On canonical bases of a formal K-algebra

Abdallah Assi

To cite this version:

Abdallah Assi. On canonical bases of a formal K-algebra. 2018. hal-01813146

HAL Id: hal-01813146

https://hal.science/hal-01813146

Preprint submitted on 12 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE CANONICAL FAN OF A FORMAL \mathbb{K}-ALGEBRA

ABDALLAH ASSI

Abstract

We associate with an algebra $\mathbf{A}=\mathbb{K}\left[\left[f_{1}, \ldots, f_{s}\right]\right] \subseteq \mathbb{K}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ over a field \mathbb{K} a fan called the canonical fan of \mathbf{A}. This generalizes the notion of the standard fan of an ideal. Keywords: Canonical basis, \mathbb{K}-algebras, affine semigroups

Introduction

Let \mathbb{K} be a field and let f_{1}, \ldots, f_{s} be nonzero elements of the ring $\mathbf{F}=\mathbb{K}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ of formal power series in x_{1}, \ldots, x_{n} over \mathbb{K}. Let $\mathbf{A}=\mathbb{K}\left[\left[f_{1}, \ldots, f_{s}\right]\right]$ be the \mathbb{K}-algebra generated by f_{1}, \ldots, f_{s}. Set $U=\mathbb{R}_{+}^{*}$ and let $a \in U^{n}$. If $a=\left(a_{1}, \ldots, a_{n}\right)$ then a defines a linear form on \mathbb{R}^{n} which maps $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}$ to the inner product

$$
<a, \alpha>=\sum_{i=1}^{n} a_{i} \alpha_{i}
$$

of a with α. We denote abusively the linear form by a. Let $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$ and let $f=\sum c_{\alpha} \underline{x}^{\alpha}$ be a nonzero element of \mathbf{F}. We set $\operatorname{Supp}(f)=\left\{\alpha \mid c_{\alpha} \neq 0\right\}$ and we call it the support of f. We set

$$
\nu(f, a)=\min \{<a, \alpha>\mid \alpha \in \operatorname{Supp}(f)\}
$$

and we call it the a-valuation of f). We set by convention $\nu(0, a)=+\infty$. Let

$$
\operatorname{in}(f, a)=\sum_{\alpha \in \operatorname{Supp}(f) \mid<a, \alpha>=\nu(f, a)} c_{\alpha} \underline{x}^{\alpha} .
$$

We call $\operatorname{in}(f, a)$ the a-initial form of f. Note that $\operatorname{in}(f, a)$ is a polynomial. This notion can also be defined this way: we associate with f its Newton polyhedron defined to be $\Gamma_{+}(f)=$ the convex hull in \mathbb{R}_{+}^{n} of $\bigcup_{\alpha \in \operatorname{supp}(f)} \alpha+\mathbb{R}_{+}^{n}$. The set of compact faces of $\Gamma_{+}(f)$ is finite. Let $\left\{\triangle_{1}, \ldots, \triangle_{t}\right\}$ be this set. Given $i \in\{1, \ldots, t\}$. We set $f_{\triangle_{i}}=\sum_{\alpha \in \operatorname{Supp}(f) \cap \triangle_{i}} c_{\alpha} \underline{x}^{\alpha}$. Then $\left\{\operatorname{in}(f, a) \mid a \in U^{n}\right\}=\left\{f_{\triangle_{i}} \mid 1 \leq\right.$ $i \leq t\}$.

Let the notations be as above, and let \prec be a well ordering on \mathbb{N}^{n}. We set $\exp (f, a)=\max _{\prec}$ Supp $(\operatorname{in}(f, a))$ and $\mathrm{M}(f)=c_{\exp (f, a)} \underline{x}^{\exp (f, a)}$. We set $\left.\operatorname{in}(\mathbf{A}, a)=\mathbb{K}[\operatorname{in} n(f, a) \mid f \in \mathbf{A} \backslash\{0\}]\right]$. We also set $\mathrm{M}(\mathbf{A})=\mathbb{K}[[\mathrm{M}(f, a), f \in \mathbf{A} \backslash\{0\}]]$. The set $\exp (\mathbf{A}, a)=\{\exp (f, a) \mid f \in \mathbf{A} \backslash\{0\}\}$ is an affine subsemigroup of \mathbb{N}^{n}.

If $a \in \mathbb{R}^{n}$ then $\operatorname{in}(f, a)$ may not be a polynomial, hence $\exp (f)$ is not well defined. If $a=\left(a_{1}, \ldots, a_{n}\right)$ with $a_{i_{1}}=\ldots=a_{i_{l}}=0$ then we can avoid this difficulty in completing by the tangent cone order on ($x_{i_{1}}, \ldots, x_{i_{l}}$). We shall however consider elements in U^{n} in order to avoid technical definitions and results.

[^0]The aim of this paper is to study the stability of $\operatorname{in}(\mathbf{A}, a)$ and $\mathrm{M}(\mathbf{A}, a)$ when a varies in U^{n}. Note that $\exp (\mathbf{A}, a)$ is not necessarily finitely generated (see example 12). It becomes so If the length of $\frac{\mathbf{F}}{\mathbf{A}}$ is finite. Under this condition, our main results are the following:
Theorem The set $\left\{\operatorname{in}(\mathbf{A}, a) \mid a \in U^{n}\right\}$ is a finite set. The same holds for the set $\left\{\mathrm{M}(\mathbf{A}, a) \mid a \in U^{n}\right\}$.
Theorem Let S be a finitely generated affine semigroup. The set $E_{S}=\left\{a \in U^{n} \mid \exp (\mathbf{A}, a)=S\right\}$ is a union of convex polyhedral cones and the set of E_{S}, S defines a fan of U^{n}.
These results generalize those of [8] for ideals in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and [1], [2] for ideals in the ring of differential operators over \mathbb{K}.

The paper is organized as follows. In Section 1. we recall the notion of canonical basis of \mathbf{A} with respect to $a \in U^{n}$, and we give an algorithm that computes an a-canonical basis starting with a set of generators of \mathbf{A} (see [6] for the case $a=(-1, \ldots,-1)$). In Section 2. we prove the finiteness theorem, and in Section 3. we prove the existence of a fan associated with \mathbf{A}.

1. Preliminary results

Let $\mathbf{A}=\mathbb{K}\left[\left[f_{1}, \ldots, f_{s}\right]\right]$ be a subalgebra of \mathbf{F} generated by $\left\{f_{1}, \ldots, f_{s}\right\} \subseteq \mathbf{F}$ and let the notations be as above. In particular \prec is a total well ordering on \mathbb{N}^{n} compatible with sums. Let $a \in U^{n}$ and consider the total ordering on \mathbb{N}^{n} defined by:

$$
\alpha<_{a} \alpha^{\prime} \Leftrightarrow\left\{\begin{array}{l}
<a, \alpha>\ll a, \alpha^{\prime}> \\
\text { or } \\
<a, \alpha>=<a, \alpha^{\prime}>\text { and } \alpha \prec \alpha^{\prime}
\end{array}\right.
$$

The total ordering $<_{a}$ is compatible with sums in \mathbb{N}^{n}. We shall use sometimes the notations $\alpha \succ \beta$ for $\beta \prec \alpha$ and $\alpha>{ }_{a} \beta$ for $\beta<_{a} \alpha$. We have the following:
Lemma 1. There doesn't exist infinite sequences $\left(\alpha_{k}\right)_{k \geq 0}$ such that

$$
\alpha_{0}>_{a} \alpha_{1}>_{a} \ldots>_{a} \alpha_{k} \ldots
$$

With $<a, \alpha_{0}>=<a, \alpha_{k}>$ for all $k \geq 1$.
Proof. This is a consequence of Dixon's Lemma, since such a sequence satisfies $\alpha_{0} \succ \alpha_{1} \succ \ldots \succ$ $\alpha_{k} \succ \ldots$
Let $a \in U^{n}$. Then a defines a filtration on $\mathbf{F}: \mathbf{F}=\sum_{d \geq 0} \mathbf{F}_{d}$ where \mathbf{F}_{d} is the \mathbb{K}-vector space generated by $\underline{x}^{\alpha},<a, \alpha>=d$. Let $U_{1}=\mathbb{Q}^{*}{ }_{+}$. If $a \in U_{1}^{n}$ then, given two indices $d_{1}<d_{2}$, the set of indices d such that $d_{1}<d<d_{2}$ is clearly finite. In particular we get the following:

