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THE CANONICAL FAN OF A FORMAL K-ALGEBRA

ABDALLAH ASSI

Abstract. We associate with an algebra A = K[[f1, . . . , fs]] ⊆ K[[x1, . . . , xn]] over a field K a fan
called the canonical fan of A. This generalizes the notion of the standard fan of an ideal.

Keywords: Canonical basis, K-algebras, affine semigroups

Introduction

Let K be a field and let f1, . . . , fs be nonzero elements of the ring F = K[[x1, . . . , xn]] of formal
power series in x1, . . . , xn over K. Let A = K[[f1, . . . , fs]] be the K-algebra generated by f1, . . . , fs.
Set U = R∗

+ and let a ∈ Un. If a = (a1, . . . , an) then a defines a linear form on Rn which maps
α = (α1, . . . , αn) ∈ Rn to the inner product

< a,α >=

n
∑

i=1

aiαi

of a with α. We denote abusively the linear form by a. Let x = (x1, . . . , xn) and let f =
∑

cαx
α

be a nonzero element of F. We set Supp(f) = {α|cα 6= 0} and we call it the support of f . We set

ν(f, a) = min{< a,α > |α ∈ Supp(f)}

and we call it the a-valuation of f). We set by convention ν(0, a) = +∞. Let

in(f, a) =
∑

α∈Supp(f)|<a,α>=ν(f,a)

cαx
α.

We call in(f, a) the a-initial form of f . Note that in(f, a) is a polynomial. This notion can also be
defined this way: we associate with f its Newton polyhedron defined to be Γ+(f) = the convex hull
in Rn

+ of
⋃

α∈supp(f) α + Rn
+. The set of compact faces of Γ+(f) is finite. Let {△1, . . . ,△t} be this

set. Given i ∈ {1, . . . , t}. We set f△i
=

∑

α∈Supp(f)∩△i
cαx

α. Then {in(f, a) | a ∈ Un} = {f△i
| 1 ≤

i ≤ t}.

Let the notations be as above, and let ≺ be a well ordering on Nn. We set exp(f, a) = max≺Supp

(in(f, a)) and M(f) = cexp(f,a)x
exp(f,a). We set in(A, a) = K[[in(f, a)|f ∈ A \ {0}]]. We also set

M(A) = K[[M(f, a), f ∈ A \ {0}]]. The set exp(A, a) = {exp(f, a) | f ∈ A \ {0}} is an affine
subsemigroup of Nn.

If a ∈ Rn then in(f, a) may not be a polynomial, hence exp(f) is not well defined. If a = (a1, . . . , an)
with ai1 = . . . = ail = 0 then we can avoid this difficulty in completing by the tangent cone order
on (xi1 , . . . , xil). We shall however consider elements in Un in order to avoid technical definitions
and results.
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2 ABDALLAH ASSI

The aim of this paper is to study the stability of in(A, a) and M(A, a) when a varies in Un. Note
that exp(A, a) is not necessarily finitely generated (see example 12). It becomes so If the length of
F

A
is finite. Under this condition, our main results are the following:

Theorem The set {in(A, a)|a ∈ Un} is a finite set. The same holds for the set {M(A, a)|a ∈ Un}.

Theorem Let S be a finitely generated affine semigroup. The set ES = {a ∈ Un | exp(A, a) = S}
is a union of convex polyhedral cones and the set of ES , S defines a fan of Un.

These results generalize those of [8] for ideals in K[x1, . . . , xn] and [1], [2] for ideals in the ring of
differential operators over K.

The paper is organized as follows. In Section 1. we recall the notion of canonical basis of A with
respect to a ∈ Un, and we give an algorithm that computes an a-canonical basis starting with a
set of generators of A (see [6] for the case a = (−1, . . . ,−1)). In Section 2. we prove the finiteness
theorem, and in Section 3. we prove the existence of a fan associated with A.

1. Preliminary results

Let A = K[[f1, . . . , fs]] be a subalgebra of F generated by {f1, . . . , fs} ⊆ F and let the notations
be as above. In particular ≺ is a total well ordering on Nn compatible with sums. Let a ∈ Un and
consider the total ordering on Nn defined by:

α <a α′ ⇔







< a,α ><< a,α′ >
or
< a,α >=< a,α′ > and α ≺ α′

The total ordering <a is compatible with sums in Nn. We shall use sometimes the notations α ≻ β
for β ≺ α and α >a β for β <a α. We have the following:

Lemma 1. There doesn’t exist infinite sequences (αk)k≥0 such that

α0 >a α1 >a . . . >a αk . . .

With < a,α0 >=< a,αk > for all k ≥ 1.

