
HAL Id: hal-01813395
https://hal.science/hal-01813395v1

Submitted on 18 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatically Selecting the Best Dependency
Annotation Design with Dynamic Oracles

Guillaume Wisniewski, Ophélie Lacroix, François Yvon

To cite this version:
Guillaume Wisniewski, Ophélie Lacroix, François Yvon. Automatically Selecting the Best Depen-
dency Annotation Design with Dynamic Oracles. Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Association for Compu-
tational Linguistics, Jun 2018, New Orleans, United States. pp.401 - 406, �10.18653/v1/N18-2064�.
�hal-01813395�

https://hal.science/hal-01813395v1
https://hal.archives-ouvertes.fr


Proceedings of NAACL-HLT 2018, pages 401–406
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Automatically Selecting the Best Dependency Annotation Design with
Dynamic Oracles

Guillaume Wisniewski1, Ophélie Lacroix2 and François Yvon1

1LIMSI, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
2Siteimprove, Sankt Annæ Plads 28, DK-1250 Copenhagen, Denmark

wisniews@limsi.fr, ola@siteimprove.com, yvon@limsi.fr

Abstract

This work introduces a new strategy to com-
pare the numerous conventions that have been
proposed over the years for expressing de-
pendency structures and discover the one for
which a parser will achieve the highest pars-
ing performance. Instead of associating each
sentence in the training set with a single gold
reference, we propose to consider a set of ref-
erences encoding alternative syntactic repre-
sentations. Training a parser with a dynamic
oracle will then automatically select among all
alternatives the reference that will be predicted
with the highest accuracy. Experiments on the
UD corpora show the validity of this approach.

1 Introduction

Multiple annotation conventions have been pro-
posed over the years for representing dependency
structures (Hajič et al., 2001; De Marneffe et al.,
2014). The divergence between annotation guide-
lines can result from the theoretical linguistic prin-
ciples governing the choices of head status and de-
pendency inventories, the tree-to-dependency con-
version scheme or arbitrary decisions regarding
closed class words, such as interjections or discur-
sive markers, the syntactic role of which is debat-
able. Several works have shown that the choice of
a dependency structure can have a large impact on
parsing performance (Silveira and Manning, 2015;
de Lhoneux and Nivre, 2016; Kohita et al., 2017)
and on the performance of downstream applica-
tions (Elming et al., 2013).

A natural way to decide which syntactic repre-
sentation is the best is to choose the one for which
a standard parser will achieve the highest parsing
performance (Schwartz et al., 2012; Husain and
Agrawal, 2012; Noro et al., 2005). Implement-
ing this general principle faces two challenges: i)
defining a learning criterion that can predict which
dependency structure will be the easiest to learn ii)

finding a way to explore a potentially large num-
ber of annotation schemes that describe all combi-
nations of several design decisions.

This work shows that the dynamic oracle of
Goldberg and Nivre (2013) can straightforwardly
uncover the most learnable dependency represen-
tation among a predefined set of possible refer-
ences.1 Rather than associating each sentence in
the training set to a single reference, we propose
to consider a set of references encoding alterna-
tive syntactic representations. Training a parser
with a dynamic oracle will then automatically se-
lect among all alternatives the reference that will
be predicted with the highest accuracy.

This article is organized as follows: we first re-
view standard structural transformations studied in
the literature that will be used to build a treebank
annotated with multiple references (§2). We then
show how the dynamic oracle of Goldberg and
Nivre (2013) can be used to train a parser when
each sentence is associated to a set of references
and explain how it can be used to define a learn-
ability criteria (§3). An experimental evaluation of
our approach is presented in §4.

2 Dependency Transformations

In this section, we explain how to automatically
transform the reference UD treebanks (Nivre et al.,
2016), to build corpora in which each sentence is
annotated by a set of possible trees.

The UD project aims at developing cross-
linguistically consistent treebank annotations for
many languages by harmonizing annotation
schemes between languages and converting exist-
ing treebanks to this new scheme. Several recent
papers (Kohita et al., 2017; de Lhoneux and Nivre,
2016; Silveira and Manning, 2015; Popel et al.,

1Contrary to unsupervised parsing, our approach does not
aim at discovering a dependency structure and rather relies
on the existence of several hand-crafted references.