Lemma 2. Let $\alpha, \beta \in U_{1}^{n}$ and assume that $\alpha>_{a} \beta$. There doesn't exist infinite sequences $\left(\alpha_{k}\right)_{k \geq 0}$ such that

$$
\alpha>_{a} \alpha_{0}>_{a} \alpha_{1}>_{a} \ldots>_{a} \beta
$$

Proof. The set of $\langle a, \gamma\rangle,\langle a, \alpha\rangle\rangle\langle a, \gamma\rangle\rangle\langle a, \beta\rangle$ is finite. Then the result is a consequence of Lemma 1

Definition 3. Let $a \in U^{n}$ and let $f=\sum c_{\alpha} \underline{x}^{\alpha}$ be a nonzero element of \mathbf{F}. We say that f is a-homogeneous if $f \in \mathbf{F}_{d}$ for some d. This is equivalent to $\nu(\alpha, a)=\nu(f, a)$ for all $\alpha \in \operatorname{Supp}(f)$. Note that if $a \notin U_{1}^{n}$ then f is a-homogeneous if and only if f is a monomial.

Definition 4. Let $a \in U^{n}$ and let \mathbf{H} be a subalgebra of \mathbf{F}. We say that \mathbf{H} is a-homogeneous if it can be generated by a-homogeneous elements of \mathbf{F}.

Every nonzero element $f=\sum c_{\alpha} \underline{x}^{\alpha} \in \mathbf{F}$ decomposes as $f=\sum_{k \geq d} f_{k}$, with $f_{d}=\operatorname{in}(f, a)$ and for all $k>d$, if $f_{k} \neq 0$ then $f_{k} \in \mathbf{F}_{k}$.

Definition 5. Let $a \in U^{n}$ and let $\left\{g_{1}, \ldots, g_{r}\right\} \subseteq \mathbf{A}$. We say that $\left\{g_{1}, \ldots, g_{r}\right\}$ is an a-canonical basis of \mathbf{A} if $\mathrm{M}(\mathbf{A}, a)=\mathbb{K}\left[\left[\mathrm{M}\left(g_{1}, a\right), \ldots, \mathrm{M}\left(g_{r}, a\right)\right]\right]$. Clearly $\left\{g_{1}, \ldots, g_{r}\right\}$ is an a-canonical basis of \mathbf{A} if and only if $\exp (\mathbf{A}, a)$ is generated by $\left\{\exp \left(g_{1}, a\right), \ldots, \exp \left(g_{r}, a\right)\right\}$. In this case we write $\exp (\mathbf{A}, a)=\left\langle\exp \left(g_{1}, a\right), \ldots, \exp \left(g_{r}, a\right)\right\rangle$
An a-canonical basis $\left\{g_{1}, \ldots, g_{r}\right\}$ of \mathbf{A} is said to be minimal if $\left\{\mathrm{M}\left(g_{1}, a\right), \ldots, \mathrm{M}\left(g_{r}, a\right)\right\}$ is a minimal set of generators of $\mathrm{M}(\mathbf{A}, a)$. It is said to be reduced if the following conditions are satisfied:
i) $\left\{g_{1}, \ldots, g_{r}\right\}$ is minimal.
ii) For all $1 \leq i \leq r, c_{\exp \left(g_{i}, a\right)}=1$.
iii) For all $1 \leq i \leq r$, if $g_{i}-\mathrm{M}\left(g_{i}, a\right) \neq 0$ then $\underline{x} \underline{\underline{\alpha}} \notin \mathbb{K}\left[\left[\mathrm{M}\left(g_{1}, a\right), \ldots, \mathrm{M}\left(g_{r}, a\right)\right]\right]$ for all $\alpha \in$ $\operatorname{Supp}\left(g_{i}-\mathrm{M}\left(g_{i}, a\right)\right)$.

Lemma 6. If an a-reduced canonical basis exists, then it is unique.
Proof. Let $F=\left\{g_{1}, \ldots, g_{r}\right\}$ and $G=\left\{g_{1}^{\prime}, \ldots, g_{t}^{\prime}\right\}$ be two a-reduced canonical bases of A. Let $i=1$. Since $\mathrm{M}\left(g_{1}, a\right) \in \mathbb{K}\left[\left[\mathrm{M}\left(g_{1}^{\prime}, a\right), \ldots, \mathrm{M}\left(g_{t}^{\prime}, a\right)\right]\right]$, then $\mathrm{M}\left(g_{1}, a\right)=\mathrm{M}\left(g_{1}^{\prime}, a\right)^{l_{1}} \cdots \mathrm{M}\left(g_{t}^{\prime}, a\right)^{l_{t}}$ for some $l_{1}, \ldots, l_{t} \in \mathbb{N}$. Every $\mathrm{M}\left(g_{i}^{\prime}, a\right), i \in\{1, \ldots, t\}$ is in $\mathbb{K}\left[\mathrm{M}\left(g_{1}, a\right), \ldots, \mathrm{M}\left(g_{r}, a\right)\right]$. Then the equation above is possible only if $\mathrm{M}\left(g_{1}, a\right)=\mathrm{M}\left(g_{k_{1}}^{\prime}, a\right)$ for some $k_{1} \in\{1, \ldots, t\}$. This gives an injective map from $\left\{\mathrm{M}\left(g_{1}, a\right), \ldots, \mathrm{M}\left(g_{r}, a\right)\right\}$ to $\left\{\mathrm{M}\left(g_{1}^{\prime}, a\right), \ldots, \mathrm{M}\left(g_{t}^{\prime}, a\right)\right\}$. We construct in the same way an injective map from $\left\{\mathrm{M}\left(g_{1}^{\prime}, a\right), \ldots, \mathrm{M}\left(g_{t}^{\prime}, a\right)\right\}$ to $\left\{\mathrm{M}\left(g_{1}, a\right), \ldots, \mathrm{M}\left(g_{r}, a\right)\right\}$. Hence $r=t$ and both sets are equal. Suppose, without loss of generality that $\mathrm{M}\left(g_{i}, a\right)=\mathrm{M}\left(g_{i}^{\prime}, a\right)$ for all $i \in\{1, \ldots, r\}$. If $g_{i} \neq g_{i}^{\prime}$ then $\mathrm{M}\left(g_{i}-g_{i}^{\prime}\right) \in \mathrm{M}(\mathbf{A}, a)$ because $g_{i}-g_{i}^{\prime} \in \mathbf{A}$. This contradicts iii).

We now recall the division process in \mathbf{A} (see [6] for the tangent cone order $a=(-1, \ldots,-1)$ and [4] for $n=1$).

