in beech forests (Tinner et al., 1999; Tinner and Lotter, 2006; Giesecke et 

632 al., 2007). Beech can persist in a mixed severity fire regime as long as the fire return interval are 

633 >50 years, which allows for trees to reach reproductive maturity (Ascoli et al., 2015). High 

634 severity fires result in low seed production (Ascoli et al., 2015), which is supported by the 

635 modeled response curve (Fig. 6b), and support existing literature that suggest that high-severity 

636 fires are detrimental to the species. However, the modeled response curve does not support the 

637 notion that mixed severity fires are beneficial for beech propagation. This could be explained by 

638 the fact that our results are from a relatively high-elevation lake where spruce has been the 

639 dominant forest canopy taxa for the past ~9000 years (Carter et al., 2018). Thus, these results 

640 may not be representative of true beech-fire dynamics. Additional long-term research is needed 

641 from pure beech and/or beech dominated forests to determine whether infrequent mixed severity 

642 fires are beneficial in these forested systems. 

643 Pollen and charcoal-based taxa response curves offer a deeper insight into the full suite of 

644 ecological responses that may occur under future climate change. For instance, climate models 

645 project a 3oC increase in temperatures in central Europe (Christensen et al., 2007), which may 

646 increase the likelihood of more frequent and intense summer droughts across central and 

647 southern Europe (Gao and Giorgi, 2008; Feyen and Dankers, 2009). As a result, the risk of fire 

648 across central Europe is predicted to increase (Lung et al., 2013). Together, increased summer 

649 droughts and fire risk may be detrimental for primary spruce and beech forests. Spruce is likely 

650 to be the species most impacted by climate change (Bolte et al., 2009), with projections 

651 predicting the loss of available habitat for spruce (Hanewinkel et al., 2012). Since 1920, reduced 

652 rates of disturbance have contributed to the increase in disturbance susceptibility among primary 

653 spruce forests across central and eastern Europe (Schurman et al., 2018) highlighting the species’ 
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654 vulnerability to increasing exposure to extreme climatic events. Where beech naturally 

655 predominates will also likely be threatened with increasing temperatures (Cheddadi et al., 2016). 

656 Response curves demonstrate the fragility of primary beech forests to increased biomass burning, 

657 while spruce forests may benefit from increased biomass burning. However, additional long-term 

658 fire history research is strongly encouraged from central European primary spruce-beech forests 

659 to determine how sensitive these forests may be as a result of changing fire regimes.  

660

661 6. Conclusions

662 Currently, fire is considered a negligible disturbance agent in central European temperate 

663 forests. Yet, the results of this study support emerging literature demonstrating that fires have 

664 been an important disturbance agent throughout the Holocene in temperate forests (e.g. Clark et 

665 al., 1989; Bobek et al. 2017; Niklasson et al., 2010; Novák et al. 2012). The results of this study 

666 also illustrate the complex relationship between the primary drivers of fire (i.e. climate, 

667 vegetation type, and human activities) in influencing the long-term fire regime. Climate and 

668 vegetation type were likely the dominant drivers responsible for synchronizing regional biomass 

669 burning in central Europe in the early Holocene. However, we acknowledge that human 

670 occupation beginning as early as the Upper Palaeolithic/Mesolithic period may have contributed 

671 to the local fire regime, but likely did not override climate as the dominant driver in the early 

672 Holocene. When climatic conditions became more favorable for the more fire sensitive species 

673 Fagus beginning ~6500 cal yr BP, regional biomass burning decreased. However, local fire 

674 frequency only slightly decreased to an average of 2 fires/1000 years suggesting the relative 

675 importance of either humans and/or rare fire-promoting climatic events post 6500 cal yr BP. 

676 Human activities had a clear impact on the local fire regime ~2500 cal yr BP when the local fire 
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677 frequency increased to 6 fires/1000 years simultaneous to small increases in human pollen 

678 indicators and small-scale changes in the forest canopy. Drastic changes in forest canopy 

679 occurred over the past 1000 years as a result of human land-use activities, resulting in increases 

680 in regional biomass burning and landscape openness. 