401



2013) have investigated whether the choices made
to increase the sharing of structures between lan-
guages hurt parsing performance and have iden-
tified a variety of choice points in which more
than one design could be advocated. Most of
these points are related to the issue of headness:
contrary to most works in theoretical linguistic,
UD assumes that function words should be cate-
gorically subordinated to content words to maxi-
mize the similarity of dependency trees across lan-
guages (Osborne and Maxwell, 2015).

The alternative representations we consider are
summarized in Table 1. They mostly consist in
demoting the lexical head and making it depen-
dent on a functional head. We designed a set
of handcrafted rules2 to convert dependencies be-
tween these two schemes. Each application of a
rule creates a new tree in the set of references that
is being built. As shown in Figure 1, the result-
ing set of references encodes all possible combi-
nations of the considered transformations.

... pour la peine ...

case

det

root

... pour la peine ...

case

det

root

... pour la peine ...

detcase

root

... pour la peine ...

case det

root

Figure 1: Examples of all the annotations generated by
applying the rules of Table 1. The UD reference is in
solid black.

3 Training a Dependency Parser with
Multiple References

Dynamic Oracle In a transition-based parser
(Nivre, 2008), a parse is computed by perform-
ing a sequence of transitions building the parse
tree in an incremental fashion. A partially built
dependency tree is represented by a configuration
c; when in c, applying a transition t results in the
parser moving to a new configuration denoted c◦t.

At each step of the parsing process, every pos-
sible transition is scored by a classifier (e.g. a lin-
ear model), given a feature representation of c and

2A more detailed description of the transformations can
be found in (Wisniewski and Lacroix, 2017). The source code
is freely available on the first author web site.

Algorithm 1: Training on one sentence with
multiple references (see text for notations).

Input: W the input sentence, T the set of gold trees
1 c← INITIAL(W )
2 while ¬TERMINAL(c) do
3 CORRECT ← {t|∃T ∈ T ,ORACLE(t, c, T ) = 0}
4 tp ← argmaxt∈LEGAL(c) w · φ(c, t)
5 to ← argmaxt∈CORRECT(c) w · φ(c, t)
6 if tp /∈ CORRECT then
7 UPDATE (w, φ(c, to), φ(c, tp))
8 tnext ← to
9 else

10 tnext ← tp

11 T ← {T ∈ T |ORACLE(tnext, c, T ) = 0}
12 c← c ◦ tnext

model parameters w; the score of a derivation (a
sequence of transitions) generating a given parse
tree is the sum of its transition scores. Parsing
thus amounts to finding, starting from the initial
configuration INITIAL(W ), the derivation having
the highest score, typically using greedy or beam
search.3

Algorithm 1 formalizes the training procedure
when the dynamic4 oracle of Goldberg and Nivre
(2013) is used: for each sentence, a parse tree is
built incrementally and at each step, if the pre-
dicted transition prevents the creation of a gold
dependency, the parameters are updated, accord-
ing, for instance, to the perceptron rule (l.7). Er-
roneous transitions can efficiently be found us-
ing the ORACLE(t, c, T ) function formally defined
in (Goldberg and Nivre, 2013) as computing the
number of dependencies of a gold parse tree T that
can no longer be predicted when a transition t is
applied in configuration c.

During training, it often happens that several
transitions are equally good: in such situations, the
training algorithm breaks ties among oracle tran-
sitions according to the model current prediction
(l.5). As suggested in the imitation learning litera-
ture (Daumé III and Marcu, 2005; Ross and Bag-
nell, 2010), this strategy enables to sample those
configurations that will be the most similar to the
ones seen when predicting a new dependency tree:

3In this work we only consider greedy parsers. Extending
the proposed approach to beam parsers would prevent dis-
carding a reference because one of the its transition is too
hard to predict (i.e. has a very low score), which would, intu-
itively, results in even better predictions.

4Algorithm 1 only uses the non-deterministic property of
the oracle and not its completeness. Even if we use the most
common term, ‘dynamic oracle’, our approach only requires
the former property.

