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Abstract

Because the most common transition systems
are projective, training a transition-based de-
pendency parser often implies to either ignore
or rewrite the non-projective training exam-
ples, which has an adverse impact on accu-
racy. In this work, we propose a simple mod-
ification of dynamic oracles, which enables
the use of non-projective data when training
projective parsers. Evaluation on 73 tree-
banks shows that our method achieves signif-
icant gains (+2 to +7 UAS for the most non-
projective languages) and consistently outper-
forms traditional projectivization and pseudo-
projectivization approaches.

1 Introduction

Because of their efficiency and ease of imple-
mentation, transition-based parsers are the most
common systems for dependency parsing. How-
ever, efficiency comes at a price, namely a loss in
expressivity: while graph-based parsers are able
to produce any tree spanning the input sentence,
many transition-based systems are restricted to
projective trees. Informally, a dependency tree is
non-projective if at least one dependency crosses
another arc (see Figure 1).
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Figure 1: An example of non-projectivity: the tree is

made non-projective by the dependency What
x

do.

The inability to generate non-projective trees is
an obvious issue for accuracy: at test time, a pro-
jective parser is guaranteed to be wrong for all the

non-projective dependencies, a limitation already
pointed out several times (Nivre, 2009; Lacroix
and Béchet, 2014). In this paper, we show that
the impact can also be severe at training time.
This is because the standard training procedure as-
sumes that the reference tree is within reach of the
parser, which is not the case for non-projective ex-
amples. Therefore, projective parsers cannot make
any use of such samples and common practice is
to filter them out, thereby wasting potentially valu-
able training material. Depending on the annota-
tion schemes and languages, between 5 and 10%
of the training set are typically discarded.1

Several strategies have been proposed to over-
come the projectivity constraint. One line of re-
search is to sacrifice parsing efficiency and intro-
duce special transition systems capable to build
non-projective dependencies (Covington, 2001;
Nivre, 2009). Another approach introduces non-
projective dependencies by post-processing the
output projective trees. This is the case of the
pseudo-projectivization method (Nivre and Nils-
son, 2005), which encodes crossings in augmented
relation labels and makes all examples projec-
tive. The accuracy on projective dependencies
alone can also be maximized by projectivizing all
training examples prior to training, using Eisner
(1996)’s decoder.

In this work, we propose an alternative strategy:
we show (§3) that it is possible, with a small mod-
ification of the dynamic oracle of Goldberg and
Nivre (2012), to directly train a projective parser
with non-projective examples. While our ap-
proach remains unable to produce non-projective
trees, it still results in significant improvements

1In UD 1.2, examples with non-projective dependencies
represent 4.96% of trees (0.48% of dependencies) for En-
glish, 12.45% (0.83%) for French, 8.19% (0.33%) for Ara-
bic. However, the numbers rise for some languages such as
Dutch (30.87%, 4.10%) or Ancient Greek (63.22%, 9.78%).
See Straka et al. (2015) for complete data on 37 treebanks.
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on the overall UAS (§4), and consistently outper-
forms the (pseudo-)projectivization approaches.

2 Training transition-based parsers

2.1 Parsing with a transition system

In transition-based parsing (Nivre, 2003), depen-
dency trees are built incrementally, in a shift-
reduce manner: to parse a sentence, a sequence
of transitions (the derivation) is applied on the in-
ternal state of the parser (the configuration), con-
sisting typically in a stack and a buffer of unpro-
cessed words. In the ARCEAGER transition sys-
tem (Nivre, 2004), four actions are available, one
for each possible transition (see Table 1).

At parsing time, each transition to follow is pre-
dicted in turn by a classifier, typically an averaged
perceptron (Collins and Roark, 2004) or a neural
network (Chen and Manning, 2014; Dyer et al.,
2015; Andor et al., 2016), based on features ex-
tracted from the current parser configuration.

Compared to other parsing frameworks, such as
graph-based parsing (McDonald et al., 2005), a
major advantage of transition-based parsing is its
computational efficiency: the processing time of a
sentence is linear in its length.

