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Abstract—This paper considers the problem of detecting a
QPSK communication signal on carrier. We propose a method to
perform the detection thanks to second order cyclostationarity
theory. It is well known that for such a signal, there is no
cyclic frequency multiple of the studied signal carrier frequency.
Hence, the basic method of second order cyclic-moments energy
measurement is unable to detect any energy directly linked to
the signal carrier. In this article, we propose a novel criterion
based on second order cyclic-moments that exploits the conver-
gence speed of the cyclic autocorrelation function estimator. We
show that for a modulated QPSK signal the cyclic-correlation
converges to zero but not in the same way if the cyclic frequency
is a multiple of the carrier frequency or not. We develop a
statistical test and derive the asymptotic probability density
function of the criterion to propose a detection threshold. System
performance simulation results are then evaluated by Monte
Carlo simulations and compared to the results of fourth order
nonlinear transformation method.

I. INTRODUCTION

This work has been done in the context of the FITNESS
project, which goal is to develop a multi-standards novel
generation PMR (Professional Mobile Radio) receiver. This
kind of receiver has to digitize a large bandwidth to be able
to deal with the different PMR standards. The digitization is
performed after down conversion to an intermediate frequency
to solve some analog issues. One of the difficulty is to detect
the presence of a modulated QPSK signal in the digitalized
bandwidth in order to adapt the receiver parameters. This
detection should be able to work at low SNR (Signal to Noise
Ratio) and with short observation duration.

Let us define by fc the carrier frequency of the signal to
detect after the down frequency conversion. In the paper, we
propose an algorithm to detect the presence of a modulated
QPSK signal at frequency fc in noise. We propose a criterion
based on second-order cyclostationarity feature. This criterion
may be also of some use for spectrum sensing in cognitive
radio or, for blind system identification for electronic warfare.
In our context, we assume that neither the signal power
nor the noise power are known. Moreover, the only prior
available information about the signal to detect are: its carrier
frequency and its modulation type (i.e. QPSK).

In [1], the authors summed up several reliable techniques
to determine the signal presence in the sensed bandwidth.
However, energy detection, waveform based-sensing, or match

filter can not be applied considering our lack of knowledge
on the signal to detect. Indeed, an energy detector requires
to know the noise power and is not adapted to detect a
specific carrier among a set several channels. For a match filter
approach, a known pattern is needed or at least the emission
filter and transmission rate.

That makes the cyclostationarity approach a natural
candidate for our considered context. Moreover, the
cyclostationarity property offers relevant tools where
conventional methods do not work. In particular, it drawn
interest in the application domain of cognitive radios. Thanks
to its properties, this theory is used in several applications
such as signal detection [2], source separation [3], fading
channel identification [4], or modulation type classification [5].

However, in those applications some signals are difficult
to analyze. This is the case of phase modulated signals
on carrier frequency. Contrary to BPSK signals, modulated
QPSK signals does not exhibit cyclic frequencies depending
on the carrier frequency. Detection and classification of such
signals is possible, but often requires to use a nonlinear
transformation as in [6], or higher order cyclic statistics, as
developed in [7]. In this last document, the proposed method
creates a DC component at a particular cyclic frequency.
This transformation allows a good detection and classification
of the chosen modulation, but is sensitive to noise power.
We also notice that the created spectral line is located at
4fc. This implies that the sampling frequency fs has to be
greater than fs > 8fc in order to avoid aliasing effects. That
makes the hardware implementation of this kind of algorithm
quite difficult. In [8], it is also proposed to use sixth order
cumulants, which provides very interesting performance. This
performance has to be balanced by an expensive cost of
operations and also requires a large number of symbols for
detection (>1000). A second order cyclic-moments based
approach is developed in [9] for modulation classification.
Kim and al. use the particularity that there is no cyclic
frequency in order to classify QPSK signals. But, this kind
of approach can only be used for classification and not for
detection.

In the following, the signal model, an analysis of the
problem arisen by on carrier QPSK signal and second order
moments, as well as our criterion, are described in section II.



The statistical test and the theoretical detection threshold are
presented in section III. In section IV, Monte Carlo simulations
are run to estimate the performance of the proposed algorithm,
and section V concludes the paper.

