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Main objective

Our purpose is to investigate the relation between for neutral type
systems the following properties:

exact null controllability: from any initial condition to 0

complete stabilizability: exp. stabilizability with arbitrary decay rate

final continuous observability: continuous obs. of final state

Recall for finite dimensional linear systems, Kalman relations:

Formal adjoint systems and duality

Observability (Controllability) Controllability (Observability){
ẋ = Ax + Bu
y = Cx

⇐⇒
{

ẋ = A∗x + C∗y
u = B∗x

Controllability and stabilizability

Controllability ⇐⇒ Pole assignment (Complete stabilizability)
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ẋ = A∗x + C∗y
u = B∗x

Controllability and stabilizability

Controllability ⇐⇒ Pole assignment (Complete stabilizability)



Introduction: the object of investigation Exact null controllability and stabilizability Exact null controllability and final observability Illustrative Examples Concluding remarks

Main objective

Our purpose is to investigate the relation between for neutral type
systems the following properties:

exact null controllability: from any initial condition to 0

complete stabilizability: exp. stabilizability with arbitrary decay rate

final continuous observability: continuous obs. of final state

Recall for finite dimensional linear systems, Kalman relations:

Formal adjoint systems and duality

Observability (Controllability) Controllability (Observability){
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Distributed parameter systems (infinite dimension, Hilbert or Banach
spaces, delay systems, PDE):

Different notions: exact controllability (observability), approximate
controllability (observability), spectral controllability (observability),
null controllability (final observability);

The relation between exact controllability and complete
stabilizability is more complicated;

Some difference in dual (adjoint) systems;

The topology of chosen space or subspace is important.

We have to precise the infinite dimensional setting.
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The system and the operator model

We consider then the controlled system described by

The system

ż(t)− A−1ż(t − 1) =

∫ 0

−1

[A2(θ)ż(t + θ) + A3(θ)z(t + θ)]dθ︸ ︷︷ ︸
Lzt

+Bu (1)

with an output of the forme y(t) = Cz(t) or y(t) = Cz(t − 1).

More general form:

d

dt
[z(t)− Kzt ] = Lzt + Bu(t)

with more general operator K .

Kzt =

∫ 0

−1

dκ(θ)zt(θ), κ ∈ B([−1, 0],Rn).
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The Operator Model

Delay systems are essential infinite dimensional and may written as

The operator model

ẋ(t) = A x + Bu y(t) = C x(t)

The state vector and the state space are

x =
(
v(t), zt(·)

)
, M2(−1, 0;Rn) = Rn × L2(−1, 0;Rn),

The operators model A and B are given by

A x(t) =

(
Lzt(·)

dzt(θ)/dθ

)
, Bu =

(
Bu
0

)
, C x = Cz(t) (or Cz(t − 1))

where A is the generator of a C0-semigroup eA t with domain D(A ).

The characteristic matrix

∆A (λ) = λI − λe−λA−1 − λ
∫ 0

−1
eλsA2(s) ds −

∫ 0

−1
eλsA3(s) ds.
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Exact controllability

By exact controllability we mean controllability
From any state in D(A ) to any state in D(A ).

Theorem (Rabah, Sklyar 2007, with Barkhayev 2016)

System (1) is exactly controllable if and only if the following two
conditions:

i) rank
(
∆A (λ) B

)
= n for all λ ∈ C,

ii) rank
(
µI − A−1 B

)
= n for all µ ∈ C.

The time of exact controllabilty may be determinated by the
controllability indice of the couple (A−1),B).

Exact null controllability : for all states, there is a control which
maintains the systems at 0 : zT (·) = 0 (Krasovskii problem for delay
systems). For abstract systems: to reach 0 from any initial state.

The two notions are equivalent when eA t is a group (det(A−1) 6= 0).
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Complete stabilizability

By the way we consider the relation with the notion of complete
stabilizability for the same system (1): exponential stabilizability with
arbitrary decay rate:

∀ω ∈ R, ∃F : ‖e(A +BF )t‖ ≤ Meωt , t ≥ 0

by an appropriate feedback

u(t) = F−1ż(t − 1) +

∫ 0

−1

[F2(θ)ż(t + θ) + F3(θ)z(t + θ)]dθ︸ ︷︷ ︸
Fzt

(2)

Note that this feedback is not bounded.
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Abstract result

System in Hilbert spaces ẋ = A x + Bu, where B is bounded and
u = Fx with F bounded.

Group: Exact contr. & eA t ⇔ Complete stabiliz. (Zabczyk 1976)

Onto +: Exact contr. & eA t ⇔ Compl. stabz. (Rabah et al. 1997)

Onto: Exact contr. & eA t ⇔ Compl. stabiliz. (Guo et al. 2003)

Theorem

If an abstract system is exactly null controllable then it is completely
stabilizable by bounded feedback.

Boundedness may be replaced by admissibility (or A -boundedness) by a
result obtained in 1997 by Curtain et al. (Curtain, Logemann, Townley
and Zwart). This result may be applied to neutral type systems, but can
also be obtained directly for such systems.
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Problem

Is exact null controllability with (un)bounded control operator B and
(un)bounded feedback F equivalent to complete stabilizability? What
additional conditions are needed?