402



Syntactic Functions Annotation Scheme

Relation UD labels UD Alternative

Clause mark

to read to readsubordinates

Determiners det

the book the book
Noun mwe+goeswith,

John Jr. Doe John Jr. Doesequences name

Case case

of Earth of Earthmarking

Coordinations cc+conj
me and you me and you

Copulas cop+auxpass
is nice is nice

Table 1: Annotation schemes in the UD treebanks and standard alternatives.

it is a way to let the parser explore more specif-
ically the part of the search space it prefers and
is more likely to see at test time (Aufrant et al.,
2017). Using a dynamic oracle usually results in
substantial improvements in accuracy compared to
static oracles.

Considering Multiple References Implement-
ing the training algorithm described above only re-
quires the ability to detect whether a transition will
cause an erroneous dependency. It can naturally
be extended to the case of multiple references: a
transition is considered correct as long as it can
predict at least one of the gold trees; when moving
to a new configuration, trees that can no longer be
generated are removed from the set of references,
in order to make sure the parser will not mix the
dependencies of two gold trees (l.11).

Upon full completion of parsing, there will re-
main only one surviving reference that has been
selected according to the model current predic-
tions. This reference corresponds to the depen-
dency structure that is the most similar to the hy-
pothesis the parser would have predicted at test
time and can therefore be described as the refer-
ence the parser prefers: intuitively, Algorithm 1
will thus identify the reference that will be pre-
dicted with the highest accuracy.

4 Experiments

Data We separately apply to the 7 dependen-
cies considered the transformations described in
Section 2 on the 38 languages of the UD project

(v1.3), resulting in 266 transformed corpora.5 To
evaluate the ability of the proposed method to
identify the ‘best’ dependency structure, we con-
sider fully as well as partially transformed sen-
tences: a sentence with n dependencies of interest
will generate 2n references.

For each condition (i.e. a language and a trans-
formation), a dependency parser is trained using
(a) the original data annotated with UD conven-
tion, (b) ‘transformed’ data in which each sentence
is associated to a reference in which all dependen-
cies of interest have been transformed and (c) the
data associated with a set of reference containing
all the partially transformed references (including
the original and transformed references).

Parser We use our own implementation of an
arc-eager unlabeled dependency parser with a dy-
namic oracle and an averaged perceptron, using
the features described in (Zhang and Nivre, 2011)
which have been designed for English and have
not been adapted to the specificities of the other
languages.6 Training stops when the UAS esti-
mated on the validation set has converged.

Impact of Transformations Figure 2 shows
the distribution of differences in UAS between a
parser trained on the original data (setting (a)) and
a parser trained on the transformed data (setting
(b)). To evaluate the proposed transformations, we
follow the approach introduced in (Schwartz et al.,

544 transformed corpora were identical to the original cor-
pora as the transformation can not be applied (e.g. there are
no multi-word expression in Chinese).

6Note that the proposed approach can be apply to other
transition systems and classifiers.

403



2012) consisting in comparing the original and the
transformed data on their respective references.

As expected, the annotation scheme has a large
impact on the quality of the prediction, with
an average difference in scores of 0.66 UAS
points and variations as large as 8.1 UAS points.
These results show that, contrary to general be-
lief (Schwartz et al., 2012; Kohita et al., 2017),
the UD scheme is not sub-optimal for monolin-
gual parsing: the difference in UAS is negative in
93 conditions and positive in 129. Table 2 details
for each dependency the when the UD scheme re-
sults in better predictions.

6 4 2 0 2 4 6 8 10
Difference in UAS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
is

tri
bu

tio
n

Figure 2: Distribution of differences between the UAS
achieved on the UD and transformed corpora. Positive
values indicate better prediction performance with UD
annotations.

case 44.7% mark 58.3% det 80.5%
cc 89.4% mwe 50.0% name 45.8%
cop 25.0%

Table 2: Percentage of times a parser trained and eval-
uated on UD data (setting (a)) outperforms a parser
trained and evaluated on transformed data (setting (b)).

