
HAL Id: hal-01813273
https://hal.science/hal-01813273v1

Submitted on 12 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ensuring Memory Consistency in Heterogeneous
Systems Based on Access Mode Declarations

Ludovic Henrio, C Kessler, Lu Li

To cite this version:
Ludovic Henrio, C Kessler, Lu Li. Ensuring Memory Consistency in Heterogeneous Systems Based
on Access Mode Declarations. 5th International Symposium on Formal Approaches to Parallel and
Distributed Systems, as part of The 16th International Conference on High Performance Computing
& Simulation (HPCS 2018), Frederic Loulergue; Jean-Michel Couvreur, Jul 2018, Orléans, France.
�hal-01813273�

https://hal.science/hal-01813273v1
https://hal.archives-ouvertes.fr

Ensuring Memory Consistency in Heterogeneous
Systems Based on Access Mode Declarations

Ludovic Henrio
Université Côte d’Azur, CNRS, I3S, France.

ludovic.henrio@cnrs.fr

C. Kessler and Lu Li
University of Linköping, Sweden

firstname.lastname@liu.se

Abstract—Running a program on disjoint memory spaces
requires to address memory consistency issues and to perform
transfers so that the program always accesses the right data.
Several approaches exist to ensure the consistency of the memory
accessed, we are interested here in the verification of a declarative
approach where each component of a computation is annotated
with an access mode declaring which part of the memory is
read or written by the component. The programming framework
uses the component annotations to guarantee the validity of the
memory accesses. This is the mechanism used in VectorPU, a C++
library for programming CPU-GPU heterogeneous systems and
this article proves the correctness of the software cache-coherence
mechanism used in the library. Beyond the scope of VectorPU, this
article can be considered as a simple and effective formalisation of
memory consistency mechanisms based on the explicit declaration
of the effect of each component on each memory space.

Index Terms—Memory consistency, CPU-GPU heterogeneous
systems, data transfer, software caching, cache coherence

I. INTRODUCTION

Heterogeneous computer systems, such as traditional CPU-
GPU based systems, often expose disjoint memory spaces to
the programmer, such as main memory and device memory,
with the need to explicitly transfer data between these. The
different memories usually require different memory access
operations and different pointer types. Also, encoding memory
transfers as message passing communications leads to low-
level code that is more error-prone. A commonly used software
technique to abstract away the distributed memory, the explicit
message passing, and the asymmetric memory access mech-
anisms consists in providing the programmer with an object-
based shared memory emulation. For CPU-GPU systems, this
can be done in the form of special data-containers, which are
generic, STL-like data abstractions such as vector<...>
that wrap multi-element data structures such as arrays. These
data-container objects internally perform transparent, coherent
software caching of (subsets of) accessed elements in the
different memories so they can be reused (as long as not
invalidated) in order to avoid unnecessary data transfers.
Such data-containers (sometimes also referred to as ”smart”
containers as they can transparently perform data transfer and
memory allocation optimizations [6]) are provided in a number
of programming frameworks for heterogeneous systems, such
as StarPU [1] and SkePU [6], [7]. StarPU is a C-based library
that provides API functions to define multi-variant tasks for
dynamic scheduling where the data containers are used for

modeling the operand data-flow among the dynamically sched-
uled tasks. SkePU defines device-independent multi-backend
skeletons like map, reduce, scan, stencil etc. where operands
are passed to skeleton calls within data containers.

VectorPU [10] is a recent C++-only open-source program-
ming framework for CPU-GPU heterogeneous systems. Vec-
torPU relies on the specification of components, which are
functions that contain kernels for execution on either CPU
or GPU. Programming in VectorPU is thus not restricted to
using predefined skeletons like SkePU, but leads to more
high-level and more concise code than StarPU. Like StarPU,
VectorPU requires the programmer to annotate each operand
of a component with the access mode (read, write, or both)
including the accessing unit (CPU, GPU), and uses smart data
containers for automatic transparent software caching based
on this access mode information.

The implementation of VectorPU makes excessive use of
static metaprogramming; this provides a light-weight real-
ization of the access mode annotations and of the software
caching, which only require a standard C++ compiler. Emulat-
ing these light-weight component and access mode constructs
without additional language and compiler support (in contrast
to, e.g., OpenACC or OpenMP), leads however to some
compromises in static analyzability. In particular, VectorPU
has no explicit type system for the access modes, as these are
not known to the C++ compiler.

In this paper, we investigate how to formalize access modes
and data transfers in CPU-GPU heterogeneous systems and
prove the correctness of the software cache coherence mech-
anism used in VectorPU. The contributions of this paper are:
• We introduce a simple effect system modeling the se-

mantics of memory accesses and communication in a
CPU-GPU heterogeneous system, and define a small
calculus expressing different memory accesses and their
composition across program traces.

• We express VectorPU operations as higher-level state-
ments that can be translated into the core calculus,
and show that, if all memory accesses are performed
through VectorPU operations, the memory cannot reach
an inconsistent state and all memory accesses succeed.