There exist very rapid semigroups:

∀ω > 0,∃Mω > 0, ‖S(t)‖ ≤ Mωe
−ωt , (3)

They are “Completely stabilizable” without feedback control but, may be
or not null controllable in the following sense:

∀x0, ∃T : S(t)x0 = O, t ≥ T .
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Examples

.

Example 1

X = L2(0,+∞), the semigroup is S(t)f (x) = e−
t2

2 −xt f (x + t).
The spectrum σ(A ) = ∅. We have in fact Mω ≥ keω

This system is not null controllable if B = 0 (no control action): there
are initial conditions f such that S(t)f 6= 0 for any t ≥ 0.
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Example 2

In the space L2(0, 1), consider the semigroup

S(t)f (x) =

{
f (x + t) 0 ≤ t + x ≤ 1,

0 t + x > 1.

We have also σ(S(t)) = {0} and then the spectrum of the infinitesimal
generator is empty: σ(A ) = ∅.

But, for any initial function f ∈ L2(0, 1), we have S(t)f (x) = 0 for t > 2.
This means that S(t) = 0, for all t > 2. Then, for any control operator
B, the corresponding system is exactly null controllable at time T > 2
with the trivial control u = 0.
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Results for neutral type systems

Global Conjecture

The following statements are equivalent:

1 System (1) is exactly null controllable,

2 The following two conditions hold
i) rank

(
∆A (λ) B

)
= n for all λ ∈ C,

ii) rank
(
µI − A−1 B

)
= n for all µ ∈ C, µ 6= 0,

3 System (1) is completely stabilizable by a feedback law of the form

u(t) = F−1ż(t − 1) + Fzt(·), (4)

where Fzt(·) =
∫ 0

−1
[F2(θ)ż(t + θ) + F3(θ)z(t + θ)]dθ.
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Proved results

Scheme

1)
A

=⇒ 2)
B⇐⇒ 3)

Step A: in a classical way, following idea by Metelskii-Miniuk (2006). We
obtain instead of condition i) the equivalent condition:
rank

(
B A−1B · · · An−1

−1 B
)

= rank
(
B A−1B · · · An−1

−1 B An
−1

)

Step B: condition 2 allows to move an infinite number of eigenvalues,
condition 1 a finite number.
Important remark : to move the infinite spectrum we use the feedback
F−1: σ(A−1 + BF−1) = {0}. It may occurs that we obtain a generator
such that σ(A ) = ∅. In this case all the solutions of neutral type systems
are small. Then they vanish at a finite time. We obtain exact null
controllability without control. Else, it is not proved that complete
stabilizability implies null exact controllability.
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Figure: Spectrum of A (detA−1 = 0)
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The considered problems

Exact controllability (observability)

Exact controllability : the reachability set RT from 0-function is D(A )
(all states zT (·) are reachable from all states z0(·)).

Continuous observability : the operator

KT : D(A ) −→ L2(0,T ;Rp), x0 7−→ KT x0 = C eA tx0.

is boundedly invertible (the initial state is continuously observable).

Exact null controllability (final observability)

Exact null controllability : for all states, there is a control which
maintains the systems at 0 : zT (·) = 0 (Krasovskii problem).

Continuous final observability : the final state zT (·) is continuously
observable.
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Exact controllability and observability

We obtained the following

Duality (Rabah-Sklyar, Syst. Contr. Letters 2016, MTNS 2014

Continuous initial observability of the original systems with

ż(t)− A−1ż(t − 1) = Lzt y(t) = Cz(t − 1) on [0,T ]

is equivalent to exact controllability of the system

ż(t)− A∗−1z(t − 1) = LTzt + C∗u(t)) at time T

This is verified iff

(i) For all λ ∈ C, rank
(
∆∗A (λ) C∗

)
= n, where ∆∗A (λ) is the

characteristic matrix of the dual systems.

(ii) For all λ ∈ C, rank
(
λI − A∗−1 C∗

)
= n,

For a group (detA−1 6= 0), then y(t) = Cz(t − 1) ⇐⇒ y(t) = Cz(t)
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Exact null controllability and final observability

Theorem

The final state of system

ż(t)− A−1z(t − 1) = Lzt y(t) = Cz(t − 1) on [0,T ]

is continuously observable :

∫ T

0

∥∥C eA tx0

∥∥2

Rp dt ≥ δ2‖eA T x0‖2
M2

if and only if the adjoint system

ż(t)− A∗−1z(t − 1) = LTzt + C∗u(t))

is exactly null-controllable at time T .