Theorem 7. Let $a \in U_{1}^{n}$ and let $\left\{F_{1}, \ldots, F_{s}\right\} \subseteq \mathbb{K}[[\underline{x}]]$. Let F be a nonzero element of $\mathbb{K}[[\underline{x}]]$. There exist $H \in \mathbb{K}\left[\left[F_{1}, \ldots, F_{s}\right]\right]$ and $R \in \mathbf{F}$ such that the following conditions hold:
(1) $F=H+R$
(2) If $R=\sum_{\beta} b_{\beta} \underline{x}^{\beta}$, then for all $\alpha \in \operatorname{Supp}(R), \underline{x}^{\beta} \notin \mathbb{K}\left[\left[\mathrm{M}\left(F_{1}, a\right), \ldots, \mathrm{M}\left(F_{s}, a\right)\right]\right]$.
(3) Set $H=\sum_{\alpha} c_{\alpha} F_{1}^{\alpha_{1}} \ldots . F_{s}^{\alpha_{s}}$. If $H \neq 0$ then $\exp (F, a)=\max _{<_{a}}\left\{\exp \left(F_{1}^{\alpha_{1}} \ldots . F_{s}^{\alpha_{s}}, a\right), c_{\alpha} \neq\right.$ $0\}$.
Proof. We define the sequences $\left(F^{k}\right)_{k \geq 0},\left(h^{k}\right)_{k \geq 0},\left(r^{k}\right)_{k \geq 0}$ in \mathbf{F} by $F^{0}=F, h^{0}=r^{0}=0$ and $\forall k \geq 0$:
(i) If $\mathrm{M}\left(F^{k}, a\right) \in \mathbb{K}\left[\left[\mathrm{M}\left(F_{1}, a\right), \ldots, \mathrm{M}\left(F_{s}, a\right)\right]\right.$, write $\mathrm{M}\left(F^{k}, a\right)=c_{\alpha} \mathrm{M}\left(F_{1}, a\right)^{\alpha_{1}} \cdots \mathrm{M}\left(F_{s}, a\right)^{\alpha_{s}}$. We set

$$
F^{k+1}=F^{k}-c_{\alpha} F_{1}^{\alpha_{1}} \cdots F_{s}^{\alpha_{s}}, \quad h^{k+1}=h^{k}+c_{\alpha} F_{1}^{\alpha_{1}} \cdots F_{s}^{\alpha_{s}}, \quad r^{k+1}=r^{k}
$$

(ii) If $\mathrm{M}\left(F^{k}, a\right) \notin \mathbb{K}\left[\left[\mathrm{M}\left(F_{1}, a\right), \ldots, \mathrm{M}\left(F_{s}, a\right)\right]\right]$, we set

$$
F^{k+1}=F^{k}-\mathrm{M}\left(F^{k+1}, a\right), \quad h^{k+1}=h^{k}, \quad r^{k+1}=r^{k}+\mathrm{M}\left(F^{k}, a\right)
$$

in such a way that for all $k \geq 0, \exp \left(F^{k}, a\right)<_{a} \exp \left(F^{k+1}, a\right)$ and $F=F^{k+1}+h^{k+1}+r^{k+1}$. If $F^{l}=0$ for some $l \geq 1$ then we set $H=h^{l}$ and $R=r^{l}$. We then easily verify that H, R satisfy conditions (1) to (3). Suppose that $\left\{F^{k} \mid k \geq 0\right\}$ is an infinite set. Note that, by Lemma 1 , given $k \geq 1$, if $F^{k} \neq 0$ then there exists $k_{1}>k$ such that $\nu\left(F^{k}, a\right)<\nu\left(F^{k_{1}}, a\right)$. Hence, there exists a subsequence $\left(F^{j_{l}}\right)_{l \geq 1}$ such that $\nu\left(F^{j_{1}}, a\right)<\nu\left(F^{j_{2}}, a\right)<\cdots$ In particular, if we set $G=\lim _{k \rightarrow+\infty} F^{k}, H=\lim _{k \rightarrow+\infty} h^{k}$, and $R=\lim _{k \rightarrow+\infty} r^{k}$, then $G=0, F=H+R$, and H, R satisfy conditions (1) to (3). This completes the proof.

Definition 8. We call the polynomial R of Theorem 7 the a-remainder of the division of F with respect to $\left\{F_{1}, \ldots, F_{s}\right\}$ and we denote it by $R=R_{a}\left(F,\left\{F_{1}, \ldots, F_{s}\right\}\right)$.

Suppose that $\left\{f_{1}, \ldots, f_{s}\right\}$ is an a-canonical basis of \mathbf{A}. If $\mathrm{M}\left(f_{i}, a\right) \in \mathbb{K}\left[\left[\left(\mathrm{M}\left(f_{j}, a\right) \mid j \neq i\right)\right]\right]$ for some $1 \leq i \leq s$, then obviously $\left\{f_{j} \mid j \neq i\right\}$ is also an a-canonical basis of \mathbf{A}, consequently we can get this way a minimal a-canonical basis of \mathbf{A}. Assume that $\left\{f_{1}, \ldots, f_{s}\right\}$ is minimal and let $1 \leq i \leq s$. If $a \in U_{1}^{n}$ then, dividing $f=f_{i}-\mathrm{M}\left(f_{i}, a\right)$ by $\left\{f_{1}, \ldots, f_{s}\right\}$, and replacing f_{i} by $\mathrm{M}\left(f_{i}, a\right)+R_{a}\left(f_{i}-\mathrm{M}\left(f_{i}, a\right),\left\{f_{1}, \ldots, f_{r}\right\}\right)$, we obtain an a-reduced canonical basis of \mathbf{A}.
The next proposition gives a criterion for a finite set of \mathbf{A} to be an a-canonical basis of \mathbf{A}.
Proposition 9. Let $a \in U_{1}^{n}$. The set $\left\{f_{1}, \ldots, f_{s}\right\} \subseteq \mathbf{A}$ is an a-canonical basis of \mathbf{A} if and only if $R_{a}\left(f,\left\{f_{1}, \ldots\right.\right.$,
$\left.\left.f_{s}\right\}\right)=0$ for all $f \in \mathbf{A}$.
Proof. Suppose that $\left\{f_{1}, \ldots, f_{s}\right\}$ is an a-canonical basis of \mathbf{A} and let $f \in \mathbf{A}$. Let $R=R_{a}\left(f,\left\{f_{1}, \ldots\right.\right.$,$\left.\left.f_{s}\right\}\right)$. If $R \neq 0$ then $\mathrm{M}(R, a) \notin \mathrm{M}(\mathbf{A}, a)$. This is a contradiction because $R \in \mathbf{A}$. Conversely, suppose that $R_{a}\left(f,\left\{f_{1}, \ldots, f_{s}\right\}\right)=0$ for all $f \in \mathbf{A}$ and let $f \in \mathbf{A}$. If $\mathrm{M}(f, a) \notin \mathbb{K}\left[\left[\mathrm{M}\left(f_{1}, a\right), \ldots, \mathrm{M}\left(f_{s}, a\right)\right]\right]$ then $\mathrm{M}(f, a)$ is a monomial of $R_{a}\left(f,\left\{f_{1}, \ldots, f_{s}\right\}\right)$, which is 0 . This is a contradiction.

The criterion given in Proposition 9 is not effective since we have to divide infinitely many elements of \mathbf{F}. In the following we shall see that it is enough to divide a finite number of elements.
Let $\phi: \mathbb{K}\left[X_{1}, \ldots, X_{s}\right] \longmapsto \mathbb{K}\left[\mathrm{M}\left(f_{1}, a\right), \ldots, \mathrm{M}\left(f_{s}, a\right)\right]$ be the morphism of rings defined by $\phi\left(X_{i}\right)=$ $\mathrm{M}\left(f_{i}, a\right)$ for all $1 \leq i \leq s$. We have the following
Lemma 10. The ideal $\operatorname{Ker}(\phi)$ is a binomial ideal, i.e., it can be generated by binomials.
Proof. Suppose that f_{i} is monic for all $i \in\{1, \ldots, s\}$ and write $\mathrm{M}\left(f_{i}, a\right)=x_{1}^{\theta_{1}^{i}} \ldots x_{n}^{\theta_{n}^{i}}=\underline{x}^{\theta^{i}}$.
Let F be a polynomial of $\operatorname{Ker}(\phi)$ and write $F=M_{1}+\ldots+M_{p}$ where M_{i} is a monomial for all $i \in\{1, \ldots, p\}$. We shall prove by induction on p, that F is a finite sum of binomials, each of them is in $\operatorname{Ker}(\phi)$. Write $M_{i}=b_{i} X_{1}^{\beta_{1}^{i}} \cdots X_{s}^{\beta_{s}^{i}}$. If $p=2$ then F is a binomial. Suppose that $p \geq 3$. We have $\phi\left(M_{1}\right)=b_{1} \mathrm{M}\left(f_{1}, a\right)^{\beta_{1}^{1}} \ldots \mathrm{M}\left(f_{s}, a\right)^{\beta_{s}^{1}}$, which is a monomial in x_{1}, \ldots, x_{n}. Write $\phi\left(M_{1}\right)=b_{1} x_{1}^{\theta_{1}} \ldots x_{n}^{\theta_{n}}$. Since $\phi(F)=0$ then $\phi\left(M_{i}\right)=b_{i} x_{1}^{\theta_{1}} \ldots x_{n}^{\theta_{n}}$ for some $i \in\{1, \ldots, p\}$. whence $\phi\left(M_{1}-\frac{b_{1}}{b_{i}} M_{i}\right)=0$. Write