This paper is organized as follows: Section II reviews Vec-
torPU as far as required for this paper, for further information
we refer to [10]. Section III provides our formalization of
VectorPU programs and their semantics, and proves that the

Fig. 1. A GPU-based system with distributed address space

coherence mechanism used in VectorPU is sound. Section IV
discusses related work, and Section V concludes.

II. VECTORPU

In heterogeneous systems with separate address spaces, for
example in many GPU-based systems, a general-purpose pro-
cessor (CPU) with direct access to main memory is connected
by some network (e.g., PCIe bus) to one or several acceler-
ators (e.g., GPUs) each having its own device memory, see
Figure 1. Native programming models for such systems such
as CUDA typically expose the distributed address spaces to the
programmer, who has to write explicit code for data transfers
and device memory management. Often, programs for such
systems even must be organized in multiple source files as
different programming models and different toolchains are to
be used for different types of execution unit. This enforces
a low-level programming style. Accordingly, a number of
single-source programming approaches have been proposed
that abstract away the distribution by providing a virtual shared
address space. Examples include directive-based language
extensions such as OpenACC and OpenMP4.5, and C++-only
approaches such as the library-based skeleton programming
framework SkePU [6] and the recent macro-based framework
VectorPU, which we focus on in this paper as a case study.

VectorPU [10] is an open-source1 lightweight C++-only
high-level programming layer for writing single-source het-
erogeneous programs for Nvidia CUDA GPU-based systems.

Aggregate operand data structures passed into or out of
function calls are to be wrapped by special data containers
known to VectorPU. VectorPU currently provides one generic
data container, called vector<...>, with multiple variants
that eliminate the overhead of managing heterogeneity and dis-
tribution when not required (e.g., when no GPU is available).
vector<...> inherits functionality from STL vector and
from Nvidia Thrust vector, and wraps a C++ array allocated
in main memory. VectorPU automatically creates on demand
copies of to-be accessed elements in device memory and keeps
all copies coherent using a simple coherence protocol, data
transfers are only performed when needed.

VectorPU programs are organized as a set of C++ functions,
some of which might internally use device-specific program-
ming CUDA constructs2 while others are expected to execute

1http://www.ida.liu.se/labs/pelab/vectorpu, https://github.com/lilu09/vectorpu
2VectorPU allows to directly annotate a CUDA kernel function, in addition

to annotating its C++ wrapper function.

TABLE I
VECTORPU ACCESS MODE ANNOTATIONS FOR A PARAMETER [10]

Access Mode On Host On Device
Read pointer R GR
Write pointer W GW
Read and Write pointer RW GRW
Read Iterator RI GRI
Read End Iterator REI GREI
Write Iterator WI GWI
Write End Iterator WEI GWEI
Read and Write Iterator RWI GRWI
Read and Write End Iterator RWEI GRWEI
Not Applicable NA NA

on the host, using one or possibly multiple cores. VectorPU
components are functions that are supposed to contain (CPU or
device) kernel functionality and for which operands are passed
as VectorPU data container objects. Components and the types
of execution units that access their operands are implicitly
marked by annotating the operands of the function, either at
a call of the function or for the formal parameters in the
function’s declaration, with VectorPU access mode specifiers.3

The access mode specifiers, such as R (read on CPU), W
(write on CPU), RW (update, i.e., both read and write, on
CPU), GR (read on GPU) and so forth, are available both as
annotations of function signatures4 and as C++ preprocessor
macros that expand at compilation into (possibly, device-
specific) C++ pointer expressions and side effects that allow
to generate device specific access code and use device-specific
pointer types for the chosen execution unit. For instance,
GW(x) expands to a GPU pointer to the GPU device copy
of x, which might be dereferenced for GPU writing accesses
to x, such as the GPU code: *(GW(x) + 2) = 3.14.
GWI(x) evaluates to an Thrust-compatible iterator onto the
GPU device copy of x, and WEI(x) to an iterator-end
reference to the last element of x on CPU side. It is also
possible to specify partial access of a vector instead of the
entire vector data structure5. Table I summarizes the access
mode annotations currently defined for VectorPU.

The following example (adapted from [10]) of a CUDA
kernel wrapped in an annotated function bar shows the use
of VectorPU access mode annotations at function declaration:
// Example (annotations at function declaration):
__global__
void bar (const float *x [[GR]], float *y [[GW]],

float *z [[GRW]], int size)
{ ... CUDA kernel code ... }

Here, the operand array pointed to by x may be read (only)
by the GPU within bar, operand array y may be written (only)

3In contrast to e.g. SkePU [7] which overloads element access and iterator
operations so that monitored accesses are also possible on demand in non-
componentized (i.e., ordinary C++) CPU code, VectorPU only relies on access
mode annotations to perform lazy data transfer, not knowing when data is
going to be accessed inside a component.

4The current VectorPU prototype implementation does not (yet) type-check
access-mode annotations in signatures of externally defined functions.

5The current VectorPU implementation does not (yet) support coherence
for overlapping intervals of elements resulting from multiple (partial) accesses
some of which (may) access the same element. A solution for this problem
has been described for SkePU smart containers by Dastgeer [6].

by the GPU, and operand array z may be read or written (or
both) by the GPU. When calling bar, the first three operands
need to be passed as VectorPU vector container objects. The
size formal parameter is a scalar (not a data container), so it
will be available on GPU on a copy-in basis but no coherence
will be provided for it by VectorPU.