If detA−1 6= 0, then observability and final observability are equivalent.
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The state and the adjoint operators

The state operator

A
(

v
ϕ(·)

)
=

(
ϕ(0)− A−1ϕ(−1)

dϕ(θ)/dθ

)
,

with the domain
D(A) =

{
(v , ϕ(·)) : ϕ(·) ∈ H1, v = ϕ(0)− A−1ϕ(−1)

}
,

while the adjoint operator is

A∗
(

w
ψ(·)

)
=

(
(A∗2(0)w + ψ(0)

−d[ψ(θ)+A∗
2 (θ)w ]

dθ + A∗3(θ)w

)
,

with the domain D(A∗) =

{(w , ψ(·))} =

{
ψ(θ) + A∗2(θ)w ∈ H1,

A∗−1 (A∗2(0)w + ψ(0)) = ψ(−1) + A∗2(−1)w
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with the domain D(A∗) =

{(w , ψ(·))} =

{
ψ(θ) + A∗2(θ)w ∈ H1,

A∗−1 (A∗2(0)w + ψ(0)) = ψ(−1) + A∗2(−1)w
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Dual systems: adjoint system seems to be of different
nature

The original system : courant state z(t + θ) = zt(θ)(
v(t)
zt(θ)

)
︸ ︷︷ ︸

x(t)

: ż(t)− A−1z(t − 1) =

∫ 0

−1

[A2(θ)żt(θ) + A3(θ)zt(θ)]dθ︸ ︷︷ ︸
Lzt

The adjoint system : courant state w(t + θ) = wt(θ)(
w(t)
ψt(θ)

)
︸ ︷︷ ︸

xT(t)

: ẇ(t + 1)−A∗−1w(t) =

∫ 0

−1

[A∗2(θ)ẇt+1(θ) + A∗3(θ)wt+1(θ)]dθ︸ ︷︷ ︸
LTwt+1

There a shift t ↔ t + 1 and a “castling” for the courant state !
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Criterion of final observability?

The analysis of duality and the condition of exact null controllability give:

Theorem

Exact final observability implies

1 Ker

(
∆A (λ)

C

)
= {0} for all λ ∈ C,

2 Ker

(
λI − A−1

C

)
= {0} for all λ ∈ C, λ 6= 0.

or, which is equivalent:

1 For all λ ∈ C, rank
(
∆∗A (λ) C∗

)
= n,

2 For all λ ∈ C, λ 6= 0, rank
(
λI − A∗−1 C∗

)
= n.

These conditions are conjectured to be sufficient. It is true for several
neutral type systems.
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Discrete delay systems

To illustrate our results and hypothesis we give here 3 examples.

The first one shows that for continuous observability a delay in the
output is needed if the semigroup is not a group.

The second one is taken from the paper by Metelskiy & Minyuk
(2006) and it is shown that in fact we have the very exact
controllability not only exact null controllability.

The last example illustrates our Conjecture on equivalence between
exact controllability and complete stabilizability.

All examples are given in the form of a system with one discrete delay:

ż(t) = A−1z(t − 1) + A0z(t) + A1z(t − 1) + Bu(t). (5)
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Example 3.

System (5) with

A0 =

(
0 1
0 0

)
, A1 = 0, A−1 =

(
0 1
0 0

)
, B =

(
0
1

)
.

It is easy to see that, for all λ ∈ C,

rank
(
∆A(λ) B

)
=

(
λ −λe−λ − 1 0
0 λ 1

)
= 2.

Moreover, for all λ ∈ C, rank
(
λI − A−1 B

)
= n, then the system is

exactly controllable (not only to zero). The transposed system{
ż1(t) = 0
ż2(t) = ż1(t − 1) + z1(t)

is continuously observable with the output y = z2(t − 1) but not with
y(t) = z2(t).
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Example 4.

The following system was given for exact null controllability and
continuous final observability by Metelskiy & Minyuk (2006):

A0 = 0, A1 =

(
0 1
0 0

)
, A−1 =

(
0 −1
0 1

)
.

In fact, for this system the initial condition is exactly observable by the
output

y = Cz(t − 1), C =
(
1 0

)
,

and the transposed system is exactly controllable because, for all λ ∈ C,

rank
(
λI − A∗−1 C∗

)
= rank

(
λ 0 1
1 λ− 1 0

)
= 2.

However, the initial system is not exactly observable by the output
y = Cz(t) = z1(t), because the initial function z0(θ), θ ∈ [0, 1[ cannot be
determined.
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Example 5.

A0 =

(
0 0
1 0

)
, A1 = 0, A−1 =

(
1 0
0 0

)
, B =

(
1
0

)
.

We have for all λ ∈ C, rank
(
∆A(λ) B

)
=

(
λ− λe−λ 0 1
−1 λ 0

)
= 2,

and for all complex λ 6= 0,

rank
(
λI − A−1 B

)
=

(
λ− 1 0 1

0 λ 0

)
= 2.

The system is exactly null controllable (our results and
Metelskii-Minyuk), completely stabilizable and the transposed system{

ż1(t) = z2(t),
ż2(t) = ż1(t − 1).

is continuously finally observable by the output y = z1(t − 1).
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Concluding remarks

For a large class of neutral type systems with distributed delays we tried
to obtain the equivalence between null exact controllability and complete
stabilizability (this is characterized).
A possible solution of the conjecture will be given later (talk by Pavel
Barkhayev).
By duality we obtain condition of final continuous observability. These
considerations may be also used for detectability with arbitrary decay rate.
But it is important to consider more general neutral term: with several
delays and with distributed delay.
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Thank you for your attention.
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