$$
F=M_{1}-\frac{b_{1}}{b_{i}} M_{i}+\left(b_{i}+\frac{b_{1}}{b_{i}}\right) M_{i}+\sum_{j \neq 1, i} M_{j}
$$

If $F_{1}=\left(b_{i}+\frac{b_{1}}{b_{i}}\right) M_{i}+\sum_{j \neq 1, i} M_{j}$ then the cardinality of monomials of F_{1} is at most $p-1$. By induction, F_{1} is a sum of binomials, each of them is in $\operatorname{Ker}(\phi)$. Consequently the same holds for F.

Let $\bar{S}_{1}, \ldots, \bar{S}_{m}$ be a system of generators of $\operatorname{Ker}(\phi)$, and assume, by Lemma 10 , that $\bar{S}_{1}, \ldots, \bar{S}_{m}$ are binomials in $\mathbb{K}\left[X_{1}, \ldots, X_{s}\right]$. Assume that f_{1}, \ldots, f_{s} are monic with respect to $<_{a}$. For all $1 \leq i \leq m$, we can write $S_{i}\left(X_{1}, \ldots, X_{s}\right)=X_{1}^{\alpha_{1}^{i}} \ldots X_{s}^{\alpha_{s}^{i}}-X_{1}^{\beta_{1}^{i}} \ldots X_{s}^{\beta_{s}^{i}}$. Let $S_{i}=\bar{S}_{i}\left(f_{1}, \ldots, f_{s}\right)$. We have $S_{i}=f_{1}^{\alpha_{1}} \cdots f_{s}^{\alpha_{s}}-f_{1}^{\beta_{1}} \cdots f_{s}^{\beta_{s}}$, and $\exp \left(S_{i}\right)>_{a} \exp \left(f_{1}^{\alpha_{1}} \cdots f_{s}^{\alpha_{s}}\right)=\exp \left(f_{1}^{\beta_{1}} \cdots f_{s}^{\beta_{s}}\right)$
Proposition 11. Let $a \in U_{1}^{n}$. With the notations above, the following conditions are equivalent:
(1) The set $\left\{f_{1}, \ldots, f_{s}\right\}$ is an a-canonical basis of \mathbf{A}.
(2) For all $i \in\{1, \ldots, m\}, R_{a}\left(S_{i},\left\{f_{1}, \ldots, f_{s}\right\}\right)=0$.

Proof. (1) implies (2) by Proposition 9.
$(2) \Longrightarrow(1)$: We shall prove that $R_{a}\left(f,\left\{f_{1}, \ldots, f_{s}\right\}\right)=0$ for all $f \in \mathbf{A}$. Let f be a nonzero element of \mathbf{A} and let $R=R_{a}\left(f,\left\{f_{1}, \ldots, f_{s}\right\}\right)$. Then $R \in \mathbf{A}$. If $R \neq 0$ then $\mathrm{M}(R, a) \in \mathrm{M}(\mathbf{A}, a)$. Write

$$
R=\sum_{\theta} c_{\theta} f_{1}^{\theta_{1}} \cdots f_{s}^{\theta_{s}}
$$

and let $\alpha=\inf f_{\theta, c_{\theta} \neq 0}\left(\exp \left(f_{1}^{\theta_{1}} \cdots f_{s}^{\theta_{s}}, a\right)\right)$. Since $\exp (R, a) \notin \exp (\mathbf{A})=\left\langle\exp \left(f_{1}, a\right), \ldots, \exp \left(f_{s}, a\right)\right\rangle$ then $\exp (R, a)>_{a} \alpha$. Let $\left\{\theta^{1}, \ldots, \theta^{l}\right\}$ be such that $\alpha=\exp \left(f_{1}^{\theta_{1}^{i}} \cdots f_{s}^{\theta_{s}^{i}}, a\right)$ for all $i \in\{1, \ldots, l\}$ (such a set is clearly finite). If $\sum_{i=1}^{l} c_{\theta^{i}} \mathrm{M}\left(f_{1}^{\theta_{1}^{2}} \cdots f_{s}^{\theta_{s}^{2}}, a\right) \neq 0$, then $\exp (R, a) \in\left\langle\exp \left(f_{1}, a\right), \ldots, \exp \left(f_{s}, a\right)\right\rangle$, which is a contradiction. Hence, $\sum_{i=1}^{l} c_{\theta^{i}} \mathrm{M}\left(f_{1}^{\theta_{1}^{2}} \cdots f_{s}^{\theta_{s}^{i}}, a\right)=0$, and consequently $\sum_{i=1}^{l} c_{\theta^{i}} X_{1}^{\theta_{1}^{2}} \cdots X_{s}^{\theta_{s}^{i}}$ is an element of $\operatorname{ker}(\phi)$. In particular

$$
\sum_{i=1}^{l} c_{\theta^{i}} X_{1}^{\theta_{1}^{i}} \cdots X_{s}^{\theta_{s}^{i}}=\sum_{k=1}^{m} \lambda_{k} \bar{S}_{k}
$$

with $\lambda_{k} \in \mathbb{K}\left[X_{1}, \ldots, X_{s}\right]$ for all $k \in\{1, \ldots, m\}$. Whence

$$
\sum_{i=1}^{l} c_{\underline{\theta}^{i}} f_{1}^{\theta_{1}^{i}} \cdots f_{s}^{\theta_{s}^{i}}=\sum_{k=1}^{m} \lambda_{k}\left(f_{1}, \ldots, f_{s}\right) S_{k} .
$$

From the hypothesis $\mathrm{R}_{a}\left(S_{k},\left\{f_{1}, \ldots, f_{s}\right\}\right)=0$ for all $k \in\{1, \ldots, m\}$. Hence there is an expression of S_{k} of the form $S_{k}=\sum_{\underline{\beta}^{k}} c_{\underline{\beta}^{k}} f_{1}^{\beta_{1}^{k}} \cdots f_{s}^{\beta_{s}^{k}}$ with $\exp \left(f_{1}^{\beta_{1}^{k}} \cdots f_{s}^{\beta_{s}^{k}}, a\right)>_{a} \exp \left(S_{k}, a\right)$. Replacing $\sum_{i=1}^{l} c_{\underline{\theta}^{i}} f_{1}^{\theta_{1}^{i}} \cdots f_{s}^{\theta_{s}^{i}}$ by $\sum_{k=1}^{m} \lambda_{k}\left(f_{1}, \ldots, f_{s}\right) \sum_{\underline{\beta}^{k}} c_{\underline{\beta}^{k}} f_{1}^{\beta_{1}^{k}} \cdots f_{s}^{\beta_{s}^{k}}$ in the expression of R, we can rewrite R as

$$
R=\sum_{\underline{\theta}^{\prime}} c_{\underline{\theta}^{\prime}} f_{1}^{\theta_{1}^{\prime}} \cdots f_{s}^{\theta_{s}^{\prime}}
$$

with $\left.\alpha_{1}=\operatorname{in} f_{\theta^{\prime}, c_{\theta^{\prime}} \neq 0} \exp \left(f_{1}^{\theta_{1}^{\prime}} \cdots f_{s}^{\theta_{s}^{\prime}}, a\right)\right)>_{a} \alpha$. Then we restart with this representation. We construct this way an infinite sequence $\exp (R, a)>_{a} \ldots>_{a} \alpha_{1}>_{a} \alpha$, which contradicts Lemma 2 .