2.2 Training with dynamic oracles

The classifier used to predict the actions is typi-
cally trained in an online fashion, using a dataset
consisting of input sentences and reference parse
trees. Various strategies have been envisioned
to generate, based on that data, pairs of positive
(gold) and negative (predicted) parser configura-
tions with which to update the model. A recent
and successful proposal uses so-called dynamic
oracles (Goldberg and Nivre, 2012): the training
example is parsed by the model, and for each pre-
dicted configuration in the resulting derivation, the
dynamic oracle computes a reference action, tai-
lored to the current configuration.

In practice, the reference is defined as an action
which does not degrade the accuracy on that sen-
tence: if a transition prevents a gold arc from be-
ing produced later (such as attaching a token to the
wrong head), it is incorrect, but no error is flagged
if that arc was already unreachable (for instance if
the true head was already removed from the stack).

Formally, if each configuration is associated
with a UASmax, the maximum UAS value that
can be achieved by any of its successor deriva-
tions, then the action cost is defined as the differ-

ence between the current UASmax and the future
UASmax (once the corresponding action has been
applied). The best decision in that situation is the
one which ensures the best future UAS, ie. which
leaves UASmax unchanged and has zero cost. By
definition of UASmax, in all configurations at least
one action has zero cost; there may even be sev-
eral in case of spurious ambiguities. Hence, when
asked for a reference action, the dynamic oracle
simply returns the set of zero-cost actions.

The core of the method is thus the computa-
tion of action costs. In order to simplify it, Gold-
berg and Nivre (2013) introduce the concept of
arc decomposition: a transition system is arc-
decomposable if in every configuration, all the
gold dependencies that are still reachable can be
reached simultaneously by the same derivation. It
ensues that for such systems, the action cost is
simply the number of gold arcs that the action ex-
plicitly forbids, which are in general straightfor-
ward to enumerate. For instance in ARCEAGER,
the REDUCE action (which pops the topmost stack
element s) has a cost of 1 for each child of s still in
the buffer, since they no longer can get their true
head (Goldberg and Nivre, 2013).

Arc-decomposability does not always hold,
however, in which case there are extra costs
to take into account: by definition of non-arc-
decomposable systems, some arcs are incompat-
ible (they are not unreachable, they can simply not
be reached together). Therefore, at some point,
adding a gold arc will imply renouncing to another
gold arc, thereby inserting an error. It is however
incorrect to assign this cost to the given action,
since it is due to a much earlier action which in-
troduced the incompatibility.2 As exemplified by
Goldberg et al. (2014) and Gómez-Rodrı́guez and
Fernández-González (2015), it is not impossible to
derive dynamic oracles for non-arc-decomposable
systems, but taking this kind of incompatibilities
into account makes the computation of their action

2A straightforward example of non-arc-decomposable
system is the ARCSTANDARD system (Nivre, 2003). It con-
sists in three actions: SHIFT (the same as in ARCEAGER),
and LEFT and RIGHT actions, which link the two topmost
stack elements in either direction, and then remove the child
from the stack. For the reference tree ‘The

x
bag

x
fell’, in

the configuration where the buffer is empty and the stack is

[The bag fell], the only way to output the bag
x

fell depen-
dency is consequently to attach (and pop) ‘bag’ immediately,
thereby renouncing to its child ‘The’, even tough it is cur-
rently reachable (with RIGHT+LEFT). In this configuration
all decisions seem to degrade the UAS, but the actual error
was done when SHIFTing ‘fell’ before attaching ‘The’.
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SHIFT [S] (σ, b|β, P ) ⇒ (σ|b, β, P ) if b is a word
LEFT [L] (σ|s, b|β, P ) ⇒ (σ, b|β, P + (b→ s)) if s is a word and s is unattached
RIGHT [R] (σ|s, b|β, P ) ⇒ (σ|s|b, β, P + (s→ b))
REDUCE [RE] (σ|s, β, P ) ⇒ (σ, β, P ) if s is attached

Table 1: The ARCEAGER transition system: semantics and preconditions of each action. σ stands for the stack, s
for the topmost stack element, β stands for the buffer, b for the first buffer element, and P is the partially built tree.

costs much more complex.

