
HAL Id: hal-01813164
https://hal.science/hal-01813164v1

Submitted on 12 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

40 Gop/S/mm2 Fixed-Point Operators for Brain
Computer Interface in 65nm CMOS

Erwan Libessart, Matthieu Arzel, Cyril Lahuec, Francesco Andriulli

To cite this version:
Erwan Libessart, Matthieu Arzel, Cyril Lahuec, Francesco Andriulli. 40 Gop/S/mm2 Fixed-Point Op-
erators for Brain Computer Interface in 65nm CMOS. 2018 IEEE International Symposium on Circuits
and Systems (ISCAS), May 2018, Florence, Italy. �10.1109/ISCAS.2018.8351028�. �hal-01813164�

https://hal.science/hal-01813164v1
https://hal.archives-ouvertes.fr

40 Gop/s/mm2 fixed-point operators for Brain
Computer Interface in 65 nm CMOS

Erwan Libessart∗, Matthieu Arzel∗, Cyril Lahuec∗ and Francesco Andriulli†
∗Electronics Department, IMT Atlantique, France

E-mail: firstname.lastname@imt-atlantique.fr
†Campi Elettromagnetici, Politecnico di Torino, Italia

francesco.andriulli@polito.it

Abstract—The performance of non-invasive Brain-Computer
Interface (BCI) depends on the computing performance of the
system which solves the inverse problem. So the number of basic
operations computed per second determines the BCI’s resolution.
Architecture with pipelined and parallelized flow is then required,
and each operator in this architecture must be optimised to reach
the highest possible computing performance. This paper presents
the implementation of a fixed-point reciprocal and an inverse
square root operators for the STMicroelectronics 65 nm CMOS
technology. This paper follows previous works that optimise
these operators on FPGA target. Each operator reaches a
computing performance of about 40 Gop/s/mm2, which improves
the literature results by a factor of four. Thus, this works fits
well for portable and high performance BCI applications.

I. INTRODUCTION

A Brain Computer Interface (BCI) is a hardware and
software system that allows controlling computer or other
devices with cerebral activity. The invasive BCI has direct
access to the brain signals but is expensive and requires a
surgical operation. So, this method is not appropriate to equip
many people with this technology. Electroencephalogram
(EEG) permits to perform a non-invasive BCI but this method
has low resolution if the measured signals are directly used
to control a computer. The EEG inverse problem can then
be solved in order to determine, from these signals, which
dipoles are active in the brain. The larger the number of
considered dipoles is, the better the accuracy is, but also
the larger the computation time is. For real-time, portable
and accurate BCI applications, dedicated circuits have to be
designed in a parallelized and pipelined way, so that they
provide high computing performance, while minimizing the
silicon area. Moreover this requires to process data not with
the too complex floating-point format but with the fixed-point
format.

Field-Programmable Gate Array (FPGA) devices are great
for prototyping proof of concepts and validating algorithm
implementations on hardware. Nevertheless, Application-
Specific Integrated Circuits (ASICs) reach higher computing
frequency and provide a better area integration. Any operator
implementation may be optimised in different ways when

This work was supported by Labex CominLabs through SABRE project
and by région Bretagne.

compared to the original FPGA implementation. Indeed,
ASICs provide access to custom designs, which offer
different implementation strategies and foster more adequate
operator architectures.

The EEG inverse problem algorithm contains operations
such as division or square root [1]. In the case of a pipelined
architecture, each operator must be optimised to provide the
best possible computing frequency. Reciprocal and inverse
square root are intermediate steps to compute division and
square root. The implementation of these operators is not
straightforward and requires special care due to application’s
constraints, for both FPGA and ASIC implementations.
Several methods to compute reciprocal and inverse square
root can be pipelined, for example Look-Up Tables (LUTs)
or the CORDIC algorithm [2]. These solutions may have
some issues like necessary resources, latency or computing
frequency when the size of the input increases. The iterative
Newton-Raphson method is favored for floating-point
implementations since it takes advantage of the mantissa
value being in the interval [1, 2[. Indeed, this knowledge on
the input allows the initial value to be easily computed and
then to roughly double the number of bits of accuracy in
each iteration. Newton-Raphson method can be used for both
reciprocal and inverse square root [3], [4]. Its implementation
usually relies on a memory block used to store coefficients
required for the first step of the algorithm. In fixed point
format, these operators require special attention, since the
input values to not benefit from the mantissa property and thus
require a specific computation for the first approximation.
Previous work presented Scaling-Less Newton-Raphson
(SLNR) architectures [5], [6] designed to maximise the
computing frequency on Xilinx FPGAs but which are not
optimised for an ASIC implementation.