II. PROBLEM FORMULATION

A. Considered model

Let us define the base-band model of the considered com-
munication signal where T is the symbol period, h(t) is a
waveform low-pass filter and ak are the QPSK complex signal
symbols:

s(t) = sR(t) + jsI(t) =

N∑
k=1

akh(t− kT ) (1)

sR(t) and sI(t) are the real and imaginary parts of the
base-band signal s(t). We point out that as s(t) is a QPSK
signal, its real and imaginary parts are assumed independent
and identically distributed. Considering a stationary Additive
White Gaussian Noise (AWGN) channel, the received signal
x(t), of a QPSK signal emitted at carrier frequency fc can be
expressed as:

x(t) = xR(t−∆t)− xI(t−∆t) + n(t) (2)

where {
xR(t) = sR(t)cos(2πfct),

xI(t) = sI(t)sin(2πfct),
(3)

and n(t) is an additive white Gaussian noise of zero mean and
variance σ2

n. In the following parts we take the propagation
delay ∆t in eq.(2), equal zero. A short development shows
that this hypothesis has absolutely no impact on the method
and does not lead to a loss of generality.

B. Cyclostationary basics

In this section, we derive the cyclostationary analysis of
eq.(1) and eq.(2). Cyclostationary signals have an autocorrela-
tion function, defined in eq.(4), which is periodic in time, and
consequently admits a Fourier decomposition.

Rs(t, τ) = E[s(t)s∗(t− τ)] (4)

Here E[.] is the expectation operator and (.)∗ is the complex
conjugate operation. The Fourier series decomposition of
Rs(t, τ) is given by:

Rs(t, τ) =
∑
α∈Is

Rαs (τ)ej2παt (5)

Let us define by Is = { kT , k ∈ Z} the set of cyclic frequencies
of s(t) defined in eq.(1). The theoretical cyclic autocorrelation
function (CAF) at a cyclic frequency α is defined as the Fourier
transform of Rs(t, τ).

Rαs (τ) = lim
Tα→∞

1

Tα

∫ Tα

0

Rs(t, τ)e−j2παtdt (6)

As detailed in [10], the signal s(t) is considered
cyclostationary and its cyclic frequencies are multiple

of 1/T . Coefficients Rαs (τ) are the CAFs of s(t). In practice,
for k > 1 the magnitude of the Rαs (τ) drops quickly and we
often consider only the cyclic frequency α = 1/T . In our
context, we assume to know the set of cyclic-frequencies of
the signal we wish to detect.

We can now derive the cyclostationary analysis for the
signal x(t) defined in eq.(2). Using eq.(6), one can easily show
the following relation:

Rαx (τ) = RαxR(τ) +RαxI (τ) (7)

So, eq.(7) is the sum of the CAF of xR(t) and xI(t). The
theoretical CAF of xR(t) is given by:

RαxR(τ) =


1
2cos(2πfcτ)RαsR(τ) if α = 0 or ± 1

T ,

1
4e
±j2πfcτRsR(τ) if α = ±2fc,

0 otherwise.

(8)

With IxR =
{
{ kT , 2kfc}, k ∈ Z

}
the set of cyclic frequencies

of xR(t) defined in eq.(3). As IxR contains elements that are
not multiple to each other, the signal xR(t) is called almost
cyclostationary (see [10] for more details). In that case, the
expression eq.(5) is in reality a Fourier-Bohr series.

Note that the CAF expression of xI(t), leads to:

RαxI (τ) =


1
2cos(2πfcτ)RαsI (τ) if α = 0 or ± 1

T ,

− 1
4e
±j2πfcτRsI (τ) if α = ±2fc,

0 otherwise.

(9)

With IxI =
{
{ kTs , 2kfc}, k ∈ Z

}
the set of cyclic frequencies

of xI(t) defined in eq.(3). We underline that cyclic frequencies
multiple of fc exists in eq.(8) and eq.(9). Indeed, for baseband
QPSK signals, the constellation projection in the complex or
real plan is consistent to BPSK modulation. Consequently,
real and imaginary parts of baseband QPSK have cyclic
frequencies multiple of the carrier frequency.

Noticing that R±2fcxR (τ) = −R±2fcxI (τ), and replacing eq.(8)
and eq.(9) in eq.(7) leads to the following expression for α ∈
Ix:

Rαx (τ) =
1

2
cos(ωcτ)RαsR(τ) +

1

2
cos(ωcτ)RαsI (τ) (10)

In eq.(10), x(t) is cyclostationary with Ix = { kTs , k ∈ Z}. We
notice that Ix does not have any cyclic frequency depending
on fc, as expected in theory.