The characterization given in Proposition 11 suggests an algorithm that construct, starting with a set of generators of \mathbf{A}, an a-canonical basis of \mathbf{A}. However, such a canonical basis can be infinite as it is shown in the following example:
Example 12. (see [9]) Let $\mathbf{A}=\mathbb{K}\left[\left[x+y, x y, x y^{2}\right]\right]$ and let $a=(2,1)$. Then $\mathrm{M}(x+y, a)=$ $x, \mathrm{M}(x y, a)=x y$, and $\mathrm{M}\left(x y^{2}, a\right)=x y^{2}$. The kernel of the map:

$$
\phi: \mathbb{K}[X, Y, Z] \longmapsto \mathbb{K}[x, y], \phi(X)=x, \phi(Y)=x y, \phi(Z)=x y^{2}
$$

is generated by $\bar{S}_{1}=X Z-Y^{2}$. Hence $S=(x+y) x y^{2}-x^{2} y^{2}=-x y^{3}=R_{a}\left(-x y^{3},\left\{x+y, x y, x y^{2}\right\}\right)$. Then $x y^{3}$ is a new element of the a-canonical basis of \mathbf{A}. If we restart with the representation $\mathbf{A}=\mathbb{K}\left[\left[x+y, x y, x y^{2}, x y^{3}\right]\right]$, then a new element, $x y^{4}$, will be added to the a-canonical basis of \mathbf{A}. In fact, $x y^{n}$ is an element of the minimal reduced a-canonical basis of \mathbf{A} for all $n \geq 1$. In particular the a-canonical basis of \mathbf{A} is infinite.
In the following we shall assume that the length $l\left(\frac{\mathbf{F}}{\mathbf{A}}\right)$ is finite. This guarantees the finiteness of a canonical basis. Under this hypothesis, using the results above, we get the following algorithm:

Algorithm. Let $\mathbf{A}=\mathbb{K}\left[\left[f_{1}, \ldots, f_{s}\right]\right]$ and let $a \in U_{1}^{n}$. Let $\left\{\bar{S}_{1}, \ldots, \bar{S}_{m}\right\}$ be a set of generators of the map ϕ of Proposition 10 and let $S_{i}=\bar{S}_{i}\left(f_{1}, \ldots, f_{s}\right)$ for all $i \in\{1, \ldots, m\}$.
(1) If $R_{a}\left(S_{i},\left\{f_{1}, \ldots, f_{s}\right\}\right)=0$ for all $i \in\{1, \ldots, m\}$ then $\left\{f_{1}, \ldots, f_{s}\right\}$ is an a-canonical basis of A.
(2) If $R=R_{a}\left(S_{i},\left\{f_{1}, \ldots, f_{s}\right\}\right) \neq 0$ for some $i \in\{1, \ldots, m\}$ then we set $R=f_{s+1}$ and we restart with $\left\{f_{1}, \ldots, f_{r}, f_{r+1}\right\}$. Note that in this case, we have $\left\langle\exp \left(f_{1}, a\right), \ldots, \exp \left(f_{s}, a\right)\right\rangle \subset$ $\left\langle\exp \left(f_{1}, a\right), \ldots, \exp \left(f_{s}, a\right), \exp \left(f_{s+1}, a\right)\right\rangle \subseteq \exp (\mathbf{A}, a)$. By hypothesis, $l\left(\frac{\mathbf{F}}{\mathbf{A}}\right)<+\infty$, hence, after a finite number of operations, we get an a-canonical basis of \mathbf{A}.

2. A finiteness Theorem

Let the notations be as in Section 1. In particular $\mathbf{A}=\mathbb{K}\left[\left[f_{1}, \ldots, f_{s}\right]\right]$ with $\left\{f_{1}, \ldots, f_{s}\right\} \subseteq \mathbf{F}$. We shall assume that $l\left(\frac{\mathbf{F}}{\mathbf{A}}\right)<+\infty$. The aim of this section is to prove that the set of $\operatorname{in}(A, a), a \in U^{n}$ is finite. We first recall this result when $\mathbf{A}=\mathbb{K}[f]$ then we prove some preliminary results which will also be used later in the paper.

Lemma 13. Let f be a nonzero element of $\mathbb{K}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$. The set $\left\{\mathrm{M}(f, a), a \in U^{n}\right\}$ (resp. $\left.\left\{\operatorname{in}(f, a), a \in U^{n}\right\}\right)$ is finite.
Proof. Write $f=\sum_{\alpha} c_{\alpha} \underline{x}^{\alpha}$ and let $E=\cup_{\alpha \in \operatorname{Supp}(f)} \alpha+\mathbb{N}^{n}$. Then $E+\mathbb{N}^{n} \subseteq E$, and consequently there exists a finite set of E, say $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$, such that $E=\cup_{i=1}^{r} \alpha_{i}+\mathbb{N}^{n}$. By definition $\alpha_{i} \in \operatorname{Supp}(f)$ for all $i \in\{1, \ldots, r\}$. If we choose the α_{i} 's such that $\alpha_{i} \notin \cup_{j \neq i} \alpha_{j}+\mathbb{N}^{n}$, then $\left\{\exp (A, a), a \in U^{n}\right\}=$ $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$. This proves our assertion.

Lemma 14. Let $a \neq b$ be two elements of U^{n}. Let $\left\{g_{1}, \ldots, g_{r}\right\}$ be an a-reduced canonical basis of A. If $\mathrm{M}(\mathbf{A}, a)=\mathrm{M}(\mathbf{A}, b)$ then $\left\{g_{1}, \ldots, g_{r}\right\}$ is also a b-reduced canonical basis of \mathbf{A}.

Proof. Let $i \in\{1, \ldots, r\}$ and write $g_{i}=\mathrm{M}\left(g_{i}, a\right)+\sum c_{\beta} \underline{x}^{\beta}$ where for all β, if $c_{\beta} \neq 0$, then $\underline{x}^{\beta} \notin$ $\mathrm{M}(\mathbf{A}, a)$. Since $\mathrm{M}(\mathbf{A}, a)=\mathrm{M}(\mathbf{A}, b)$ then for all β, if $c_{\beta} \neq 0$, then $\underline{x}^{\beta} \notin \mathrm{M}(\mathbf{A}, a)$. This implies that $\mathrm{M}\left(g_{i}, a\right)=\mathrm{M}\left(g_{i}, b\right)$. Hence $\left\{g_{1}, \ldots, g_{r}\right\}$ is a b-canonical basis of \mathbf{A}, and the same argument shows that this basis is also reduced.

Lemma 15. Let $a \neq b$ be two elements of U^{n}. If $\mathrm{M}(\mathbf{A}, a) \neq \mathrm{M}(\mathbf{A}, b)$, then $\mathrm{M}(\mathbf{A}, a) \nsubseteq \mathrm{M}(\mathbf{A}, b)$.
Proof. Assume that $\mathrm{M}(\mathbf{A}, a) \subseteq \mathrm{M}(\mathbf{A}, b)$ and let $\left\{g_{1}, \ldots, g_{r}\right\}$ be a b-reduced canonical basis of \mathbf{A}. By hypothesis, there is $1 \leq i \leq r$ such that $\mathrm{M}\left(g_{i}, b\right) \in \mathrm{M}(\mathbf{A}, b) \backslash \mathrm{M}(\mathbf{A}, a)$. Write $g_{i}=\mathrm{M}\left(g_{i}, b\right)+\sum c_{\beta} \underline{x}^{\beta}$. For all β, if $c_{\beta} \neq 0$, then $\underline{x}^{\beta} \notin \mathrm{M}(\mathbf{A}, b)$, hence $\underline{x}^{\beta} \notin \mathrm{M}(\mathbf{A}, a)$, which implies that $\mathrm{M}\left(g_{i}, a\right) \notin \mathrm{M}(\mathbf{A}, a)$ $(\mathrm{M}(\mathbf{A}, a) \subseteq \mathrm{M}(\mathbf{A}, b))$. This is a contradiction because $g_{i} \in \mathbf{A}$.