3 Using dynamic oracles to train on
non-projective data

The reason why dynamic oracles can help solving
the non-projectivity issue is that non-projective ex-
amples, in this framework, are not different from
projective ones: the cost is well-defined for any ac-
tion, and by definition there is always at least one
zero-cost action. So, all training examples are us-
able by design, regardless of their projectivity. The
issue rather resides in deriving a sound definition
of the cost, which covers non-projective cases;3 in
the current state of the art, the dynamic oracles
derived for projective systems are only sound for
projective examples, though (see Figure 2).

w1 w2 | w3

stack buffer

Figure 2: A configuration where all actions have non-
zero cost (thereby contradicting its definition), for a
non-projective reference tree (see dotted edges), when
using the standard ARCEAGER dynamic oracle. The
action cost is 2 for SHIFT (only w2 can be correctly
attached, by applying L+L+L afterwards), 2 for LEFT
(L+S+L correctly attaches w1 only) and 1 for RIGHT
(RE+L+L correctly attaches both w2 and w3).

One way to look at non-projective examples is
as a set of configurations containing arc incom-
patibilities: when two crossing edges are reach-
able, only one can actually belong to the final out-
put. Yet, this is a known setting: with non-arc-
decomposable systems, some erroneous configu-
rations face the same issue. Hence, from the ora-
cle point of view, the initial empty configuration
already comes with embedded ‘past errors’ (the
incompatibilities due to edge crossings). As in
non-arc-decomposable systems, the cost incurred
by these incompatibilities is not due to actions to

3Exhaustive search would be a straightforward strategy to
compute exact action costs in any setting, but it is computa-
tionally too expensive.

come, but should be attributed to previous actions,
taken in a fictive history before the initial config-
uration. As such, the natural behavior of dynamic
oracles is to ignore this cost. Hence, using the
same methodology as for non-arc-decomposable
systems, it is formally possible to define dynamic
oracles for non-projective examples. But it implies
enumerating all non-projective arc incompatibili-
ties in an arbitrary parser configuration (and prov-
ing exhaustivity), which is a difficult task and re-
mains, to date, an open question.

Instead of deriving exact costs, we propose here
a straightforward strategy which approximates the
action costs for non-projective examples: using
the usual cost computation, but defining the ora-
cles as minimum-cost actions instead of zero-cost
ones. Indeed, when the parser ends up in a config-
uration where all decisions appear erroneous, the
part of the cost which is common to all actions
should in fact have been taken care of in the past;
with this minimum-cost approach, it is ignored. In
Figure 2, the RIGHT action is chosen as reference
by the minimum-cost criterion, thereby acknowl-
edging the fact that non-projectivity by itself in-
curs a cost of 1. This oracle generalizes the zero-
cost one, as they are equivalent on projective trees.

Compared to an exact oracle, this approximated
cost biases the oracle towards delaying the reso-
lution of incompatibilities (like the SHIFT action
in Figure 3). A few updates are consequently un-
sound, but empirically their impact remains small
compared to the benefits of making more exam-
ples usable, as will be assessed in the next section.

w1 | w2 w3 w4

stack buffer

Figure 3: A configuration where action cost is poorly
approximated, for a non-projective reference tree (see
dotted edges). All gold arcs are reachable, but at most
two can be reached simultaneously. The cost computed
for LEFT is 2, 1 for RIGHT and 0 for SHIFT, even
though all actions lead to a tree with two gold arcs.

415



% non-projective sentences # training sentences

µ > 50% 25-50% 10-25% < 10% > 500 < 500
# corresponding treebanks: [73] [1] [9] [32] [31] [57] [16]

PANPARSER – greedy ARCEAGER

Static oracle (only projective snt.) 78.28 56.23 76.22 75.49 82.47 81.34 67.37
Static oracle + projectivized snt. +0.31 +2.12 +1.54 +0.15 +0.06 +0.50 -0.36