It is also possible to put the annotations into a call, and
hence characterize a function as a VectorPU component:

// declare a CPU function:
void foo (const float *x, float *y,

float *z, int size);

// declare three vectors:
vectorpu::vector<float> vx(100), vy(100), vz(100);

// call to VectorPU annotated function foo:
foo (R(vx), W(vy), RW(vz), size) ;

Here, the access mode specifiers and the resulting coherence
policy only apply to that particular invocation of foo, while
other invocations of foo might use different access mode
specifiers. The following example shows how to use iterators:

vectorpu::vector<My_Type> vx(N);
std::generate(WI(vx), WEI(vx), RandomNumber);
thrust::sort(GRWI(vx), GRWEI(vx));
std::copy(RI(vx), REI(vx),

ostream_iterator<My_Type>(cout, ""));

where std::generate is a CPU function filling a section
between two addresses with values (here, random numbers),
and thrust::sort denotes the GPU sorting functionality.
provided by the Nvidia Thrust library.

Using only available C++(11) language features, VectorPU
provides a flexible unified memory view where all data transfer
and device memory management is abstracted away from the
programmer. Nevertheless, its efficiency is on par with that of
handwritten CUDA code containing explicit data movement
and memory management code [10]. In particular, the Vec-
torPU prototype was shown to achieve 1.4x to 13.29x speedup
over good quality code using Nvidia’s Unified Memory API
on several machines ranging from laptops to supercomputer
nodes, with Kepler and Maxwell GPUs. For a further dis-
cussion of VectorPU features, such as specialized versions of
vector, for descriptions of how to use VectorPU together
with lambda expressions e.g. to express skeleton computations,
and for further experimental results we refer to [10].

III. FORMALIZATION

In this section we provide a minimal calculus to reason
on the memory operations that can exist in a framework
that deals with memory consistency like VectorPU. We first
define a set of effects operations can have on the consistency
of the memory. Then we define a small calculus expressing
different memory accesses and their composition into complex
procedures. Finally, we express VectorPU operations as higher-
level statements that can be translated into the core calculus
presented before, and show that if all memory accesses are
annotated correctly through VectorPU annotations the program
cannot try to access an invalid data and the memory spaces are

put in coherence when needed. We also show that VectorPU
tracks the validity status of the memory adequately. In this
section we abstract away the values stored in memory and we
do not deal with any form of aliasing. A more precise analysis
of effects and aliasing is out of the scope of this paper, it
could be for example inspired from [11]. We place ourself in
a simplified setting where each variable is hosted in exactly
two memory locations, e.g. a CPU (main) memory and a GPU
memory location, but the work could be extended to multiple
memory locations without any major difficulty.

A. An effect system for consistency between memory locations

We start from a simple effect system, it expresses the effect
of writing or reading a memory location on the consistency
status of the memory. Each location is either in valid state
when it holds a usable data or invalid state when the value at
the location is not valid anymore.

We express five operations: reading, writing, Push for
uploading the local memory location into the other one, and
Pull for the contrary. Noop is an operation that does nothing.

E ::= Push | Pull | r | w | Noop

The effect of these operations express their requirements
and effects on a single memory location. We express below
the semantics of each of the operations on the consistency
status of the concerned memory location. The memory status
of a variable is a pair of the status of its locations, where each
status is either V for valid or I for invalid. The first element is
the status of the local memory, and the second one is the status
of the remote memory. For example, for a program running
on a CPU while the remote memory is a GPU, a status (V, I)
means that the memory is valid and can be read on the CPU,
but is invalid on the GPU and should be transferred before
being usable there.

Each operation has a signature in the sense that it may
require a certain memory status and will produce another
memory status. The signature of each operation is expressed
below. We use variables X , Y , Z, T that are considered as
universally quantified in each rule. They can be instantiated
with either V or I .

Push : (V,X) 7→ (V, V) Pull : (X,V) 7→ (V, V)

r : (V,X) 7→ (V,X) w : (X,Y) 7→ (V, I)

Noop : (X,Y) 7→ (X,Y)

These signatures are effects expressing that r is a reading
operation requiring validity of data and ensuring not to modify
it, the distant status is unchanged; w is a writing operation that
modifies data locally but do not require validity, they invalidate
the remote memory. Push uploads the local memory and thus
makes valid the distant memory; it requires that the data is
locally valid, and Pull is the symmetrical operation.

An additional operation could be defined: an rw operation
would represent a read and/or write access, it would both
require data validity and invalidate remote status: (V,X) 7→
(V, I). This operation is however not needed here.

B. A language for modelling consistency and effects

We now create a core calculus to be able to reason on
programs involving sequences of effects on different memory
locations. x, y range over variables and we introduce state-
ments manipulating variables. We use sequence and simple
loops and conditionals. Operations with effects now apply to
a variable; the rem(E x) is a remote operation on the remote
memory. For example, a GPU procedure writing x and reading
y would correspond to the pseudo-code: rem(w x); rem(r y).
Statements S are defined as:

S ::= E x | rem(E x) | S;S′ | While(cond)S | if (cond) S else S′

where E x denotes some effect E on variable x, with E ∈ {r,
w, Push, Pull, Noop}.