Training with Multiple References To assess
the impact of training with multiple references
(setting (c)), we first evaluate the capacity of Al-
gorithm 1 to consistently select a single annota-
tion scheme during training. We count, in each
conditions, the number of times the reference that
has survived training was following the original
scheme and the number of times it was following
the transformed scheme. For 74.7% of the condi-
tions, the reference that has survived training was
following the same annotation scheme for more
than 70% of the training examples. This obser-
vation proves the ability of the parser to commit
itself to a single annotation scheme.

Learnability Criterion The training procedure
proposed in this article was designed to uncover
the dependency structure that will optimize pars-
ing accuracy. In this section we evaluate whether
this goal is achieved, by counting the number of
conditions in which the annotation scheme that has
survived training the most often (in setting (c)) is
indeed the one that achieves the best performance
on the test set, as evaluated by testing a parser in
settings (a) and (b).

We will consider, as baselines, two measures
of the ‘learnability’ of a treebank, the predictabil-
ity of an annotation scheme (Schwartz et al.,
2012) and the derivation perplexity (Søgaard and
Haulrich, 2010). Contrary to our approach, these
two measures aims at deciding which of two an-
notations schemes will achieve the best parsing
accuracy without actually training and testing a
parser. The predictability is defined as the en-
tropy of the conditional distribution of the depen-
dent PoS knowing the head PoS. The derivation
perplexity is the perplexity of 3-gram language
model estimated on a corpus in which the words
of a sentence appear in the order in which they are
attached to their head.7

Table 3 reports the number of times, averaged
over languages and transformations, that each
measure of learnability is able to predict which of
two competing annotation schemes will yield the
best parsing performance. These results clearly
show that the approach we propose to evaluate
the ‘learnability’ of an annotation scheme outper-
forms existing criteria and is able to select the an-
notation convention that achieves the highest pars-
ing performance.

metric learnability
predictability 64.8%
derivation complexity 62.6%
multiple references 76.3%

Table 3: Number of times a given learnability mea-
sure is able to predict which annotation scheme will
result in the best parsing performance. ‘multiple
references’ corresponds to the approach proposed
in this work.

7Similarly to (Søgaard and Haulrich, 2010), we consider
a trigram language model but use Witten-Bell smoothing as
many corpora are too small to use Kneser-Ney smoothing.

404



5 Conclusion

This work introduces a new strategy to compare
the numerous representations that have been pro-
posed over the years for expressing dependency
structures and discover the one that is easiest to
learn. Experiments with the popular transition-
based parser on the UD corpora show the validity
of the proposed approach.

In future work, we would like to evaluate the
impact of annotation conventions on other kind of
parsers and to find the properties of a dependency
tree that facilitate its prediction. We also plan to
find ways to easily annotate sentences with multi-
ple references (e.g. by indicating that the head of
word can be chosen arbitrarily) and eliminate the
constraint that references should be trees.

Acknowledgments

This work has been partly funded by the
Agence Nationale de la Recherche under Par-
SiTi project (ANR-16-CE33-0021) and MultiSem
project (ANR-16-CE33-0013).

References
Lauriane Aufrant, Guillaume Wisniewski, and François

Yvon. 2017. Don’t stop me now! Using
global dynamic oracles to correct training biases
of transition-based dependency parsers. In Pro-
ceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computa-
tional Linguistics: Volume 2, Short Papers. Associa-
tion for Computational Linguistics, Valencia, Spain,
pages 318–323. http://www.aclweb.org/
anthology/E17-2051.

Hal Daumé III and Daniel Marcu. 2005. Learn-
ing as search optimization: approximate large
margin methods for structured prediction. In
ICML ’05: Proceedings of the 22nd interna-
tional conference on Machine learning. ACM
Press, New York, NY, USA, pages 169–176.
https://doi.org/http://doi.acm.
org/10.1145/1102351.1102373.

Miryam de Lhoneux and Joakim Nivre. 2016. Should
Have, Would Have, Could Have. Investigating Verb
Group Representations for Parsing with Univer-
sal Dependencies. In Proceedings of the Work-
shop on Multilingual and Cross-lingual Methods
in NLP. Association for Computational Linguistics,
San Diego, California, pages 10–19. http://
www.aclweb.org/anthology/W16-1202.