681 Vegetation composition significantly influenced the local fire regime at Prášilské jezero, 

682 creating mosaics of different fire regenerative strategies; taxa that are classified as either fire 

683 resistant, avoidant, or sensitive/intolerant. Response curves demonstrate that fire resistant taxa 

684 Pinus, Betula, and Corylus thrived under high biomass burning, and a relatively frequent fire 

685 regime comprised of moderate-scale fire severities during the early Holocene. Picea, established 

686 ~10,000 cal yr BP and became the dominant canopy species by ~9000 cal yr BP. The rise of 

687 Picea occurred when biomass burning and fire severities were the highest of the entire record. 

688 While not statistically significant, response curves for this fire avoidant taxa suggest that Picea 

689 may be less impacted by fire than conventionally thought. Finally, response curves for the fire 

690 sensitive taxon, Fagus demonstrate the species intolerance to increased biomass burning and fire 

691 severities. These modeled response curves disagree with emerging literature suggesting beech 

692 forests may benefit from an infrequent (>50 years/fire) and mixed severity fire regime (Ascoli et 

693 al., 2015). Rather, response curves demonstrate the fragility of primary beech forests to increased 

694 biomass burning, while response curves suggest that primary spruce forests may benefit from 

695 increased biomass burning. However, additional research is necessary from central European 

696 spruce-beech forests to determine whether these modeled response curves are valid. 

697 As climate projections forecast a 3oC increase in temperatures in central Europe 

698 (Christensen et al., 2007), as well as the increased likelihood in extreme climate events such as 

699 more frequent and intense heat-waves and drought (Gao and Giorgi, 2008; Feyen and Dankers, 



37

700 2009; Rajczak et al., 2013; Seneviratne et al. 2012), these variables will likely lead to the 

701 increased risk of wildfire in central Europe. With an increase in temperatures, heat stress, and 

702 increased risk of wildfires (Lung et al., 2013), primary spruce and beech forests may be the one 

703 of the most vulnerable forested ecosystems to climate change. Additional long-term fire histories 

704 from central European temperate forests are crucial to determine how vulnerable spruce-beech 

705 forests are to anthropogenically-induced climate change and increasing fire risk. 

706

707 Supplementary Information

708

709

710 Appendix Fig. 1. Signal-to-noise (SNI) information for both CHARC and CHARA for Prášilské 

711 jezero. Horizontal black line indicates robust signal-to-noise index threshold level of 3.0 (Kelly 

712 et al., 2011). 

713
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715 Appendix Fig. 2. Full macrofossil concentration diagram for Prášilské jezero. Abbreviations: b = 

716 bud, br = brachyblast, bs = bud scale, cs = catkin scale, e = endocarp, n = needle, nb = needle 

717 base, s = seed, sc = sclerotium, sw = seed wing, t = twig. Vegetation assemblage zones 
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718 correspond with the pollen assemblage zones, and were assessed using the broken stick model 

719 (Bennett, 1996).
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721 Appendix Fig. 3. Condensed pollen percentage diagram for Prášilské jezero. Pollen vegetation 

722 assemblage zones were assessed using the broken stick model (Bennett, 1996). 

Depth below 

water level 

(cm)

Core 

ID

14C Age ±

2σb

210Pb age

(Year AD)

Age (cal yr 

BP)

Material 

Dated

Lab ID

number

1480 PRA 15-

2GC

2015 ± 1 -65 Surface

1480.5 PRA 15-

2GC

1995 ± 2 -55 Pb210-1

1481.5 PRA 15-

2GC

1986 ± 3 -36 Pb210-2

1482.5 PRA 15-

2GC

1976 ± 4 -26 Pb210-3

1483.5 PRA 15-

2GC

1963 ± 4 -13 Pb210-4

1484.5 PRA 15-

2GC

1943 ± 5 7 Pb210-5

1485.5 PRA 15-

2GC

1918 ± 7 32 Pb210-6

1486.6 PRA 15-

2GC

1889 ± 9 61 Pb210-7
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1487.5 PRA 15-

2GC

1861 ± 12 89 Pb210-8

1500.5 PRA 15-

2-1

590 ± 30 Bulk 

sediment

Poz-84783

1539.2 PRA 15-

2-1

2545 ± 30 Picea abies 

needle

Poz-81580

1571.75 PRA 15-

2-2

4040 ± 35 Picea abies 

needles

Poz-81582

1599.75 PRA 15-

2-2

5700 ± 40 Picea abies 

needle

Poz-81583

1628.5 PRA 15-

2-1

7055 ± 40 Picea abies 

needle, and 

wood 

fragment

Poz-87722

1628.5 PRA 15-

2-2

7550 ± 40 Picea abies 

needles

Poz-80182

1637 PRA 15-

2-2

7460 ± 40 Picea abies 

needles

Poz-87724

1651 PRA 15-

2-2

8210 ± 50 Picea abies 

needle and 

Picea abies 

bud scale

Poz-84781
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1669.5 PRA 15-

2-2

9330 ± 60 Picea abies 

needles, 

Betula bud 

scales, and 

leaf 

fragments

Poz-81780

1690.25 PRA 15-

2-2

9620 ± 50 Picea abies 

seed

Poz-80183

723

724 Supplementary Table 1. Summary of geochronological data (14C and 210Pb measurements) for 

725 Prášilské jezero. 
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