Dynamic oracle (only projective snt.) 78.94 57.75 76.99 76.26 82.97 81.92 68.34
Dynamic oracle + projectivized snt. +0.32 +1.06 +1.04 +0.52 -0.11 +0.24 +0.61
Dynamic oracle + pseudo-proj. snt. +0.26 +2.01 +1.49 +0.19 -0.07 +0.47 -0.45
Dynamic oracle + non-projective snt. +0.48 +2.43 +1.83 +0.44 +0.07 +0.52 +0.36

PANPARSER – beam ARCEAGER

Global dynamic oracle (only projective snt.) 79.77 57.12 78.28 76.83 83.96 83.12 67.84
Global dynamic oracle + non-projective snt. 80.40 61.49 80.11 77.54 84.04 83.63 68.87

+0.63 +4.38 +1.84 +0.71 +0.07 +0.51 +1.03

PANPARSER – greedy ARCHYBRID

Static oracle (only projective snt.) 75.71 53.08 73.66 73.19 79.63 78.29 66.51

Dynamic oracle (only projective snt.) 76.51 54.23 74.61 73.96 80.41 79.23 66.81
Dynamic oracle + non-projective snt. +0.55 +3.08 +2.16 +0.33 +0.22 +0.53 +0.61

MALTPARSER – greedy ARCEAGER

Baseline (only projective snt.) 72.88 57.88 71.74 69.99 76.68 76.82 58.87
+ pseudo-projectivized sentences +0.37 +5.84 +1.41 +0.19 +0.08 +0.48 -0.01
+ non-proj. output (pseudo-proj. + deproj.) +0.45 +6.83 +1.69 +0.25 +0.09 +0.59 -0.04

UDPIPE – tuned hyperparameters

Baseline (proj. and non-proj. parsers) 79.47 66.99 81.20 75.51 83.45 83.67 64.48

Table 2: Comparison on Universal Dependencies 2.0 of various strategies to handle non-projective training exam-
ples, depending on the non-projectivity rate and on treebank size. We report the average UAS over the correspond-
ing sets of languages. All UAS gains are computed with respect to their ‘only projective snt.’ baseline.

4 Experiments

The benefits of non-projective examples for train-
ing projective parsers are evaluated on the 73 tree-
banks of the UD 2.0 (Nivre et al., 2017b,a). Three
methods to exploit non-projective trees (instead
of discarding them) are contrasted: learning on
the trees projectivized using Eisner (1996)’s algo-
rithm, learning on pseudo-projectivized examples
(Nivre and Nilsson, 2005) and learning on the non-
projective trees, with the minimum-cost oracle de-
scribed in §3. Projectivization is based on Yoav
Goldberg’s code.4 For pseudo-projectivization,
the MALTPARSER 1.9 implementation is used,
with the head encoding scheme. For parsing, we
use PANPARSER (Aufrant and Wisniewski, 2016),
our own open source5 implementation of a greedy
ARCEAGER parser (using an averaged perceptron
and a dynamic oracle).

4https://www.cs.bgu.ac.il/˜yoavg/
software/projectivize

5https://perso.limsi.fr/aufrant

As shown in Table 2, it is empirically better to
handle non-projective sentences with minimum-
cost dynamic oracles than to discard them all; but
this strategy also outperforms projectivization and
pseudo-projectivization. As expected, the gains of
all methods increase when the proportion of non-
projectivity increases, i.e. when more examples
would have been discarded.

The minimum-cost technique is notably effec-
tive on the least projective treebanks, which cor-
respond to ancient languages like Ancient Greek
(63% of non-projective examples, with a gain of
+2.4 UAS, compared to +1.1 and +2.0 for projec-
tivization and pseudo-projectivization) and Latin
(41%, +2.0 vs +0.4/+2.8); but it also achieves large
improvements for modern languages with less
non-projectivity, such as Dutch-LassySmall (30%,
+7.0 vs +5.7/+3.3), Belarusian (17%, +5.2 vs
+2.2/+4.4) and Turkish (11%, +2.3 vs +1.9/+1.3).

Apart from higher gains on average, the ad-
vantage of the minimum-cost strategy is that
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it is consistently beneficial, whereas pseudo-
projectivization is detrimental for small treebanks.
A plausible explanation is that arbitrarily rewriting
the trees introduces inconsistencies in the training
material, which are only alleviated when data is
large enough. In that regard, the opposite effects
of projectivization (detrimental with a static ora-
cle, beneficial with a dynamic one) highlight the
limited reliability of such transformations.