Marie-Catherine De Marneffe, Timothy Dozat, Na-
talia Silveira, Katri Haverinen, Filip Ginter, Joakim

Nivre, and Christopher D. Manning. 2014. Uni-
versal stanford dependencies: a cross-linguistic ty-
pology. In Nicoletta Calzolari (Conference Chair),
Khalid Choukri, Thierry Declerck, Hrafn Lofts-
son, Bente Maegaard, Joseph Mariani, Asuncion
Moreno, Jan Odijk, and Stelios Piperidis, edi-
tors, Proceedings of the Ninth International Con-
ference on Language Resources and Evaluation
(LREC’14). European Language Resources Associ-
ation (ELRA), Reykjavik, Iceland.

Jakob Elming, Anders Johannsen, Sigrid Klerke,
Emanuele Lapponi, Hector Martinez Alonso, and
Anders Søgaard. 2013. Down-stream effects of
tree-to-dependency conversions. In Proceedings of
the 2013 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Association
for Computational Linguistics, Atlanta, Georgia,
pages 617–626. http://www.aclweb.org/
anthology/N13-1070.

Yoav Goldberg and Joakim Nivre. 2013. Training
deterministic parsers with non-deterministic
oracles. Transactions of the Association
for Computational Linguistics 1:403–414.
https://transacl.org/ojs/index.
php/tacl/article/view/145.

Jan Hajič, Barbora Vidová-Hladká, and Petr Pajas.
2001. The Prague Dependency Treebank: Annota-
tion Structure and Support. In Proceedings of the
IRCS Workshop on Linguistic Databases. Univer-
sity of Pennsylvania, Philadelphia, USA, pages 105–
114.

Samar Husain and Bhasha Agrawal. 2012. Analyzing
parser errors to improve parsing accuracy and to in-
form tree banking decisions. Linguistic Issues in
Language Technology 7.

Ryosuke Kohita, Hiroshi Noji, and Yuji Matsumoto.
2017. Multilingual back-and-forth conversion be-
tween content and function head for easy depen-
dency parsing. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: Volume 2, Short Papers.
Association for Computational Linguistics, Valen-
cia, Spain, pages 1–7. http://www.aclweb.
org/anthology/E17-2001.

Joakim Nivre. 2008. Algorithms for deterministic
incremental dependency parsing. Comput. Lin-
guist. 34(4):513–553. https://doi.org/10.
1162/coli.07-056-R1-07-027.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Maria Je-
sus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
Miguel Ballesteros, John Bauer, Kepa Bengoetxea,
Yevgeni Berzak, Riyaz Ahmad Bhat, Cristina
Bosco, Gosse Bouma, Sam Bowman, Gülşen Ce-
birolu Eryiit, Giuseppe G. A. Celano, Çar Çöltekin,
Miriam Connor, Marie-Catherine de Marneffe,
Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Timo-
thy Dozat, Kira Droganova, Tomaž Erjavec, Richárd