In this paper, ASIC implementations of high computing per-
formance fixed-point reciprocal and inverse square root oper-
ators for the STMicroelectronics 65 nm CMOS are presented.
These operators reach the frequency of 1.587 GHz and occupy
less than 40 000 µm2, which corresponds to a computing
performance of 41 Giga operations per second and per mm2

(Gop/s/mm2). So the proposed architecture is a good answer to

the high-performance BCI constraints. This paper is organized
as follows. Section II presents the Newton-Raphson method
for both operators and its possible implementations with the
impact on the maximum clock frequency on Xilinx FPGA.
Different Newton-Raphson solutions for the STMicroelectron-
ics 65 nm CMOS target are described in Section III. Then, a
comparison with another 65 nm CMOS reciprocal architecture
is done in Section IV. Finally, Section V concludes the paper.

II. RELATED WORK

The Newton-Raphson algorithm can be used to compute
the reciprocal or the inverse square root of a number a. This
iterative algorithm doubles the number of bits of accuracy
during each iteration. The final result xn is obtained after n
iterations of these equations:

Reciprocal: xi+1 = xi(2− axi) (1)

Inverse square root: xi+1 =
xi

2
(3− ax2

i) (2)

The value x0 is the first approximation of the desired result
and is provided as input with a. Thus, x0 has to be determined
before computing the iteration equation. The usual method
involves scaling the input a in a predetermined interval as
[1, 2[, or [0.5, 1[[3], [7]. Then, x0 can be calculated by using
coefficients stored in a memory block. This yields a good
accuracy for the first approximation and then decreases the
number of required Newton-Raphson iterations. In previous
work, it was showed that this strategy is not the best to
maximise the operating frequency on Xilinx FPGAs [5], [6].
These Scaling-Less Newton-Raphson (SLNR) architectures do
not need any coefficients, so memory block is not required.
This lack of memory block allows increasing the computing
frequency because of hardware target features. In fact, on
Xilinx FPGAs, the maximum frequency of BRAMs is lower
than one of DSP cells, used for the multiplications. Table I
shows the difference on Virtex-7 FPGAs, which rely on the
28 nm technology [8]. Therefore coefficients must be avoided

TABLE I
MAXIMAL FREQUENCY COMPARISON BETWEEN DSP CELL AND BRAM

ON VIRTEX-7 FAMILY FPGAS

Max frequency

DSP48E1 740 MHz

BRAM 601 MHz

to generate the first approximation x0. The method proposed
in [5], [6] is based on the Leading One Detector (LOD) of a.
A simple combinatory circuit can then be used to determined a
first approximation that respects the conditions of convergence
:

Reciprocal: 0 < a× x0 < 2. (3)

Inverse square root: 0 < a× x2
0 < 3. (4)

The accuracy of the first approximation determines the num-
ber of required Newton-Raphson iterations. So the products in
the conditions of convergence have to be as close as possible to
the numerical value 1. Finally, the SLNR architectures ensure
this accuracy for the first approximation:

Reciprocal: 0.875 < a× x0 < 1.125. (5)

Inverse square root: 0.5 < a× x2
0 < 1.125. (6)

FPGA implementation results for both operators are presented
in Table II. The critical path in these architectures is located
in the DSP cells for multiplication and gives a 740 MHz
computing frequency on a Virtex7-690T. So the SLNR designs
fit with high throughput applications on Xilinx FPGAs. This
maximum value of 740 MHz is due to the physical structure
of the FPGA. Higher computing frequency could be profitable
to BCI applications. This explains the desire to adapt SLNR
architectures to the ASIC technology.