Proof. This is a consequence of Dixon’s Lemma, since such a sequence satisfies α0 ≻ α1 ≻ . . . ≻
αk ≻ . . . �

Let a ∈ Un. Then a defines a filtration on F : F =
∑

d≥0 Fd where Fd is the K-vector space
generated by xα, < a, α >= d. Let U1 = Q∗

+. If a ∈ Un
1 then, given two indices d1 < d2, the set of

indices d such that d1 < d < d2 is clearly finite. In particular we get the following:

Lemma 2. Let α, β ∈ Un
1 and assume that α >a β. There doesn’t exist infinite sequences (αk)k≥0

such that

α >a α0 >a α1 >a . . . >a β

Proof. The set of < a, γ >,< a, α >>< a, γ >>< a, β > is finite. Then the result is a consequence
of Lemma 1 �

Definition 3. Let a ∈ Un and let f =
∑

cαx
α be a nonzero element of F. We say that f is

a-homogeneous if f ∈ Fd for some d. This is equivalent to ν(α, a) = ν(f, a) for all α ∈ Supp(f).
Note that if a /∈ Un

1 then f is a-homogeneous if and only if f is a monomial.

Definition 4. Let a ∈ Un and let H be a subalgebra of F. We say that H is a-homogeneous if it
can be generated by a-homogeneous elements of F.
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Every nonzero element f =
∑

cαx
α ∈ F decomposes as f =

∑

k≥d fk, with fd = in(f, a) and for all
k > d, if fk 6= 0 then fk ∈ Fk.

Definition 5. Let a ∈ Un and let {g1, . . . , gr} ⊆ A. We say that {g1, . . . , gr} is an a-canonical
basis of A if M(A, a) = K[[M(g1, a), . . . ,M(gr, a)]]. Clearly {g1, . . . , gr} is an a-canonical basis
of A if and only if exp(A, a) is generated by {exp(g1, a), . . . , exp(gr, a)}. In this case we write
exp(A, a) = 〈exp(g1, a), . . . , exp(gr, a)〉

An a-canonical basis {g1, . . . , gr} of A is said to be minimal if {M(g1, a), . . . ,M(gr, a)} is a minimal
set of generators of M(A, a). It is said to be reduced if the following conditions are satisfied:

i) {g1, . . . , gr} is minimal.
ii) For all 1 ≤ i ≤ r, cexp(gi,a) = 1.
iii) For all 1 ≤ i ≤ r, if gi − M(gi, a) 6= 0 then xα /∈ K[[M(g1, a), . . . ,M(gr , a)]] for all α ∈

Supp(gi −M(gi, a)).

Lemma 6. If an a-reduced canonical basis exists, then it is unique.

Proof. Let F = {g1, . . . , gr} and G = {g′1, . . . , g
′
t} be two a-reduced canonical bases of A. Let

i = 1. Since M(g1, a) ∈ K[[M(g′1, a), . . . ,M(g′t, a)]], then M(g1, a) = M(g′1, a)
l1 · · ·M(g′t, a)

lt for some
l1, . . . , lt ∈ N. Every M(g′i, a), i ∈ {1, . . . , t} is in K[M(g1, a), . . . ,M(gr, a)]. Then the equation above
is possible only if M(g1, a) = M(g′k1 , a) for some k1 ∈ {1, . . . , t}. This gives an injective map from

{M(g1, a), . . . ,M(gr, a)} to {M(g′1, a), . . . ,M(g′t, a)}. We construct in the same way an injective
map from {M(g′1, a), . . . ,M(g′t, a)} to {M(g1, a), . . . ,M(gr, a)}. Hence r = t and both sets are equal.
Suppose, without loss of generality that M(gi, a) = M(g′i, a) for all i ∈ {1, . . . , r}. If gi 6= g′i then
M(gi − g′i) ∈ M(A, a) because gi − g′i ∈ A. This contradicts iii). �

We now recall the division process in A (see [6] for the tangent cone order a = (−1, . . . ,−1) and
[4] for n = 1).

Theorem 7. Let a ∈ Un
1 and let {F1, . . . , Fs} ⊆ K[[x]]. Let F be a nonzero element of K[[x]]. There

exist H ∈ K[[F1, . . . , Fs]] and R ∈ F such that the following conditions hold:

(1) F = H +R
(2) If R =

∑

β bβx
β, then for all α ∈ Supp(R), xβ /∈ K[[M(F1, a), . . . ,M(Fs, a)]].

(3) Set H =
∑

α cαF
α1

1 . . . . .Fαs

s . If H 6= 0 then exp(F, a) = max<a
{exp(Fα1

1 . . . . .Fαs

s , a), cα 6=
0}.

Proof. We define the sequences (F k)k≥0, (h
k)k≥0, (r

k)k≥0 in F by F 0 = F, h0 = r0 = 0 and ∀k ≥ 0 :

(i) If M(F k, a) ∈ K[[M(F1, a), . . . ,M(Fs, a)]], write M(F k, a) = cαM(F1, a)
α1 · · ·M(Fs, a)