Corollary 16. If $a \in U^{n} \backslash U_{1}^{n}$ then there exists $b \in U_{1}^{n}$ such that $\mathrm{M}(\mathbf{A}, a)=\mathrm{M}(\mathbf{A}, b)$.
Proof. Let $\left\{g_{1}, \ldots, g_{r}\right\}$ be an a-reduced canonical basis of \mathbf{A}. By hypothesis, there exists $\epsilon>0$ such that for all $i \in\{1, \ldots, r\}$ and for all $b \in B(a, \epsilon), \mathrm{M}\left(g_{i}, a\right)=\mathrm{M}\left(g_{i}, b\right)$ (where $B(a, \epsilon)$ denotes the ball of ray ϵ centered at $a)$. Take $b \in U^{n} \cap B(a, \epsilon)$. We have $\mathrm{M}(\mathbf{A}, a) \subseteq \mathrm{M}(\mathbf{A}, b)$. By Lemma 15, $\mathrm{M}(\mathbf{A}, a)=\mathrm{M}(\mathbf{A}, b)$
Corollary 17. Let $a \neq b$ be two elements of U^{n}. If in $(\mathbf{A}, a) \neq \mathrm{i} n(\mathbf{A}, b)$, then $\mathrm{in}(\mathbf{A}, a) \nsubseteq \mathrm{i} n(\mathbf{A}, b)$
Proof. We shall prove that if $\operatorname{in}(\mathbf{A}, a) \subseteq \operatorname{in}(\mathbf{A}, b)$ then $\mathrm{i} n(\mathbf{A}, a)=\mathrm{i} n(\mathbf{A}, b)$. Let to this end $\left\{g_{1}, \ldots, g_{r}\right\}$ be an a-reduced canonical basis of \mathbf{A} and let $i \in\{1, \ldots, r\}$. Write $\operatorname{in}\left(g_{i}, a\right)=M_{1}+$ $\ldots+M_{t}$ where M_{j} is b-homogeneous for all $i \in\{1, \ldots, t\}$. By hypothesis $\operatorname{in}\left(g_{i}, a\right) \in \operatorname{in}(\mathbf{A}, b)$, hence $M_{j} \in \operatorname{in}(\mathbf{A}, b)$ for all $j \in\{1, \ldots, t\}$. Suppose that $\mathrm{M}\left(g_{i}, a\right)$ is a monomial of M_{1}. We have $M_{1} \in \operatorname{in}(\mathbf{A}, b)$. But M_{1} is also a-homogeneous. It follows that $\mathrm{M}\left(M_{1}, b\right)=\mathrm{M}\left(M_{1}, a\right)=\mathrm{M}\left(g_{i}, a\right)$,
in particular $\mathrm{M}\left(g_{i}, a\right) \in \mathrm{M}(\mathbf{A}, b)$. This proves that $\mathrm{M}(\mathbf{A}, a) \subseteq \mathrm{M}(\mathbf{A}, b)$. By Lemma 15 we have $\mathrm{M}(\mathbf{A}, a)=\mathrm{M}(\mathbf{A}, b)$ and $\left\{g_{1}, \ldots, g_{r}\right\}$ is also a b-reduced canonical basis of \mathbf{A}. Finally $\operatorname{in}(\mathbf{A}, a)$ is generated by $\left\{\operatorname{in}\left(g_{1}, a\right), \ldots, \operatorname{in}\left(g_{s}, a\right)\right\}$ (resp. in (\mathbf{A}, b) is generated by $\left.\left\{\operatorname{in}\left(g_{1}, b\right), \ldots, \operatorname{in}\left(g_{r}, b\right)\right\}\right)$. Now the argument above shows that for all $i \in\{1, \ldots, r\}, \operatorname{in}\left(g_{i}, a\right)=\operatorname{in}\left(g_{i}, b\right)$. This proves the equality.

Remark 18. 1. Let $a \neq b$ be two elements of U^{n}. The proof of Corollary 17 implies that if $\operatorname{in}(\mathbf{A}, a)=\operatorname{in}(\mathbf{A}, b)$ and if $\left\{g_{1}, \ldots, g_{r}\right\}$ is an a-reduced canonical basis of \mathbf{A} then $\left\{g_{1}, \ldots, g_{r}\right\}$ is also a b-reduced canonical basis of \mathbf{A}.
2. Corollary 17 implies the following: if $a \in U^{n} \backslash U_{1}^{n}$ then there exists $b \in U_{1}^{n}$ such that in $\left.\mathbf{A}, a\right)=$ $\mathrm{M}(\mathbf{A}, a)=\mathrm{M}(\mathbf{A}, b)=\mathrm{i} n(\mathbf{A}, b) .$.
We can now state and prove the following finiteness theorem:
Theorem 19. Let $A=\mathbb{K}\left[\left[f_{1}, \ldots, f_{s}\right]\right]$ and let the notations be as above. The set $\mathrm{M}(A)=\{\mathrm{M}(A ; a) \mid a \in$ $\left.U^{n}\right\}$ is finite. In particular the set $I(A)=\left\{\mathrm{in}(\mathbf{A}, a) \mid a \in U^{n}\right\}$ is finite.

Proof. We need only to prove that $\mathrm{M}(A)$ is a finite set. Assume that M is infinite. By Lemma 13 there is an infinite set $U_{1}=\left\{a_{1}, a_{2}, \ldots\right\}$ in U^{n} such that for all $1 \leq k \leq s$ and for all $a \in U_{1}$, $\mathrm{M}\left(f_{k}, a\right)=m_{k}$ where m_{k} is a nonzero monomial of f_{k}. Let $J_{1}=\mathbb{K}\left[\left[m_{1}, \ldots, m_{s}\right]\right]: J_{1} \subseteq \mathrm{M}(\mathbf{A}, a)$ for all $a \in U_{1}$. Obviously $J_{1} \neq \mathrm{M}\left(\mathbf{A}, a_{1}\right)$ (otherwise, $\mathrm{M}\left(\mathbf{A}, a_{1}\right) \subset \mathrm{M}\left(\mathbf{A}, a_{2}\right)$, for example. This contradicts Lemme 15). We claim that there is $f_{s+1} \in \mathbf{A}$ such that for all $\beta \in \operatorname{Supp}\left(f_{s+1}\right), \underline{x}^{\beta} \notin J_{1}$. Let to this end $m \in \mathrm{M}\left(\mathbf{A}, a_{1}\right) \backslash J_{1}$ and let $f \in \mathbf{A}$ such that $\mathrm{M}\left(f, a_{1}\right)=m$. Obviously $m \notin J_{1}$. We set $f_{s+1}=R_{a_{1}}\left(f,\left\{f_{1}, \ldots, f_{s}\right\}\right)$. By lemma 13, there is monomial m_{s+1} of f_{s+1} and an infinite subset $U_{2} \subseteq U_{1}$ such that for all $a \in U_{2}, \mathrm{M}\left(f_{s+1}, a\right)=m_{s+1}$.
Let $J_{2}=\mathbb{K}\left[\left[m_{1}, \ldots, m_{s}, m_{s+1}\right]\right]: J_{1} \subset J_{2}$. The same process applied to $\left\{f_{1}, \ldots, f_{s+1}\right\}, J_{2}$ and U_{2} will construct $m_{s+2} \notin J_{2}, f_{s+2} \in \mathbf{A}$, and an infinite subset $U_{3} \subseteq U_{2}$ such that for all $a \in U_{3}, \mathrm{M}\left(f_{s+2}, a\right)=$ m_{s+2}. We get this way an infinite increasing sequence $J_{1} \subset J_{2} \subset J_{3} \subset \ldots$ and for all i, there is $a_{i} \in U^{n}$ such that $J_{i} \subseteq \mathrm{M}\left(\mathbf{A}, a_{i}\right)$. This is a contradiction because $l\left(\frac{\mathbf{F}}{\mathbf{A}}\right)$ is finite.
Definition 20. The set $\left\{g_{1}, \ldots, g_{r}\right\}$ of \mathbf{A} which is an a-canonical basis of \mathbf{A} for all $a \in U^{n}$, is called the universal canonical basis of \mathbf{A}.