The minimum-cost strategy is also applied to
an improved version of PANPARSER, using beam
search and a dynamic oracle extended to global
training (Aufrant et al., 2017), with a beam
of size 8 and the max-violation strategy. The
minimum-cost criterion appears particularly fit for
that setting, with even larger gains (+0.63 UAS on
average) despite a higher baseline.

Comparison with other parsers For illustra-
tive purposes, similar experiments are conducted
with other parsing systems: the ARCHYBRID ver-
sion of PANPARSER, MALTPARSER and UDPIPE.
MALTPARSER is the original implementation of
the ARCEAGER system, but differs from ours in
several ways, notably feature templates and the or-
acle (which is not dynamic, but precomputed stat-
ically); to help comparison, additional results are
reported for PANPARSER without dynamic ora-
cles. UDPIPE is a state-of-the-art neural parser in-
cluding both projective and non-projective parsing
systems; we use version 1.1 (Straka and Straková,
2017) with Straka (2017)’s set of tuned hyperpa-
rameters, but without their pre-trained word em-
beddings, for fair comparison.

The ARCHYBRID results show that the gains
achieved by the minimum-cost criterion are not
specific to the ARCEAGER system: despite differ-
ent baseline scores, the proposed strategy yields
similar improvements.

Compared to MALTPARSER, our ARCEAGER

baseline appears much stronger (+5.4 UAS) on the
downsized datasets; but the gains achieved when
exploiting the non-projective trees (with pseudo-
projectivization) are similar in both implementa-
tions. There is one exception, Ancient Greek (the
only treebank with more than 50% non-projective
sentences), for which the MALTPARSER gains
are way larger than those of PANPARSER; but
this treebank seems particular in several regards6

6The baseline MALTPARSER already behaves differently
for that language: it slightly outperforms the baseline PAN-
PARSER instead of underperforming it by a large margin.

and consequently does not question the superior-
ity of the minimum-cost oracle over the pseudo-
projectivization strategy, measured even in An-
cient Greek for PANPARSER.

Table 2 also reports the gains achieved by
MALTPARSER when pseudo-projectivization is
followed by deprojectivization of the output. Plain
comparison of this line with the minimum-cost
strategy is delicate, because it does not result
from better training only, but also from a gain
in expressivity: it is able to retrieve even non-
projective dependencies. But it is interesting to see
that deprojectivization only marginally improves
over pseudo-projectivization alone: most of the
gain actually resides in the treebank augmentation
rather than in retrieving non-projective dependen-
cies. Besides, the minimum-cost strategy outper-
forms even the deprojectivized results.

Finally, measures with UDPIPE reveal that,
even though it benefits a lot from its higher ex-
pressivity (as it uses non-projective systems for
the most non-projective treebanks), it achieves low
accuracies on small treebanks and is thus outper-
formed on average by the beam version of PAN-
PARSER (+0.30 UAS) – and the minimum-cost cri-
terion significantly widens that gap (+0.97 UAS).

5 Conclusion

This work has addressed the restriction of projec-
tive parsers to train only on projective examples.
We have explained how the dynamic oracle frame-
work can help overcoming this issue, and shown
that a simple modification of the framework (us-
ing minimum-cost actions as references instead
of zero-cost ones) enables a seamless use of non-
projective examples. Compared to the traditional
(pseudo-)projectivization approaches, this method
provides higher and more reliable improvements
over the filtering baseline.
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tnerová, Jesse Kirchner, Natalia Kotsyba, Si-
mon Krek, Sookyoung Kwak, Veronika Laippala,
Lorenzo Lambertino, Tatiana Lando, Phng Lê Hng,
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ter, Djamé Seddah, Wolfgang Seeker, Mojgan Ser-
aji, Lena Shakurova, Mo Shen, Atsuko Shimada,
Muh Shohibussirri, Natalia Silveira, Maria Simi,
Radu Simionescu, Katalin Simkó, Mária Šimková,
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