405



Farkas, Jennifer Foster, Daniel Galbraith, Sebas-
tian Garza, Filip Ginter, Iakes Goenaga, Koldo Go-
jenola, Memduh Gokirmak, Yoav Goldberg, Xavier
Gómez Guinovart, Berta Gonzáles Saavedra, Nor-
munds Grūzītis, Bruno Guillaume, Jan Hajič, Dag
Haug, Barbora Hladká, Radu Ion, Elena Irimia, An-
ders Johannsen, Hüner Kaşkara, Hiroshi Kanayama,
Jenna Kanerva, Boris Katz, Jessica Kenney, Si-
mon Krek, Veronika Laippala, Lucia Lam, Alessan-
dro Lenci, Nikola Ljubešić, Olga Lyashevskaya,
Teresa Lynn, Aibek Makazhanov, Christopher Man-
ning, Cătălina Mărănduc, David Mareček, Héctor
Martı́nez Alonso, Jan Mašek, Yuji Matsumoto,
Ryan McDonald, Anna Missilä, Verginica Mititelu,
Yusuke Miyao, Simonetta Montemagni, Keiko So-
phie Mori, Shunsuke Mori, Kadri Muischnek, Nina
Mustafina, Kaili Müürisep, Vitaly Nikolaev, Hanna
Nurmi, Petya Osenova, Lilja Øvrelid, Elena Pas-
cual, Marco Passarotti, Cenel-Augusto Perez, Slav
Petrov, Jussi Piitulainen, Barbara Plank, Martin
Popel, Lauma Pretkalnia, Prokopis Prokopidis, Ti-
ina Puolakainen, Sampo Pyysalo, Loganathan Ra-
masamy, Laura Rituma, Rudolf Rosa, Shadi Saleh,
Baiba Saulīte, Sebastian Schuster, Wolfgang Seeker,
Mojgan Seraji, Lena Shakurova, Mo Shen, Na-
talia Silveira, Maria Simi, Radu Simionescu, Katalin
Simkó, Kiril Simov, Aaron Smith, Carolyn Spadine,
Alane Suhr, Umut Sulubacak, Zsolt Szántó, Takaaki
Tanaka, Reut Tsarfaty, Francis Tyers, Sumire Ue-
matsu, Larraitz Uria, Gertjan van Noord, Vik-
tor Varga, Veronika Vincze, Jing Xian Wang,
Jonathan North Washington, Zdeněk Žabokrtský,
Daniel Zeman, and Hanzhi Zhu. 2016. Universal de-
pendencies 1.3. LINDAT/CLARIN digital library at
Institute of Formal and Applied Linguistics, Charles
University in Prague. http://hdl.handle.
net/11234/1-1699.

Tomoya Noro, Chimato Koike, Taiichi Hashimoto,
Takenobu Tokunaga, and Hozumi Tanaka. 2005.
Evaluation of a japanese cfg derived from a syntac-
tically annotated corpus with respect to dependency
measures. In Proceedings of the Fifth Workshop
on Asian Language Resources (ALR-05) and First
Symposium on Asian Language Resources Network
(ALRN). http://aclweb.org/anthology/
I/I05/I05-4002.pdf.

Timothy Osborne and Daniel Maxwell. 2015. A histor-
ical overview of the status of function words in de-
pendency grammar. In Proceedings of the Third In-
ternational Conference on Dependency Linguistics
(Depling 2015). Uppsala University, Uppsala, Swe-
den, Uppsala, Sweden, pages 241–250. http://
www.aclweb.org/anthology/W15-2127.

Martin Popel, David Mareček, Jan Štpánek, Daniel Ze-
man, and Zdnk Žabokrtský. 2013. Coordination
structures in dependency treebanks. In Proceed-
ings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics,
Sofia, Bulgaria, pages 517–527. http://www.
aclweb.org/anthology/P13-1051.

Stephane Ross and J. Andrew (Drew) Bagnell. 2010.
Efficient reductions for imitation learning. In Pro-
ceedings of the 13th International Conference on Ar-
tificial Intelligence and Statistics (AISTATS). pages
661–668.

Roy Schwartz, Omri Abend, and Ari Rappoport.
2012. Learnability-based syntactic annotation de-
sign. In Proceedings of COLING 2012. The COL-
ING 2012 Organizing Committee, Mumbai, India,
pages 2405–2422. http://www.aclweb.org/
anthology/C12-1147.

Natalia Silveira and Christopher Manning. 2015. Does
Universal Dependencies need a parsing representa-
tion? An investigation of English. Depling 2015
310.

Anders Søgaard and Martin Haulrich. 2010. On the
derivation perplexity of treebanks. In Proceedings
of Treebanks and Linguistic Theories 9.

Guillaume Wisniewski and Ophélie Lacroix. 2017.
A systematic comparison of syntactic represen-
tations of dependency parsing. In Proceedings
of the NoDaLiDa 2017 Workshop on Univer-
sal Dependencies (UDW 2017). Association for
Computational Linguistics, Gothenburg, Sweden,
pages 146–152. http://www.aclweb.org/
anthology/W17-0419.

Yue Zhang and Joakim Nivre. 2011. Transition-based
Dependency Parsing with Rich Non-local Features.
In Proceedings of ACL 2011, the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies. Association
for Computational Linguistics, Portland, Oregon,
USA, pages 188–193. http://www.aclweb.
org/anthology/P11-2033.

406