We are interested in conditionals dealing with the validity
status of the variables. Other conditionals are expressed as a
generic binary operator ⊕ but other operators with different
arities could be added as well:

cond ::= isValid x | remIsValid x | x⊕ y

where isValid x and remIsValid x denote checks of the validity
status flag of the local and remote location of x, respectively.

We now define a small step operational semantics for our
core calculus. It relies on the validity status of variables,
recorded in a store σ mapping variable names to validity pairs.
Semantics is written as a transition relation between pairs
consisting of a statement and a store: (S, σ). The sequencing
operator ; is associative with Noop as a neutral element.
Consequently each non-empty sequence of instruction can be
rewritten as S;S′ where S is neither a sequence nor Noop.
σ[x 7→ (X,Y)] is the update operation on maps.

The semantics is presented in Figure 2. Like in the previous
section, we use validity variables X , Y , Z, T that are
universally quantified in each rule. The first four rules present
the evaluation of conditional statements, we suppose additional
rules exist for evaluating ⊕6. The next rule applies an effect
on a variable x updating the validity store, and the REMOTE
EFFECT rule applies an effect occurring on the distant memory,
it applies the symmetric of the effect to the variable. Note that
Push is the symmetric of Pull and we could have removed
one of those two operations without loss of generality. The
last rules are standard ones for if and while statements.
Initial state: To evaluate a sequence of statements S using the
variables vars(S), we put it in a configuration with an initial
store where data is hosted on the CPU and all variables are
initially mapped to (V, I): σ0 = (x 7→ (V, I))x∈vars(S).

A configuration is reachable if it is possible to obtain
this configuration starting from the initial configuration and
applying any number of reductions: (S, σ) is reachable if
(S, σ0)→∗ (S′, σ) where→∗ is the reflexive transitive closure
of →. We write (S, σ) 6→ and say that the configuration is
stuck if no reduction rule can be applied on (S, σ).

6We are only interested in cache coherence properties, we thus suppose
that evaluation of ⊕ always succeed, and in particular variables accessed by
the operation are specified as a r operation preceding the condition.

Property 1 (Progress). A configuration is stuck if the validity
status of the accessed variable is incompatible with the effect
to be applied7:

(S, σ) 6→ ⇐⇒
S = E x;S′ ∧ σ(x) = (X,Y) ∧ E : (X ′, Y ′) 7→ (Z, T)

∧ there is no unification between (X,Y) and (X ′, Y ′)
∨S=rem(E x);S′ ∧ σ(x)=(X,Y) ∧ E : (X ′, Y ′) 7→(Z, T)
∧ there is no unification between (X,Y) and (Y ′, X ′)

Note that this supposes that ⊕ always succeeds.

Proof sketch. By case analysis on the first statement of S,
there is always one rule applicable provided the premises of
the rule can be evaluated. In the case of the last four rules
this requires the evaluation of cond. If ⊕ always succeeds
then cond can always be evaluated. The only case remaining
is if there is no unification possible between the effect of
an operation and the current validity status of the affected
variable, this concerns the rule EFFECT and REMOTE EFFECT
and corresponds to the two cases expressed in the theorem.

Property 2 (Safety). A state is said to be unsafe if at least
one variable is mapped to (I, I). It is impossible to reach an
unsafe state from the initial state.

Proof sketch. Unsafe states are avoided because of the effects
of operations: only effect rules modify the store and no effect
can reach (I, I), except Noop starting from (I, I).

Example: wx; rem(r x) cannot be fully evaluated. Indeed,
(wx; rem(r x), (x 7→ (V, I))) → (rem(r x), (x 7→ (V, I))),
but rem(r x) requires that x is mapped to (X,V) for some
X which is not the case. However if we add a Push opera-
tion to ensure the validity of the read memory the program
w x;Push; rem(r x) can be reduced:
(wx; rem(r x), (x 7→ (V, I)))

→ (Push; rem(r x), (x 7→ (V, I)))
→ (rem(r x), (x 7→ (V, V)))→ (Noop, (x 7→ (V, V)))

C. Declaring access modes and adding an abstraction layer

The calculus defined above only considers simple mem-
ory locations and directly manipulates them. But VectorPU
and similar libraries manipulate structures representing the
memory. For example, VectorPU vectors act as an abstract
representation of a set of memory locations. In this section,
we add a declaration and abstraction layer to the calculus
to represent the access mode declarations that will trigger
data transfers according to the consistency mechanism. This
abstraction layer is also a necessary first step to the modelling
of array structures that we will present in Section III-E.
Indeed, in array structures, the validity status of the array
is abstracted away by a single validity status pair. Then a
dynamic abstraction of the consistency status of the memory
can be used. More technically, the abstraction and declaration
layer relies on two principles:

7We say that there is no unification between X and Y if one of the two
variables must have the value V , and the other one the value I . This relation
is extended to pairs of variables.