By definition, for any α /∈ Ix, Rαx (τ) = 0. This is also true
for particular values of α = ±2fc. But we also notice that
R±2fcxR (τ) = −R±2fcxI (τ) 6= 0 which leads to:

R±2fcx (τ) = R±2fcxR (τ) +R±2fcxI (τ) = 0 (11)

This is the property we harness to develop our criterion: we
expect that the estimation of R̂αx will not converge in the same
way to zero if α = ±2fc and α /∈ IxR .
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Fig. 1. CAF energy versus the observation duration (number of samples) for
different modulation schemes (i.e. QPSK, BPSK) and for different α

C. Detection metric

In this part, we present our criterion, defined after digi-
tization. The theoretical CAF expression is given by eq.(6).
However, in practice we only have one realization of the
considered signal. Classically, to estimate the CAF, the ex-
pectation operator is replaced by a temporal average operator
defined as < . >= 1

N+1

∑N/2
k=−N/2(.). Rewriting eq.(6) with

temporal averages leads to:

R̂αx,N (l) =
1

N + 1

N/2∑
k=−N/2

x(k)x∗(k − l)e−j2παk (12)

where the notation R̂αx,N (l) stands for the estimate of
Rαx (lTs), with Ts the sampling period. When N → ∞
eq.(12) meets the definition of the CAF defined in eq.(6).

By definition, for a given α /∈ Ix, R̂αx (l) , 0 since α
is not a cyclic frequency. Applying the temporal average
operation on eq.(11) leads to 0 only when N → ∞ since
limN→∞ R̂±2fcxR (l) = limN→∞ R̂±2fcxI (l) 6= 0. Consequently,
with finite number of samples the behavior of the CAF
estimator is different between the α = ±2fc and all the other
non-cyclic frequency.

Our criterion ĴL,N (α) is defined as follows:

ĴL,N (2fc) =
Ĉ2fc
N (L)

ĈβN (L)
(13)

where β /∈ IxR and:

ĈαN (L) =
1

L+ 1

L∑
l=0

|R̂αx,N (l)|2 (14)

L is the number of lags of the autocorrelation function
considered, and |.| is the modulus operator. As the

precision of the estimated CAF in eq.(12) depends on
N , so does eq.(14). This criterion can be interpreted as
a reciprocal correlation coefficient (see [10]). Indeed, it
makes a comparison between the estimated CAF at two α
that are not cyclic frequencies. Our criterion can also be
used for MPSK or MQAM modulations with M >= 2. The
only constraint is that sR(t) and sI(t) have to be independent.

The fig.1 illustrates the CAF speed convergence for
different value of the cyclic frequencies α ∈ IxR and α /∈ Ix.
Experimental conditions are detailed in the next section. In
fig.1 when α ∈ IxR , the CAF estimator applied to a BSPK
signal converges quickly through a non zero constant value
(triangle yellow curve). In the same way, when α /∈ IxR , the
estimator decreases in 1/N and tends to zero (red circled
curve). For a QPSK signal, when α = 2fc, the estimation
speed convergence is similar. However, there is a gap between
the curves α = 2fc and α /∈ Ix.

Our criterion exploits this quasi-constant energy shift within
those two curves and consequently, seems independent of N.
Another important remark is that even with a small number of
symbols, we are able to differentiate the two cases considered
above.

III. DETECTION FEATURE ANALYSIS

Let begin this section with a theoretical analysis of ĴL,N (α).
We consider that the distribution of our criterion is obtained
more easily in the absence of signal. Using the Neyman-
Pearson approach [11], a threshold Γ is determined with a
constrained Probability of False alarm Pfa = P [ĴL,N (2fc) >
Γ|H0]. The following statistical hypothesis test is defined
below:

H :

H0 → x(t) = n(t)

H1 → x(t) = <[s(t)ei2πfct] + n(t)
(15)

Here H0 denotes the absence of signal and H1 denotes its
presence.