3. The Newton fan

Let $\mathbf{A}=\mathbb{K}\left[\left[f_{1}, \ldots, f_{s}\right]\right]$ and let the notations be as in Section 2. In this section we aim to study the stabitily of $\exp (\mathbf{A}, a)$ and $\operatorname{in}(\mathbf{A}, a)$ when a very in U^{n}. Let S be a finitely generated affine semigroup of \mathbb{N}^{n}. Let

$$
E_{S}=\left\{a \in U^{n} \mid \exp (\mathbf{A}, a)=S\right\}
$$

We have the following:
Theorem 21. There exists a partition \mathcal{P} of U^{n} into convex rational polyherdal cones such that for all $\sigma \in \mathcal{P}, \exp (\mathbf{A}, a)$ and $\operatorname{in}(\mathbf{A}, a)$ do not depend on $a \in \sigma$.

In order to prove Theorem 21 we start by fixing some notations. Let S be a finitely generated affine semigroup of \mathbb{N}^{n} and let $a \in E_{S}$. Let $\left\{g_{1}, \ldots, g_{r}\right\}$ be the a-reduced canonical basis of A. By Lemma 15, Lemma 17, and Remark 18, $\left\{g_{1}, \ldots, g_{r}\right\}$ is also the b-reduced canonical basis of \mathbf{A} for all $b \in E_{S}$. Denote by \sim the equivalence relation on U^{n} defined from $\left\{g_{1}, \ldots, g_{r}\right\}$ by

$$
a \sim b \Longleftrightarrow \operatorname{in}\left(g_{i}, a\right)=\operatorname{in}\left(g_{i}, b\right) \quad \text { for all } \quad i \in\{1, \ldots, r\},
$$

Proposition 22. ~ defines on U^{n} a finite partition into convex rational polyhedral cones and E_{S} is a union of a part of these cones.
Proof. Let $c, d \in U^{n}$ such that $c \sim d$ and let e in the segment $[c, d]$, also let $\theta \in[0,1]$ such that $e=\theta c+(1-\theta)) d$. Then $a \in U^{n}$ and $\operatorname{in}\left(g_{i}, e\right)=\operatorname{in}\left(g_{i}, c\right)=\mathrm{i} n\left(g_{i}, d\right)$ by an immediate verification. Moreover, $c \sim t \cdot c$ for all $c \in U^{n}$ and $t>0$. Therefore the equivalence classes are convex rational polyhedral cones (the rationality results from Corollary 16 and Remark 18). On the other hand, if $c \sim d$ and $c \in E_{S}$, then $d \in E_{S}$. This proves that E_{S} is a union of classes for \sim, the number of classes being finite by Theorem 19

Proof of Theorem 21 We define \mathcal{P} in the following way: for each S we consider the restriction \mathcal{P}_{S} on E_{S} of the above partition, and then \mathcal{P} is the finite union of the \mathcal{P}_{S} 's. On each cone of the partition, $\mathrm{i} n(\mathbf{A}, a)$ and $\exp (\mathbf{A}, a)$ are fixed. Conversely assume that $\mathrm{i} n(\mathbf{A}, a)$ is fixed and let b such that $\operatorname{in}(\mathbf{A}, a)=\operatorname{in}(\mathbf{A}, b)$. By Corollary 17 and Remark 18, an a-reduced canonical basis $\left\{g_{1}, \ldots, g_{r}\right\}$ of \mathbf{A} is also a b-reduced canonical basis of \mathbf{A}. Moreover, in $\left(g_{i}, a\right)=\mathrm{i} n\left(g_{i}, b\right)$ and $\exp (\mathbf{A}, a)=\exp (\mathbf{A}, b)$. This ends the proof of the theorem except for the convexity of E_{S} proved below.

Lemma 23. E_{S} is a convex set: if $a \neq b \in E_{S}$ then $[a, b] \subseteq E_{S}$
Proof. Let $a, b \in E_{S}$ and let $\left.\lambda \in\right] 0,1\left[\right.$. Let $\left\{g_{1}, \ldots, g_{r}\right\}$ be an a (and then b) reduced canonical basis of \mathbf{A}. Let $i \in\{1, \ldots, r\}$ and set $M=\operatorname{in}\left(g_{i}, a\right)$. Write $M=M_{1}+\ldots+M_{t}$ where M_{k} is b-homogeneous for all $k \in\{1, \ldots, t\}$ and $\nu\left(M_{1}, b\right)>\nu\left(M_{k}, b\right)$ for all $k \in\{2, \ldots, t\}$. We have $\nu\left(g_{i}, a\right)=\nu\left(M_{1}, a\right)=\nu\left(M_{k}, a\right)$ and $\nu\left(M_{1}, b\right)>\nu\left(M_{k}, b\right)$ for all $k \in\{2, \ldots, t\}$. This implies that $\left.\nu\left(g_{i}, \theta a+(1-\theta) b\right)=\nu\left(M_{1}, \theta a+(1-\theta) b\right)>\nu\left(M_{k}, \theta a+(1-\theta) b\right)\right)$ for all $k \in\{2, \ldots, t\}$, hence $\exp \left(g_{i}, \theta a+(1-\theta) b\right)=\exp \left(g_{i}, a\right)=\exp \left(g_{i}, b\right)$. In particular $\exp (\mathbf{A}, a) \subseteq \exp (\mathbf{A}, \theta a+(1-\theta) b)$. By Lemma 15 we get the equality. This proves that $\exp (\mathbf{A}, \theta a+(1-\theta) b)=S$.
In the following we shall give some precisions about the partition above. Obviously if S_{1} and S_{2} are two distinct finitely generated affine semigroups and if $a \in E_{S_{1}}$ and $b \in E_{S_{2}}$ then in $(\mathbf{A}, a) \neq \mathrm{in}(\mathbf{A}, b)$ and $\exp (\mathbf{A}, a) \neq \exp (\mathbf{A}, b)$, hence, by Lemma 15 and Corollary 17, neither in $(\mathbf{A}, a) \subseteq \operatorname{in}(\mathbf{A}, b)$ nor $\operatorname{in}(\mathbf{A}, b) \subseteq \operatorname{in}(\mathbf{A}, a)$, and the same conclusion holds for $\exp (\mathbf{A}, a)$ and $\exp (\mathbf{A}, b)$.
Next we shall characterize open cones of the partition with maximal dimension. Let f be a nonzero element of $\mathbb{K}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ and let $a \in U^{n}$. We say that $\operatorname{in}(f, a)$ is multihomogeneous if in (f, a) is b-homogeneous for all $b \in U^{n}$. This is equivalent to saying that $\operatorname{in}(f, a)$ is a monomial.

Definition 24. Let $a \in U^{n}$. We say that $\operatorname{in}(\mathbf{A}, a)$ is a multihomogeneous algebra if it is generated by multihomogeneous elements. Note that in this case, If $g \in \operatorname{in}(\mathbf{A}, a)$ then every monomial of g is also in $\mathrm{in}(\mathbf{A}, a)$.

