Erwan Libessart

Matthieu Arzel

Cyril Lahuec

Francesco Andriulli
email: francesco.andriulli@polito.it

40 Gop/s/mm 2 fixed-point operators for Brain Computer Interface in 65 nm CMOS

The performance of non-invasive Brain-Computer Interface (BCI) depends on the computing performance of the system which solves the inverse problem. So the number of basic operations computed per second determines the BCI's resolution. Architecture with pipelined and parallelized flow is then required, and each operator in this architecture must be optimised to reach the highest possible computing performance. This paper presents the implementation of a fixed-point reciprocal and an inverse square root operators for the STMicroelectronics 65 nm CMOS technology. This paper follows previous works that optimise these operators on FPGA target. Each operator reaches a computing performance of about 40 Gop/s/mm 2 , which improves the literature results by a factor of four. Thus, this works fits well for portable and high performance BCI applications.

I. INTRODUCTION

A Brain Computer Interface (BCI) is a hardware and software system that allows controlling computer or other devices with cerebral activity. The invasive BCI has direct access to the brain signals but is expensive and requires a surgical operation. So, this method is not appropriate to equip many people with this technology. Electroencephalogram (EEG) permits to perform a non-invasive BCI but this method has low resolution if the measured signals are directly used to control a computer. The EEG inverse problem can then be solved in order to determine, from these signals, which dipoles are active in the brain. The larger the number of considered dipoles is, the better the accuracy is, but also the larger the computation time is. For real-time, portable and accurate BCI applications, dedicated circuits have to be designed in a parallelized and pipelined way, so that they provide high computing performance, while minimizing the silicon area. Moreover this requires to process data not with the too complex floating-point format but with the fixed-point format.

Field-Programmable Gate Array (FPGA) devices are great for prototyping proof of concepts and validating algorithm implementations on hardware. Nevertheless, Application-Specific Integrated Circuits (ASICs) reach higher computing frequency and provide a better area integration. Any operator implementation may be optimised in different ways when compared to the original FPGA implementation. Indeed, ASICs provide access to custom designs, which offer different implementation strategies and foster more adequate operator architectures.

The EEG inverse problem algorithm contains operations such as division or square root [START_REF] Huang | A pipeline VLSI design of fast singular value decomposition processor for real-time EEG system based on on-line recursive independent component analysis[END_REF]. In the case of a pipelined architecture, each operator must be optimised to provide the best possible computing frequency. Reciprocal and inverse square root are intermediate steps to compute division and square root. The implementation of these operators is not straightforward and requires special care due to application's constraints, for both FPGA and ASIC implementations. Several methods to compute reciprocal and inverse square root can be pipelined, for example Look-Up Tables (LUTs) or the CORDIC algorithm [START_REF] Andraka | A survey of cordic algorithms for fpga based computers[END_REF]. These solutions may have some issues like necessary resources, latency or computing frequency when the size of the input increases. The iterative Newton-Raphson method is favored for floating-point implementations since it takes advantage of the mantissa value being in the interval [1, 2[. Indeed, this knowledge on the input allows the initial value to be easily computed and then to roughly double the number of bits of accuracy in each iteration. Newton-Raphson method can be used for both reciprocal and inverse square root [START_REF] Rodriguez-Garcia | Fast fixed-point divider based on Newton-Raphson method and piecewise polynomial approximation[END_REF], [START_REF] Allie | A root of less evil [digital signal processing[END_REF]. Its implementation usually relies on a memory block used to store coefficients required for the first step of the algorithm. In fixed point format, these operators require special attention, since the input values to not benefit from the mantissa property and thus require a specific computation for the first approximation. Previous work presented Scaling-Less Newton-Raphson (SLNR) architectures [START_REF] Libessart | A Scaling-Less Newton-Raphson Pipelined Implementation for a Fixed-Point Reciprocal Operator[END_REF], [START_REF]A scaling-less Newton-Raphson pipelined implementation for a fixed-point inverse square root operator[END_REF] designed to maximise the computing frequency on Xilinx FPGAs but which are not optimised for an ASIC implementation.

In this paper, ASIC implementations of high computing performance fixed-point reciprocal and inverse square root operators for the STMicroelectronics 65 nm CMOS are presented. These operators reach the frequency of 1.587 GHz and occupy less than 40 000 µm 2 , which corresponds to a computing performance of 41 Giga operations per second and per mm 2 (Gop/s/mm 2). So the proposed architecture is a good answer to the high-performance BCI constraints. This paper is organized as follows. Section II presents the Newton-Raphson method for both operators and its possible implementations with the impact on the maximum clock frequency on Xilinx FPGA. Different Newton-Raphson solutions for the STMicroelectronics 65 nm CMOS target are described in Section III. Then, a comparison with another 65 nm CMOS reciprocal architecture is done in Section IV. Finally, Section V concludes the paper.