To define Γ, let us consider the H0 hypothesis, where the
numerator and the denominator of eq.(13) have same statistical
properties. It was shown in [12], that the CAF estimator is
unbiased and that error estimation is asymptotically complex
normal. Re-expressing eq.(12) as the sum of a real and
imaginary part leads to:

R̂αx,N (l) = <[R̂αx,N (l)] + =[R̂αx,N (l)] (16)

where both real and complex terms follows asymptotically
complex independent normal distributions for each τ . The
mean power expression in eq.(14) is consequently a sum of
normal values, not reduced and non-centered. Under H0, one
can write the modulus expression of eq.(16):

|R̂αx,N (l)|2 = <[R̂αx,N (l)]2 + =[R̂αx,N (l)]2 (17)
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Fig. 2. ROC curves at fixed SNR = 0dB, 2048 Monte-Carlo run, performance
evolution for N = 8 or N = 512 number of symbols used

From eq.(14) and eq.(17) we get:

(L+ 1)Ĉ2fc
N (L) =

L∑
l=0

<[R̂2fc
x (l)]2 +

L∑
l=0

=[R̂2fc
x (l)]2 (18)

Real and imaginary parts are independents and have same
mean and variance.

Let now show that ĴL,N (2fc) follows a doubly non-central
Fisher distribution. Thanks to [11], we noticed that eq.(18) is
quite similar to a non-central chi-2 distribution χ2

ν(λ), defined
as:

χ2
ν(λ) =

ν∑
i=0

X2
i

σ2
i

(19)

Where λ is the non-centrality parameter, ν = 2(L+ 1) is the
number of degrees of freedom and Xi’s are independent and
Xi ∼ N (µi, 1). However, eq.(18) is not a sum of reduced
Normal distributions. We also notice that the doubly non-
central Fisher distribution is the ratio of two independent chi-2
distributions. Using eq.(19), F ′′ν1,ν2(λ, δ) is denoted as:

F ′′ν1,ν2(λ, δ) =

ν1∑
l=0

X2
l

σ2
l

ν2∑
k=0

X2
k

σ2
k

(20)

With our considered criterion, σ2
l = σ2

k since we use eq.(14)
to estimate ĴL,N (2fc).
Consequently we proved that (L+ 1)ĴL,N (α) ∼ F ′′ν1,ν2(λ, δ).

Non-centrality parameters λ and δ tend to
zero asymptotically, and the degrees of freedom
ν1 = ν2 = 2(L + 1). As eq.(13) is a ratio of random
laws of similar moments, there is no need to determine λ
and δ since the ratio tends to 1. At the asymptotic (N is
large) both Ĉ2fc

N (L) and ĈεN (L) tend to zero. Non-centrality

0 0.2 0.4 0.6 0.8 1

False alarm rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
r
u

e
 d

e
te

c
ti

o
n

 r
a
te

L = 5

L = 20

L = 50

Fig. 3. ROC curves at fixed SNR = 0dB, 2048 Monte-Carlo run, fixed number
of samples (64 symbols), performance evolution with several delays M

parameters become then λ = δ = 0. In that case eq.(13)
follows a central Fisher law Fν1,ν2(x). This approximation
works well in practice even for N small. To fix Γ, the inverse
function of Fν1,ν2(x) is required. A simple close form of
Fν1,ν2(x) is detailed in [13]. However, it implies to use the
inverse incomplete beta function, for which no close form
expression exists. The usual method consists then in realizing
an approximation. Thanks to the Newton algorithm and to the
theoretical quantile function of central Fisher law, it becomes
possible to determine a threshold Γ.

Before using the algorithm proposed below, the decision
threshold has to be determined. However, as the SNR is
unknown we have to fix a SNR value corresponding to a
worst case of use. According to H0, determine a threshold
value such as for a given false alarm probability Pfa =
P [F2(L+1),2(L+1) > Γ|H0]. Then, the same threshold will
be applied for any SNR level. The proposed algorithm is the
following one:

Step 1:Determine theoretical cyclic frequencies of the stud-
ied signal and set ε.

Step 2:Compute R̂2fc
x,N (l) and R̂βx,N (l) thanks to eq.(12) with

l ∈ [−L/2, L/2].
Step 3:Using eq.(14) and eq.(17), compute the test statistic

ĴL,N (2fc) in eq.(13).
Step 4:Decide H1 if JL,N (2fc) > Γ, and decide H0

otherwise.