Lemma 25. Let $a \in U^{n}$ and let $\left\{g_{1}, \ldots, g_{r}\right\}$ be an a-reduced canonical basis of A. Then in (\mathbf{A}, a) is a multihomogeneous algebra if and only if $\operatorname{in}\left(g_{i}, a\right)$ is a monomial for all $i \in\{1, \ldots, r\}$.

Proof. We only need to prove the if part. Let $i \in\{1, \ldots, r\}$ and write $\mathrm{i} n\left(g_{i}, a\right)=M_{1}+\ldots+M_{t}$ with $\exp \left(g_{i}, a\right)=\exp \left(M_{1}, a\right)$. Assume that $t>1$. Since $\mathrm{in}(\mathbf{A}, a)$ is multihomogeneous then $M_{i} \in \operatorname{in}(\mathbf{A}, a)$ for all $i \in\{2, \ldots, t\}$. But $\left\{g_{1}, \ldots, g_{r}\right\}$ is reduced. This is a contradiction. Hence $t=1$ and $\mathrm{i} n\left(g_{i}, a\right)$ is a monomial.

Proposition 26. The set of $a \in U^{n}$ for which $\mathrm{in}(\mathbf{A}, a)$ is multihomogeneous defines the open cones of dimension n of \mathcal{P}.

Proof. Let $a \in U^{n}$ and let $\left\{g_{1}, \ldots, g_{r}\right\}$ be an a-reduced canonical basis of \mathbf{A}. For all $i \in\{1, \ldots, r\}$, $\mathrm{in}\left(g_{i}, a\right)$ is a monomial, hence there exists $\epsilon>0$ such that $\mathrm{i} n\left(g_{i}, b\right)=\mathrm{in}\left(g_{i}, a\right)$ for all $b \in B(a, \epsilon)$ (where $B(a, \epsilon)$ is the ball centered at a of ray ϵ). This proves, by Lemma 15 and Corollary 17, that $\left\{g_{1}, \ldots, g_{r}\right\}$ is also a b-reduced canonical basis of \mathbf{A} for all $b \in B(a, \epsilon)$. Conversely, if a is in an open
cone of E_{S} for some S, then for all b in a neighbourhood, an a-reduced canonical basis $\left\{g_{1}, \ldots, g_{r}\right\}$ of \mathbf{A} is also a b-reduced canonical basis of \mathbf{A}. This implies that $\operatorname{in}\left(g_{i}, a\right)$ is a monomial. This proves our assertion.
Definition 27. \mathcal{P} is called the standard fan of \mathbf{A}.
Remark 28. (1) Although we do not have a proof for the existence of a fan for subalgebras \mathbf{A} with $l\left(\frac{\mathbf{F}}{\mathbf{A}}\right)$ not necessarily finite, we think that this fan does exist. This is true of course if $\exp (\mathbf{A}, a)$ is finitely generated for all $a \in U^{n}$, but it is not easy to verify this condition a priori.
(2) (see [4]) Suppose that $n=1$, i.e. $\mathbf{A}=\mathbb{K}\left[\left[f(t), \ldots, f_{s}(t)\right]\right] \subseteq \mathbb{K}[[t]]$. Then $X_{1}=f_{1}(t), \ldots, X_{s}=$ $X_{s}(t)$ represents the expansion of a curve in \mathbb{K}^{s} near the origin. In tis case, in (\mathbf{A}, a) does not depend on $a \in U^{n}$ and if the parametrization is primitive then $l\left(\frac{\mathbb{K}[[t]]}{\mathbf{A}}\right)<+\infty$. If $s=2$ then $\mathrm{i} n(\mathbf{A}, a)$ is a free numerical semigroup and the arithmetic of this semigroup contains a lot of information about the singularity of the curve at the origin.
(3) (see also [5]) If $\mathbf{A}=\mathbb{K}\left[f_{1}, \ldots, f_{s}\right]$ is a subalgebra of $\mathbf{P}=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ then Theorem 19 and Theorem 21 remain valid when we vary $a \in \mathbb{R}_{+}^{n}$, under the assumption that $l\left(\frac{\mathbf{P}}{\mathbf{A}}\right)<+\infty$ (note that in this case, $\mathrm{i} n(f, a)$ is a polynomial for all $a \in \mathbb{R}_{+}^{n}$ and for all $\left.f \in \mathbf{P}\right)$.
Example 29. Let $f\left(X_{1}, \ldots, X_{n}, Y\right) \in \mathbb{K}\left[\left[X_{1}, \ldots, X_{n}\right]\right][Y]$ and suppose that f has a parametrization of the form $X_{1}=t_{1}^{e_{1}}, \ldots, X_{n}=t_{n}^{e_{n}}, Y=Y\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{K}\left[\left[t_{1}, \ldots, t_{n}\right]\right]$ (for instance, this is true if f is a quasi-ordinary polynomial, i.e. the discriminant of f is of the form $X_{1}^{N_{1}} \cdots X_{s}^{N_{s}}(c+$ $\left.\phi\left(X_{1}, \ldots, X_{s}\right)\right)$ with $c \in \mathbb{K}^{*}$ and $\left.\phi(0, \ldots, 0)=0\right)$. Then $\frac{\mathbb{K}\left[\left[X_{1}, \ldots, X_{n}\right]\right][Y]}{f} \simeq \mathbf{A}=\mathbb{K}\left[\left[t_{1}^{e_{1}}, \ldots, t_{n}^{e_{n}}\right.\right.$, $\left.\left.Y\left(t_{1}, \ldots, t_{n}\right)\right]\right]$. In this case, $\left(e_{1}, 0, \ldots, 0\right), \ldots,\left(0, \ldots, 0, e_{n}\right)$ belong to $\exp (\mathbf{A}, a)$ for all $a \in U^{n}$. Moreover, $\exp (\mathbf{A}, a)$ is is a free finitely generated affine semigroup in the sense of [3]. In this case, $l\left(\frac{\mathbf{F}}{\mathbf{A}}\right)$ need not to be finite, but results of Theorem 19 and Theorem 21 are valid.

References

[1] A. Assi, J.-M. Granger, F. J. Castro Jiménez, The Grobner fan of an A_{n}-module, Journal of Pure and Applied Algebra, 150 (2000), 27-39.
[2] A. Assi, J.-M. Granger, F. J. Castro Jiménez, The standard fan of a D-module, Journal of Pure and Applied Algebra, 164 (2001), 3-21.
[3] A. Assi, The Frobenius vector of an affine semigroup, J. Algebra Appl., 11, 1250065 (2012), 10 pages.
[4] A. Assi, P. A. García-Sánchez, V. Micale, Bases of subalgebras of K[[x]] and K[x], J. of Symb. Comp., 79 (2017), 4-22.
[5] J. Alam Khan, Converting subalgebra basis with the Sagbi walk, J. of Sym. Comp., 60 (2014), 78-93.
[6] V. Micale, Order bases of subalgebras of power series rings, Comm. Algebra 31 (2003), no. 3, 1359-1375.
[7] V. Micale, G. Molica, B. Torrisi, Order bases of subalgebras of $k[[X]]$, Commutative rings, 193-199, Nova Sci. Publ., Hauppauge, NY, 2002.
[8] T. Mora, L. Robbiano, The Gröbner fan of an ideal, J. Symbolic Comput. 6 (1988) 183-208.
[9] L. Robbiano and M. Sweedler, Subalgebra bases, pp. 61-87 in Commutative Algebra (Salvador, 1988), edited by W. Bruns and A. Simis, Lecture Notes in Math. 1430, Springer, Berlin, 1990.
[10] B. Sturmfels, Gröbner bases and convex polytopes, University Lecture Series 8, Amer. Math.
Université d'Angers, Mathématiques, 49045 Angers ceded 01, France
E-mail address: assi@math.univ-angers.fr

[^0]: Date: June 12, 2018.
 2000 Mathematics Subject Classification. 06F25,20M25, 20M32.