TABLE II
IMPLEMENTATION RESULTS: 16-BIT RECIPROCAL AND INVERSE SQUARE

ROOT ON VIRTEX-7 690T

Operator Reciprocal Inverse square root

LUT 111 306

Flip-Flop 240 262

DSP 6 9

Clock cycles 20 34

Max frequency (MHz) 740 740

III. FIXED-POINT NEWTON-RAPHSON ARCHITECTURES
FOR A 65 NM CMOS ASIC

The SLNR architectures introduced in Section II offer the
maximum computing frequency on Xilinx FPGAs. Since every
hardware target is different, it must be verified that the SLNR
architectures yield the highest computing frequency for 65
nm CMOS ASIC. The goal here is to minimise the critical
path and the silicon area. A memory-based Newton-Raphson
alternative to SLNR can be considered to improve the first
approximation and reduce the number of iterations while
providing the same accuracy as shown in Fig. 1. Both architec-
tures are proposed for a 16-bit input named a, reresented with
8 bits for integer and fractional parts. So, for the memory-
based solution, the input must be scaled in order to have
as in the interval [1, 2[. The 10 most significant bits of as
are used as the address of the RAM. In this way, x0 is the
approximation of the desired value with 10 bits of accuracy.
The following Newton-Raphson iteration block ensures the 16-
bit accuracy. The output must then be similarly scaled to have
the desired value. A synthesis with Encounter RTL Compiler
states that the multiplier is the most impactful element on
the critical path for the SLNR architecture. The delay can
not be reduced, because the multipliers are already between
two registers, so that multiplier’s propagation delay of 593 ps
becomes the comparison reference.

For the memory-based architecture, as shown in Table III,
the best RAM cycle time of 630 ps is larger than the multiplier
delay.

(a)

(b)

Fig. 1. Possible architectures for 16-bit operators: (a) scaling-less solution,
(b) memory-based solution

(a)

(b)

Fig. 2. Architecture of the Newton-Raphson iteration blocks: (a) reciprocal,
(b) inverse square root

Fig. 1a shows that the SLNR solution requires 3 iterations
to produce the desired result, whereas, in Fig. 1b, the 1024 x
16 memory block solution requires only one iteration. Indeed,
the memory block allows computing the value x0 with 10
bits of accuracy, while the Scaling-Less Newton-Raphson First
Approximation (SLNR FA) block provides an accuracy of up
to 3 bits.

The Newton-Raphson (NR) blocks are the iteration imple-
mentation detailed in Fig. 2. Fig. 2a is a classical pipelined
implementation of (1), whereas Fig. 2b is the implementation
of (2). These blocks achieve a maximum computing frequency
of 1.686 GHz.

Even if the occupied area is not a hard constraint in
this study, the comparison between the memory-based and

TABLE III
STMICROELECTRONICS 1024 X 16 SRAM FEATURES

Feature Value

Cycle time (ps) 630

Area (µm2) 17 781

Fig. 3. Layout for the SLNR reciprocal operator

the scaling-less architectures can be interesting. Indeed, the
frequency difference is not so considerable. Fig. 3 presents
the obtained layout produced with Encounter for the SLNR
reciprocal operator. This architecture occupies 44 273 µm2,
approximately 2.5 times as large as that of the memory block
area indicated in Table III. Table IV summarizes the properties
of both architectures. Scaling-less and memory-based Newton-
Raphson methods reach respectively the computing perfor-
mance of 38 and 41 Gop/s/mm2. However, the computing
frequency is crucial to choose which solution has to be used.
If the reciprocal operator has to be integrated in a pipelined
architecture which does not require any memory block, SLNR
solution has to be chosen. Indeed, it yields a higher computing
frequency for the whole architecture. In the other case, the
frequency is already constrained by another memory block,
so the memory-based solution is better to save silicon area.

TABLE IV
STMICROELECTRONICS 65 NM CMOS RESULTS FOR 16-BIT RECIPROCAL

Architecture SLNR Memory block

Memory 0 1024 x 16

NR iterations 3 1

Maximum frequency (GHz) 1.686 1.587

Area (µm2) 44 273 38 527

Gop/s/mm2 38 41

IV. COMPARISON WITH ANOTHER 65 NM CMOS
RECIPROCAL ARCHITECTURE

In this part, the memory-based Newton-Raphson reciprocal
solution and the work presented in [9] are compared. The

non-pipelined and generic architecture in [9] is not specific
to reciprocal or inverse square root computation but is the
most effective ASIC implementation in the latest literature.
[9] uses a cubic Chebyshev interpolator, which relies on 4
coefficients sets stored in a Lookup-table, as presented in
Fig. 4. The Lookup table is composed of 4 memory blocks.
The coefficients can be changed in order to compute different
functions. The architecture contains 5 multipliers (Multiplier
#1 to 3, squarer and cuber). The value x is the input of the
architecture and, for the reciprocal computation, must belong
to the interval [1, 2[. The reciprocal operator synthesis for the
IBM 65 nm CMOS technology is done. Table V compares [9]
and the memory-based Newton-Raphson reciprocal operator.