VALID
σ(x) = (V,X)

JisValid xKσ = True

INVALID
σ(x) = (I,X)

JisValid xKσ = False

REM-VALID
σ(x) = (X,V)

JremIsValid xKσ = True

REM-INVALID
σ(x) = (X, I)

JremIsValid xKσ = False

EFFECT
σ(x) = (X,Y) E : (X,Y) 7→ (Z, T)

(E x;S, σ)→ (S, σ[x 7→ (Z, T)])

REMOTE EFFECT
σ(x) = (X,Y) E : (Y,X) 7→ (Z, T)

(rem(E x);S, σ)→ (S, σ[x 7→ (T,Z)])

WHILE-TRUE
JcondKσ

(While(cond)S;S′, σ)→ (S;While(cond)S;S′, σ)

WHILE-FALSE
¬JcondKσ

(While(cond)S;S′, σ)→ (S′, σ)

IF-TRUE
JcondKσ

((if (cond) S else S′);S′′, σ)→ (S;S′′, σ)

IF-FALSE
¬JcondKσ

((if (cond) S else S′);S′′, σ)→ (S′;S′′, σ)

Fig. 2. Operational semantics of validity status.

• Each variable x has an abstract variable x# that repre-
sents it. In this section there is a single variable for each
representative, but when we deal with arrays we will have
a single representative for the whole array.

• It is safe to “forget” that one memory space holds a valid
copy of the data if the other memory space has a valid
one. In other words, (V, I) (resp. (I, V)) is a safe ab-
straction of (V, V) and we denote (V, I) ≤ (V, V) (resp.
(I, V) ≤ (V, V)). Of course, we have (X,Y) ≤ (X,Y)
for all X and Y .
a) Syntax: We now define access mode declarations:

M ::= R x# |W x# |RW x# |
rem(R x#) | rem(W x#) | rem(RW x#) |
M ∧M′ (where variables in M and M′ are disjoint)

These access modes declare the kind of access (read R,
write W , or read and/or write RW) that can be performed
on the variable x represented by x#. In a set of access mode
declarations the same variable cannot appear twice. There exist
declared access modes for local accesses and for the remote
memory space.

A program is a sequence of calls to functions or components
(i.e., statements accessing only real variables) each protected
by an access mode declaration:

P ::=M1{S1};M2{S2}; . . .

We write that S ∈ S′ if S is one statement inside S′ (i.e. S
is a sub-term of S′).

We define below the semantics of these programs and
specify well-declared program by comparing the statements
they contain with the declared access modes. The semantics
relies on the translation of the access mode declarations
into consistency mechanisms with checks and data transfers
triggered before each function execution.

b) Extension of statements to abstract variables: When
evaluating a program, the store contains both real and abstract
variables, and the existing statements have the same effect on

the abstract variables as on the real ones. However one should
notice that even if the effect is the same, the meaning of a
statement acting on a real variable or on its representative
is different: in our calculus, the effect on a variable is an
abstraction of the real effect that involves side effects and data
transfers. On the contrary, only the validity status of abstract
variables is stored by the library: the effect triggered by an
operation on an abstract variable is exactly what happens when
VectorPU updates the validity status of its internal structures.

For example, a Pull operation on a real variable consists
in transferring data from a remote memory space to the
local one. We abstracted it by changing the local validity
status. A Pull operation on an abstract variable only changes
the validity status, no data transfer has to be done because
abstract variables only need to be stored in one memory
space. The validity status is stored in the CPU address space
in VectorPU. Comparing the validity status of real memory
and their representative allow us to reason formally on the
correctness of the validity tracking performed by VectorPU.

As no data is accessed by the effects on abstract variables,
they cannot create stuck configuration. We will not use r x#

as it does not change the validity status of variables. The
statement that should get stuck in case of a read access is
the read of the real variable that cannot access a valid data.

c) Semantics: Figure 3 defines the semantics of programs
with access modes as a translation into the core calculus of
Section III-B. This translation ensures that the validity status is
correct and records the effect of the function on the abstract
variable before running the function call that may read and
write data (on the real variables). Similarly to the VectorPU
library, the protected accesses can be considered as macros
and the programs can be translated into the core syntax.

This encoding corresponds to the macros as they are imple-
mented in VectorPU. It is indeed easy to check that VectorPU
tracks the effects in the same way as our effect system does
in the translation rules. These translation rules perform Push
or Pull operations in order to ensure that the memory is in

JR x#K = (if (isValid x#) Noop else (Pull x;Pull x#)) Jrem(R x#)K = (if (remIsValid x) Noop else (Push x;Push x#))

JRW x#K = (if (isValid x) Noop else (Pull x;Pull x#));w x#

Jrem(RW x#)K = (if (remIsValid x) Noop else (Push x;Push x#)); rem(w x#) JW x#K = w x#

Jrem(W x#)K = rem(w x#) JM1{S1};M2{S2}; . . .K = JM1K;S1; JM2K;S2; . . .

Fig. 3. Semantics of access modes and programs

a correct validity status for the read or write operation to
be performed. When evaluating a program we create a store
where the validity status of real and abstract variables are
(V, I), corresponding to the fact that data is initially placed
in one memory location; typically, in VectorPU, in the CPU
memory space.