II. RELATED WORK

The Newton-Raphson algorithm can be used to compute the reciprocal or the inverse square root of a number a. This iterative algorithm doubles the number of bits of accuracy during each iteration. The final result x n is obtained after n iterations of these equations:

Reciprocal: x i+1 = x i (2 -ax i) (1)
Inverse square root:

x i+1 = x i 2 (3 -ax 2 i) (2)
The value x 0 is the first approximation of the desired result and is provided as input with a. Thus, x 0 has to be determined before computing the iteration equation. The usual method involves scaling the input a in a predetermined interval as [START_REF] Neto | Very low resource table-based FPGA evaluation of elementary functions[END_REF]. Then, x 0 can be calculated by using coefficients stored in a memory block. This yields a good accuracy for the first approximation and then decreases the number of required Newton-Raphson iterations. In previous work, it was showed that this strategy is not the best to maximise the operating frequency on Xilinx FPGAs [START_REF] Libessart | A Scaling-Less Newton-Raphson Pipelined Implementation for a Fixed-Point Reciprocal Operator[END_REF], [START_REF]A scaling-less Newton-Raphson pipelined implementation for a fixed-point inverse square root operator[END_REF]. These Scaling-Less Newton-Raphson (SLNR) architectures do not need any coefficients, so memory block is not required. This lack of memory block allows increasing the computing frequency because of hardware target features. In fact, on Xilinx FPGAs, the maximum frequency of BRAMs is lower than one of DSP cells, used for the multiplications. Table I shows the difference on Virtex-7 FPGAs, which rely on the 28 nm technology [8]. Therefore coefficients must be avoided to generate the first approximation x 0 . The method proposed in [START_REF] Libessart | A Scaling-Less Newton-Raphson Pipelined Implementation for a Fixed-Point Reciprocal Operator[END_REF], [START_REF]A scaling-less Newton-Raphson pipelined implementation for a fixed-point inverse square root operator[END_REF] is based on the Leading One Detector (LOD) of a.

[1, 2[, or [0.5, 1[[3],
A simple combinatory circuit can then be used to determined a first approximation that respects the conditions of convergence :

Reciprocal: 0 < a × x 0 < 2. (3)
Inverse square root:

0 < a × x 2 0 < 3. (4)
The accuracy of the first approximation determines the number of required Newton-Raphson iterations. So the products in the conditions of convergence have to be as close as possible to the numerical value 1. Finally, the SLNR architectures ensure this accuracy for the first approximation:

Reciprocal: 0.875 < a × x 0 < 1.125. (5)
Inverse square root: 0.5 < a × x 2 0 < 1.125.

FPGA implementation results for both operators are presented in Table II. The critical path in these architectures is located in the DSP cells for multiplication and gives a 740 MHz computing frequency on a Virtex7-690T. So the SLNR designs fit with high throughput applications on Xilinx FPGAs. This maximum value of 740 MHz is due to the physical structure of the FPGA. Higher computing frequency could be profitable to BCI applications. This explains the desire to adapt SLNR architectures to the ASIC technology.

III. FIXED-POINT NEWTON-RAPHSON ARCHITECTURES

FOR A 65 NM CMOS ASIC The SLNR architectures introduced in Section II offer the maximum computing frequency on Xilinx FPGAs. Since every hardware target is different, it must be verified that the SLNR architectures yield the highest computing frequency for 65 nm CMOS ASIC. The goal here is to minimise the critical path and the silicon area. A memory-based Newton-Raphson alternative to SLNR can be considered to improve the first approximation and reduce the number of iterations while providing the same accuracy as shown in Fig. 1. Both architectures are proposed for a 16-bit input named a, reresented with 8 bits for integer and fractional parts. So, for the memorybased solution, the input must be scaled in order to have a s in the interval [1, 2[. The 10 most significant bits of a s are used as the address of the RAM. In this way, x 0 is the approximation of the desired value with 10 bits of accuracy. The following Newton-Raphson iteration block ensures the 16bit accuracy. The output must then be similarly scaled to have the desired value. A synthesis with Encounter RTL Compiler states that the multiplier is the most impactful element on the critical path for the SLNR architecture. The delay can not be reduced, because the multipliers are already between two registers, so that multiplier's propagation delay of 593 ps becomes the comparison reference.

For the memory-based architecture, as shown in Table III, the best RAM cycle time of 630 ps is larger than the multiplier delay. 1a shows that the SLNR solution requires 3 iterations to produce the desired result, whereas, in Fig. 1b, the 1024 x 16 memory block solution requires only one iteration. Indeed, the memory block allows computing the value x 0 with 10 bits of accuracy, while the Scaling-Less Newton-Raphson First Approximation (SLNR FA) block provides an accuracy of up to 3 bits.

The Newton-Raphson (NR) blocks are the iteration implementation detailed in Fig. 2. Fig. 2a is a classical pipelined implementation of (1), whereas Fig. 2b is the implementation of (2). These blocks achieve a maximum computing frequency of 1.686 GHz.