Fig. 4. Cubic Chebyshev interpolator architecture [9]

If [9]’s solution is changed in order to be pipelined, the
critical path would be at least equal to the memory delay and
then the maximum frequency would be equal to 0.820 GHz.
Then, the use of memory blocks has an impact on the occupied
area by this architecture. Indeed, the surface required by the
memory-based Newton-Raphson solution is twice as small.
Finally, the memory-based Newton-Raphson provides 4 times
better computing performance than [9]. Table VI presents
the results for memory-based Newton-Raphson architectures.
Each operator has a similar computing performance and then
is a good implementation to save area. So the proposed ASIC
implementation improves both the computing frequency and
the occupied silicon surface.

V. CONCLUSION

In this paper, the fixed-point SLNR architecture presented in
previous work is investigated on the 65 nm CMOS technology
and compared with a memory-based Newton-Raphson solu-
tion. These solutions have similar computing performance and
their use depends on the rest of the algorithm. The computing
performance can be increased up to 41 Gop/s/mm2, which is
a literature improvement by a factor of 4. Thus, this solution

TABLE V
65 NM COMPARISON BETWEEN 16-BIT RECIPROCAL SLNR AND CUBIC

CHEBYSHEV ARCHITECTURES

Architecture Memory-based NR [9]

512 x 20
512 x 12

Memory 1024 x 16 512 x 12
512 x 10

Memory delay (ns) 0.630 1.22

Multipliers 2 5

Maximum frequency (GHz) 1.587 0.360

Area (µm2) 38 527 95 700

Gop/s/mm2 41 9

TABLE VI
STMICROELECTRONICS 65 NM CMOS RESULTS FOR MEMORY-BASED

NEWTON-RAPHSON RECIPROCAL AND INVERSE SQUARE ROOT

Operator Reciprocal Inverse Square Root

Multipliers 2 3

Maximum frequency (GHz) 1.587 1.587

Area (µm2) 38 527 39 683

Gop/s/mm2 41 40

fits the BCI requirements and offers a good trade-off between
operating frequency and silicon area.

REFERENCES

[1] K. J. Huang, W. Y. Shih, J. C. Chang, C. W. Feng, and W. C. Fang, “A
pipeline VLSI design of fast singular value decomposition processor for
real-time EEG system based on on-line recursive independent component
analysis,” in 2013 35th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Jul. 2013, pp.
1944–1947.

[2] R. Andraka, “A survey of cordic algorithms for fpga based computers,”
in Proceedings of the 1998 ACM/SIGDA Sixth International Symposium
on Field Programmable Gate Arrays, ser. FPGA ’98. New York, NY,
USA: ACM, 1998, pp. 191–200.

[3] A. Rodriguez-Garcia, L. Pizano-Escalante, R. Parra-Michel, O. Longoria-
Gandara, and J. Cortez, “Fast fixed-point divider based on Newton-
Raphson method and piecewise polynomial approximation,” in 2013
International Conference on Reconfigurable Computing and FPGAs (Re-
ConFig), Dec. 2013, pp. 1–6.

[4] M. Allie and R. Lyons, “A root of less evil [digital signal processing],”
IEEE Signal Processing Magazine, vol. 22, no. 2, pp. 93–96, Mar. 2005.

[5] E. Libessart, M. Arzel, C. Lahuec, and F. Andriulli, “A Scaling-Less
Newton-Raphson Pipelined Implementation for a Fixed-Point Reciprocal
Operator,” IEEE Signal Processing Letters, vol. 24, no. 6, pp. 789–793,
Jun. 2017.

[6] ——, “A scaling-less Newton-Raphson pipelined implementation for a
fixed-point inverse square root operator,” in 2017 15th IEEE International
New Circuits and Systems Conference (NEWCAS), Jun. 2017, pp. 157–
160.

[7] H. C. Neto and M. P. Vestias, “Very low resource table-based FPGA
evaluation of elementary functions,” in 2013 International Conference on
Reconfigurable Computing and FPGAs (ReConFig), Dec. 2013, pp. 1–6.

[8] Xilinx. (2016 (Accessed: 2017-02-10)) Virtex-7 t and xt
fpgas data sheet: Dc and ac switching characteristics.
[Online]. Available: http://www.xilinx.com/support/documentation/data
sheets/ds183 Virtex 7 Data Sheet.pdf

[9] M. Sadeghian, J. E. Stine, and E. G. Walters, “Optimized cubic chebyshev
interpolator for elementary function hardware implementations,” in 2014
IEEE International Symposium on Circuits and Systems (ISCAS), Jun.
2014, pp. 1536–1539.