D. Well-declared Programs and their Properties

We now define formally what it means for an access mode
declaration to be correct, i.e. to adequately specify the effect of
a function. The principle is that each operation on a memory
location must be declared on its representative. It is however
possible to declare more read or RW accesses that what is
done in practice, and one can declare a read and/or write access
if only read or write is performed. Additionally, the annotation
W denotes an obligation to write which allows the consistency
mechanism to avoid any validity checks before running the
function that will overwrite the data. To represent this concept,
we need a first definition that states that an operation will be
performed in all execution paths of a (bigger) statement. This
definition formalises a classical static analysis concept that
states that all branches of conditionals necessarily execute a
given statement. It considers executions that run to completion
and states that a given statement is necessarily evaluated in this
execution.

Definition 1 (Occur in all execution paths). We state that a
statement S occur in all execution paths of S0 if, for any
correct initial store σ0, for all full reductions (S0, σ0) →
(S1, σ1) → . . . → (Noop, σn), there is an intermediate state
(Si, σi) such that Si = S;S′′ for some S′′.

Notice that an operation S may appear in some of the
execution paths of S′ if S ∈ S′: if (S0, σ0) →∗ (S;S′, σ)
then S ∈ S0.

Definition 2 (Well-declared program). A program P is well-
declared if for all M{S} in P we have:
• Push x 6∈ S and Pull x 6∈ S (for any x),
• w x ∈ S =⇒ (W x# ∈M∨RW x# ∈M),
• r x ∈ S =⇒ (R x# ∈M∨RW x# ∈M),
• W x#∈M =⇒ w x occurs in all execution paths of S,
• Plus the same rules for remote operations.

Note that a well-declared program does not perform syn-
chronisation operations (Push or Pull) manually, these oper-
ations are only performed when evaluating the access mode

declarations. Also each variable accessed by a well-declared
function has an abstract representative in the corresponding
declaration block.

A direct consequence of the definition above is that a well-
declared program cannot access, in the same function, the
same variable in both address spaces. This is in accordance
with VectorPU where each function is entirely executed either
on a CPU or on a GPU, the formalisation is a bit more generic
on this aspect. This is expressed by the following property.

Property 3 (Localised access). For a well-declared program
containing M{S}, for any x, we cannot have rem(E x) ∈ S
and E′ x ∈ S.

We now state and prove the two major properties ensured by
our formalisation. The first property ensures that the abstrac-
tion is correct relatively to the execution. This corresponds to
the fact that VectorPU tracks adequately the validity status of
the memory. This is expressed as a theorem that is similar to
subject-reduction in type systems, it states that if the status
of the abstract variables represent correctly the validity status
of the real variables, then the abstraction is also correct after
the execution of a well-declared function. Let us say that we
have a correct abstraction of the memory state if for each real
memory location, the abstract representative of this location
has a validity status that is an approximation, in the sense
of ≤, of the validity status of the real memory. The theorem
below states that the execution of a well-declared function
maintains the correctness of the memory state abstraction.

Theorem 1 (Subject reduction). Suppose M{S} is well-
declared, we have:

∀x ∈ dom(σ). σ(x#) ≤ σ(x) ∧ (JM{S}K, σ)→∗ (Noop, σ′)
=⇒ ∀x ∈ dom(σ′). σ′(x#) ≤ σ′(x)

This property is extended by a trivial induction to the
execution of a well-protected program P in an initial store
σ0 = (x 7→ (V, I))x∈vars(P).

Proof. Notice that dom(σ′) = dom(σ), and if σ(x) = (V, I)
or σ(x) = (I, V) then σ(x) = σ(x#), else σ(x) = (V, V). We
reason on the read and write access that occur in the considered
reduction. Each variable x is either read or written or not
accessed (or read and written). For each case we compare
the status of abstract and local variable, and in particular
we consider the status of the reduction after executing the
synchronisation code JM{S}K and call σs the corresponding

store (note that σs(x#) = σ′(x#)). We detail operations on the
local address space, cases for remote operations are similar:
• If x is written, we have: (JM{S}K, σ)→∗ (w x;S′, σ′′)→∗
(Noop, σ′). Whatever the initial value of σ(x), we have
σ′(x) = (V, I). Two cases are possible:
(1) W x# ∈ M then the value cannot be read and we have
σs(x

#) = (V, I). σ′(x#) = σ′(x).
(2) RW x# ∈ M then a data-transfer (Pull) may occur.
Knowing that σ(x#) ≤ σ(x), by a case analysis on σ(x)
and σ(x#) we have: σs(x#) = (V, I) and σs(x) = (V, I) or
(V, V). Whether x is read or not we have σ′(x#) = σ′(x).
• If x is read but not written, its validity status is not changed.
(1) R x# ∈ M. By a case analysis on σ(x) and σ(x#) we
have: σs(x) = (V, I) and σs(x

#) = (V, I), or σs(x) = (V, V)
and σs(x#)=(V, I) or (V, V). Reading has no effect on valid-
ity status and in all cases we have σ′(x#) ≤ σ′(x) = σs(x).
(2) RW x# ∈ M then similarly to the case (2) above we
have σs(x#) = (V, I), additionally σ′(x) = σs(x) = (V, I)
or (V, V). In all cases σ′(x#) ≤ σ′(x).
• If x is not accessed but is in the declaration, the reasoning is
the same as if it was only read. Note that the variable cannot
be declared in write mode, W x# ∈M, by Definition 2.