Even if the occupied area is not a hard constraint in this study, the comparison between the memory-based and the scaling-less architectures can be interesting. Indeed, the frequency difference is not so considerable. Fig. 3 presents the obtained layout produced with Encounter for the SLNR reciprocal operator. This architecture occupies 44 273 µm 2 , approximately 2.5 times as large as that of the memory block area indicated in Table III. Table IV summarizes the properties of both architectures. Scaling-less and memory-based Newton-Raphson methods reach respectively the computing performance of 38 and 41 Gop/s/mm 2 . However, the computing frequency is crucial to choose which solution has to be used.

If the reciprocal operator has to be integrated in a pipelined architecture which does not require any memory block, SLNR solution has to be chosen. Indeed, it yields a higher computing frequency for the whole architecture. In the other case, the frequency is already constrained by another memory block, so the memory-based solution is better to save silicon area. In this part, the memory-based Newton-Raphson reciprocal solution and the work presented in [START_REF] Sadeghian | Optimized cubic chebyshev interpolator for elementary function hardware implementations[END_REF] are compared. The non-pipelined and generic architecture in [START_REF] Sadeghian | Optimized cubic chebyshev interpolator for elementary function hardware implementations[END_REF] is not specific to reciprocal or inverse square root computation but is the most effective ASIC implementation in the latest literature. [START_REF] Sadeghian | Optimized cubic chebyshev interpolator for elementary function hardware implementations[END_REF] uses a cubic Chebyshev interpolator, which relies on 4 coefficients sets stored in a Lookup-table, as presented in Fig. 4. The Lookup table is composed of 4 memory blocks. The coefficients can be changed in order to compute different functions. The architecture contains 5 multipliers (Multiplier #1 to 3, squarer and cuber). The value x is the input of the architecture and, for the reciprocal computation, must belong to the interval [1, 2[. The reciprocal operator synthesis for the IBM 65 nm CMOS technology is done. Table V compares [START_REF] Sadeghian | Optimized cubic chebyshev interpolator for elementary function hardware implementations[END_REF] and the memory-based Newton-Raphson reciprocal operator. If [START_REF] Sadeghian | Optimized cubic chebyshev interpolator for elementary function hardware implementations[END_REF]'s solution is changed in order to be pipelined, the critical path would be at least equal to the memory delay and then the maximum frequency would be equal to 0.820 GHz. Then, the use of memory blocks has an impact on the occupied area by this architecture. Indeed, the surface required by the memory-based Newton-Raphson solution is twice as small. Finally, the memory-based Newton-Raphson provides 4 times better computing performance than [START_REF] Sadeghian | Optimized cubic chebyshev interpolator for elementary function hardware implementations[END_REF]. Table VI presents the results for memory-based Newton-Raphson architectures. Each operator has a similar computing performance and then is a good implementation to save area. So the proposed ASIC implementation improves both the computing frequency and the occupied silicon surface.

V. CONCLUSION

In this paper, the fixed-point SLNR architecture presented in previous work is investigated on the 65 nm CMOS technology and compared with a memory-based Newton-Raphson solution. These solutions have similar computing performance and their use depends on the rest of the algorithm. The computing performance can be increased up to 41 Gop/s/mm 2 , which is a literature improvement by a factor of 4. Thus, this solution fits the BCI requirements and offers a good trade-off between operating frequency and silicon area.

Fig. 1 .Fig. 2 .

 12 Fig. 1. Possible architectures for 16-bit operators: (a) scaling-less solution, (b) memory-based solution

Fig. 4 .

 4 Fig.4. Cubic Chebyshev interpolator architecture[START_REF] Sadeghian | Optimized cubic chebyshev interpolator for elementary function hardware implementations[END_REF]

TABLE IV STMICROELECTRONICS

 IV 65 NM CMOS RESULTS FOR 16-BIT RECIPROCAL

	Architecture	SLNR	Memory block
	Memory	0	1024 x 16
	NR iterations	3	1
	Maximum frequency (GHz)	1.686	1.587
	Area (µm 2)	44 273	38 527
	Gop/s/mm 2	38	41
	IV. COMPARISON WITH ANOTHER 65 NM CMOS
	RECIPROCAL ARCHITECTURE

TABLE V 65

 V NM COMPARISON BETWEEN 16-BIT RECIPROCAL SLNR AND CUBIC CHEBYSHEV ARCHITECTURES

	Architecture	Memory-based NR	[9]
			512 x 20
			512 x 12
	Memory	1024 x 16	512 x 12
			512 x 10
	Memory delay (ns)	0.630	1.22
	Multipliers	2	5
	Maximum frequency (GHz)	1.587	0.360
	Area (µm 2)	38 527	95 700
	Gop/s/mm 2	41	9

TABLE VI STMICROELECTRONICS

 VI 65 NM CMOS RESULTS FOR MEMORY-BASED NEWTON-RAPHSON RECIPROCAL AND INVERSE SQUARE ROOT

	Operator	Reciprocal	Inverse Square Root
	Multipliers	2	3
	Maximum frequency (GHz)	1.587	1.587
	Area (µm 2)	38 527	39 683
	Gop/s/mm 2	41	40