IV. SIMULATION RESULTS

A. Experimental conditions

In this part, we propose an analysis of the criterion defined
in section II in order to show its accuracy for the considered
application. We set a sampling rate fs = 10fc, in order
to make a comparison with a high order moment detection



method. As presented in introduction, in our considered appli-
cation fc is the signal carrier frequency after down conversion.
A square-root raised cosine filter of bandwidth T = 2.5Tc, is
used as shaping filter with roll-of at 0.8 and span at 6 symbols.
Monte Carlo simulations were run, in which we considered
2048 realizations to determine the false alarm probability (H0)
and the power of the test (H1).

B. Simulations

As we show in previous sections, the criterion eq.(13) seems
insensitive of N . In order to check this point, we fixed the
SNR level to 0dB. We set the maximum number of delays
L at 20. The ROC (Receiver Operating Characteristic) curves
for N = 8 and N = 512 are presented in fig.2. We can see
that our algorithm based on second order moments provides
similar probability of detection with N = 8 and N = 512
(continuous lines). And we notice that the detector gives 65%
of good detection for a false alarm rate of 5%. We compare
those ROC curves with the ones obtained from the fourth order
moment method (dashed lines) described in [7]. It is clear that
this method outperforms our algorithm for N = 512. But,
we also noticed that for N = 8, the probability of detection
provided by the fourth order moment method dropped. This
point is particularly interesting, since using our algorithm
could significantly decrease the number of operation.

Let us now illustrate the influence of parameter L on
detection performance. The SNR level is fixed at 0dB, N is
fixed at 64 symbols. We plot ROC curves of several numbers
of delay in fig.3. The most important result is that increasing
L provides a better rate of true detection. Considering only
L = 5 leads to poor detection performances. There is an
improvement around 20% of true detection rate for the rise
of L from 5 to 20 delays. Then, increasing by 2.5 times
the number of delays leads to another 20% rise of true
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detection rate. Consequently, better performance are achieved
by increasing the number of delay used in the criterion
estimation. However, a trade-off between complexity and
performance has to be made.

Another important question is the statistical test reliability
with respect to the SNR. This is why we present ROC curves
for several SNR levels in fig.4. We fixed N at 512 symbols
and L at 20 delays. We can see a noticeable evolution of
performance for the selected SNR levels. At SNR = 5dB, we
reach a detection performance of almost 90% for a 5% Pfa.
The 10dB SNR obviously outperforms previous performance
with more than 98% true detection at same false alarm
probability.

Fig.5 illustrates the benefits to measure ĴL,N (α) with a
large L versus the SNR level. A threshold at 5% Pfa is
estimated for several L for each curve (20 and 1000). As we
can see, the two curves decrease with the SNR level, to finally
reach the Ptd = 5%. This is in fact the 5% false alarm rate
that we have defined. If we consider the Ptd = 70% at SNR =
0dB for L = 20 as a reference, this performance is obtained at
a SNR about -8dB for L = 1000. In that case, 100% detection
rate is also achieved for SNR = -5dB. For SNR smaller than
-5dB, when L is large, the Ptd decreases also quickly. In fact,
as L increases, eq.(20) could be approximated by a Normal
distribution. This approximation explains why the curve for
L = 1000 decreases quickly than the other one, since the
Fisher distribution have a positive skewness when the Normal
distribution is symmetric.

V. CONCLUSION

In this article, we proposed a novel method to detect phase
modulated signals using a cyclostationarity analysis and low
order moments. We show that it is possible to detect a



signal presence based on second order moments at a cyclic
frequency where there is theoretically no energy. We also
discussed our method benefits and drawbacks and showed its
limits. We derived the theoretical background and propose
an algorithm. Finally, we showed through simulations that
the proposed criterion is robust to noise. We also underlined
that better performance are achieved for a large number of
delays. The results obtained with the QPSK modulation are
easily extended to phase modulated MPSK or MQAM (with
M > 2) signals. A major benefit of this method is that
those measurements could be obtained for a small number of
symbols. As prospects for future work, several studies could
be conducted: a theoretical expression of the signal power
estimator at 2fc has to be done, and a detection criterion
improvement. For this last part, we propose to modify the
criterion defined in eq.(13). The denominator would become
a mean of k values for a set of {β1, · · · , βk}.
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