Finally, a well-declared program always runs to completion:
it never tries to access an invalid memory location.

Theorem 2 (Progress for well-declared programs). If a pro-
gram P is well-declared, then its execution cannot reach a
stuck configuration.

Proof. By Property 1, it is sufficient to prove that unification
on the validity status is always possible. We consider a
reduction (JM{S}K, σ) →∗ (S, σs) →∗ . . . similarly to the
proof above.

By definition of well-declared programs and because of the
signature of effects (w x cannot be stuck), only two cases have
to be analysed for the local operations (plus two similar cases
for remote statements):
• Pull operations (on x and x#) in the translation of R x#

or RW x#. Unification requires that σ(x) = (X,V) and
σ(x#) = (Y, V).

• r x operation in the evaluation of S. Unification requires
that σ′(x) = (V,X) where σ′ is the store in which the
read access is to be evaluated.

Indeed, access mode declarations do not generate reading
operations, and by definition function statements contain no
Push or Pull.

Concerning the first case, because of Theorem 1, we have
σ(x#) ≤ σ(x), and because of property 2 none of them is
(I, I). By case analysis on the possible values of σ(x#) and
σ(x), it is easy to show that σ(x) = (X,V) and σ(x#) =
(Y, V) if we reach the two Pull statements that perform data
transfers before the execution of the function.

Concerning read access, they should be verified by an induc-
tion on the reduction steps following the state (S, σs) showing
that, for any variable x that is declared R or RW , in all states
we have σ′(x) = (V,X). Indeed, by the same analysis as

in the proof of Theorem 1 we know that σ′(x) = (V,X).
Because of Property 3 no remote operation is possible on x
and thus only r x and w x operations are possible on x, both
maintain the invariant σ′(x) = (V,X) for some X .

Considering the example above of a variable writ-
ten on the CPU, and then read on the GPU, a
well-declared program encoding this behaviour would be
RW x#{w x}; rem(R x#){rem(r x)}. This code automati-
cally generates the Push instruction that prevents the program
from being stuck.

E. Effects and Access Mode Declarations for Arrays
In array structures, the validity status of the whole array is

abstracted away by a single validity status pair. We extend the
syntax for arrays as follows, x[i] denotes the indexed access
to an element of the array. More precisely the new operations
on arrays and their elements are (we still have the previous
operations on non-array and abstract variables):

S ::= ... | r x[i] |w x[i]

Synchronisation operations (Push and Pull) exist for arrays
but the whole array is synchronised, and we write Push x and
Pull x as above. All the elements of the array are represented
by a single abstract variable: x# represents the validity status
of all x[i].

The semantics of access mode declarations and programs
is unchanged because synchronisation operations and access
mode declarations do not concern array elements. The concept
of well-protected programs must be adapted to the case of
array structures, and more precisely to the fact that several
memory locations are represented by a single abstract variable.

Definition 3 (Well-declared program with array access). A
program P is well-declared if for allM{S} in P , additionally
to the rules of Definition 2, we have:
• w x[i] ∈ S =⇒ (W x# ∈M∨RW x# ∈M),
• r x[i] ∈ S =⇒ (R x# ∈M∨RW x# ∈M),
• W x# ∈ M =⇒ ∀i ∈ range(x).w x[i] occurs in all

execution paths of S,
• Plus the same rules for remote operations.

Where range(x) is the set of valid indexes for an array x.

The other properties are expressed similarly and both
subject-reduction, Theorem 1, and progress, Theorem 2, are
still valid. The only change is the “correct abstraction of the
memory state” criteria that becomes ∀x ∈ vars(S).∀i ∈
range(x). σ(x#) ≤ σ(x[i]) instead of ∀i ∈ range(x) for
arrays. The proofs are similar except in the case of W x
declarations where the fact that all elements of the array
must be written is necessary to ensure that no element is in
the status (I, V) (which could not be safely represented by
(V, I)) at the end of the function execution. If we focus on
the proof of Theorem 1, case “x is written, sub-case (1) we
have σ′(x#) = (V, I) which is a safe abstraction because all
elements have been written, and thus σ′(x[i]) = (V, I) for
all i. If one element j was not written, we could have had
σ′(x[i]) = (I, V) which would invalidate the theorem.

IV. A FEW RELATED WORKS

Most of the verification works related to memory con-
sistency focus on coherence protocols and/or weak memory
models. Among them, one could cite [8], a formal specification
of a caching algorithm, and its verification in TLA [9]. These
works shows the difficulty on reasoning on memory coherency,
but also that specifications in these models should rely on a
few simple instructions on the type of memory accessed, a bit
similarly to this proposal. Coherence protocols have also been
verified using CCS specifications [2]. These various works
are quite different from the approach presented in this paper
because we rely here on a declarative approach for memory ac-
cesses: the programmer declares the kind of memory accesses
performed by a component, and the consistency mechanism
ensures that each component accesses a valid memory space.

More recently, and adopting a more language oriented
approach, Crary and Sullivan [5] designed a calculus for
expressing ordering of memory accesses in weak memory
models, however we are interested here in a much simpler
problem where memory access is somehow sequential and
clearly identified. Even a extension of this work for parallel
processes would result in a simpler model than the ones
that exist for weak memory models because of the explicit
consistency points introduced in the execution by the start/end
of each function.

The closest work to ours are probably [4] that define a mem-
ory access calculus similar to ours and prove the correctness
of a generic cache coherence protocol expressed as part of
the semantics of the calculus. Compared to this work, we are
interested in explicit statements on memory accesses and thus
the cache consistency is partially ensured by the programmer
annotations, making the approach and the properties proven
significantly different. Some aspects of the approaches could
however been made more similar, e.g. by extending our work
to more than two address spaces or adopting a different syntax.
However our problem and formalisation are quite simpler,
and we believe easier to read, while sufficient for our study.
The same authors also designed a formal model written in
Maude [3] to better understand the possible optimisations and
the impact of the memory organisation on performance in the
context of cache coherent multicore architectures. This could
be an interesting starting point for future works, especially if
we extend our work to better model the performance aspects
of VectorPU and want to reason formally on the improved
performance obtained by the library.

V. CONCLUSION AND FUTURE WORKS

In this article we provided a formal approach to verify the
consistency of the memory accesses in heterogeneous com-
puter systems made of two memory spaces. We formalise the
operations of memory accesses and memory synchronisation
between the two memory spaces and prove that a program ad-
equately annotated with informations on the memory accesses
always access valid memory spaces and tracks correctly which
of the memory space contains the up-to-date data.

The practical result is that we can verify the coherency
mechanism used by the VectorPU library and ensure that,
additionally to the significant performance benefits of the
approach, the VectorPU mechanisms is correct and ensures
the consistency of the memory accesses.

We envision several extensions to this work, the most
promising is the study of the operations made on overlapping
arrays. The current implementation of VectorPU supposes that
the annotated memory accesses deal with disjoint memory
locations, it does not take into account overlapping arrays.
Designing an extension of the library that could deal safely
with overlapping array is one of the future direction we would
like to pursue. Additionally, the current paper only deals
with two memory spaces, the extension to many memory
spaces seem relatively simple but the mechanism dealing with
memory transfers between several memory locations becomes
a bit more complex; its formalisation should be similar.
Finally, we are interested in the application of our approach
to the verification of other frameworks. Indeed VectorPU uses
the most primitive cache coherence protocol, the VI-protocol.
More elaborated coherence protocols like MSI or MESI in-
troduce additional states where the number of readers has
to be tracked for example. Verifying such framework would
require a modification of our abstract state representation and
a modification of the access mode translational semantics.

REFERENCES

[1] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-
André Wacrenier. StarPU: A unified platform for task scheduling on
heterogeneous multicore architectures. Concurrency and Computation:
Practice and Experience, 23:187–198, February 2011.

[2] Manuel Barrio-Solórzano, M. Encarnación Beato, Carlos E. Cuesta, and
Pablo de la Fuente. Formal verification of coherence for a shared
memory multiprocessor model. In Victor Malyshkin, editor, Parallel
Computing Technologies, pages 17–26. Springer Berlin Heidelberg,
2001.

[3] Shiji Bijo, Einar Broch Johnsen, Ka I. Pun, and Silvia Lizeth Tapia Tar-
ifa. A maude framework for cache coherent multicore architectures.
In Dorel Lucanu, editor, Rewriting Logic and Its Applications, Cham,
2016. Springer International Publishing.

[4] Shiji Bijo, Einar Broch Johnsen, Ka I. Pun, and S. Lizeth Tapia Tarifa.
An operational semantics of cache coherent multicore architectures. In
Proceedings of the 31st Annual ACM Symposium on Applied Computing,
SAC ’16, pages 1219–1224, New York, NY, USA, 2016. ACM.

[5] Karl Crary and Michael J. Sullivan. A calculus for relaxed memory. In
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’15, pages 623–636,
New York, NY, USA, 2015. ACM.

[6] Usman Dastgeer and Christoph Kessler. Smart containers and skeleton
programming for GPU-based systems. Int. J. of Par. Progr., 44(3):506–
530, June 2016.

[7] Johan Enmyren and Christoph W. Kessler. SkePU: A multi-backend
skeleton programming library for multi-GPU systems. In Proc. 4th
Int. Workshop on High-Level Parallel Programming and Applications
(HLPP-2010), Baltimore, Maryland, USA, pages 5–14. ACM, September
2010. doi: 10.1145/1863482.1863487.

[8] Rob Gerth. Sequential consistency and the lazy caching algorithm.
Distributed Computing, 12(2):57–59, May 1999.

[9] Peter Ladkin, Leslie Lamport, Bryan Olivier, and Denis Roegel. Lazy
caching in TLA. Distributed Computing, 12(2):151–174, May 1999.

[10] Lu Li and Christoph Kessler. VectorPU: A generic and efficient data-
container and component model for transparent data transfer on GPU-
based heterogeneous systems. In Proc. PARMA-DITAM’17, ACM., 2017.

[11] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Type and
Effect Systems, pages 283–363. Springer Berlin Heidelberg, 1999.