αs . We
set

F k+1 = F k − cαF
α1

1 · · ·Fαs

s , hk+1 = hk + cαF
α1

1 · · ·Fαs

s , rk+1 = rk

(ii) If M(F k, a) /∈ K[[M(F1, a), . . . ,M(Fs, a)]], we set

F k+1 = F k −M(F k+1, a), hk+1 = hk, rk+1 = rk +M(F k, a)

in such a way that for all k ≥ 0, exp(F k, a) <a exp(F k+1, a) and F = F k+1+hk+1+ rk+1. If F l = 0
for some l ≥ 1 then we set H = hl and R = rl. We then easily verify that H,R satisfy conditions (1)
to (3). Suppose that {F k|k ≥ 0} is an infinite set. Note that, by Lemma 1, given k ≥ 1, if F k 6= 0
then there exists k1 > k such that ν(F k, a) < ν(F k1 , a). Hence, there exists a subsequence (F jl)l≥1

such that ν(F j1 , a) < ν(F j2 , a) < · · · In particular, if we set G = limk→+∞ F k,H = limk→+∞ hk,
and R = limk→+∞ rk, then G = 0, F = H + R, and H,R satisfy conditions (1) to (3). This
completes the proof. �
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Definition 8. We call the polynomial R of Theorem 7 the a-remainder of the division of F with
respect to {F1, . . . , Fs} and we denote it by R = Ra(F, {F1, . . . , Fs}).

Suppose that {f1, . . . , fs} is an a-canonical basis of A. If M(fi, a) ∈ K[[(M(fj , a)|j 6= i)]] for
some 1 ≤ i ≤ s, then obviously {fj |j 6= i} is also an a-canonical basis of A, consequently we
can get this way a minimal a-canonical basis of A. Assume that {f1, . . . , fs} is minimal and let
1 ≤ i ≤ s. If a ∈ Un

1 then, dividing f = fi − M(fi, a) by {f1, . . . , fs}, and replacing fi by
M(fi, a) +Ra(fi −M(fi, a), {f1, . . . , fr}), we obtain an a-reduced canonical basis of A.

The next proposition gives a criterion for a finite set of A to be an a-canonical basis of A.

Proposition 9. Let a ∈ Un
1 . The set {f1, . . . , fs} ⊆ A is an a-canonical basis of A if and only if

Ra(f, {f1, . . . ,
fs}) = 0 for all f ∈ A.

Proof. Suppose that {f1, . . . , fs} is an a-canonical basis of A and let f ∈ A. Let R = Ra(f, {f1, . . .
, fs}). If R 6= 0 then M(R, a) /∈ M(A, a). This is a contradiction because R ∈ A. Conversely, sup-
pose that Ra(f, {f1, . . . , fs}) = 0 for all f ∈ A and let f ∈ A. If M(f, a) /∈ K[[M(f1, a), . . . ,M(fs, a)]]
then M(f, a) is a monomial of Ra(f, {f1, . . . , fs}), which is 0. This is a contradiction. �

The criterion given in Proposition 9 is not effective since we have to divide infinitely many elements
of F. In the following we shall see that it is enough to divide a finite number of elements.

Let φ : K[X1, . . . ,Xs] 7−→ K[M(f1, a), . . . ,M(fs, a)] be the morphism of rings defined by φ(Xi) =
M(fi, a) for all 1 ≤ i ≤ s. We have the following

Lemma 10. The ideal Ker(φ) is a binomial ideal, i.e., it can be generated by binomials.

Proof. Suppose that fi is monic for all i ∈ {1, . . . , s} and write M(fi, a) = x
θi
1

1 . . . x
θin
n = xθ

i

.

Let F be a polynomial of Ker(φ) and write F = M1 + . . . + Mp where Mi is a monomial for
all i ∈ {1, . . . , p}. We shall prove by induction on p, that F is a finite sum of binomials, each

of them is in Ker(φ). Write Mi = biX
βi
1

1 · · ·X
βi
s

s . If p = 2 then F is a binomial. Suppose that

p ≥ 3. We have φ(M1) = b1M(f1, a)
β1

1 · · ·M(fs, a)
β1
s , which is a monomial in x1, . . . , xn. Write

φ(M1) = b1x
θ1
1 . . . xθnn . Since φ(F ) = 0 then φ(Mi) = bix

θ1
1 . . . xθnn for some i ∈ {1, . . . , p}. whence

φ(M1 −
b1
bi
Mi) = 0. Write

F = M1 −
b1
bi
Mi + (bi +

b1
bi
)Mi +

∑

j 6=1,i

Mj

If F1 = (bi +
b1
bi
)Mi +

∑

j 6=1,iMj then the cardinality of monomials of F1 is at most p − 1. By

induction, F1 is a sum of binomials, each of them is in Ker(φ). Consequently the same holds for
F . �

Let S̄1, . . . , S̄m be a system of generators of Ker(φ), and assume, by Lemma 10, that S̄1, . . . , S̄m

are binomials in K[X1, . . . ,Xs]. Assume that f1, . . . , fs are monic with respect to <a. For all

1 ≤ i ≤ m, we can write Si(X1, . . . ,Xs) = X
αi
1

1 . . . X
αi
s

s −X
βi
1

1 . . . X
βi
s

s . Let Si = S̄i(f1, . . . , fs). We

have Si = fα1

1 · · · fαs

s − fβ1

1 · · · fβs

s , and exp(Si) >a exp(fα1

1 · · · fαs

s ) = exp(fβ1

1 · · · fβs

s )

Proposition 11. Let a ∈ Un
1 . With the notations above, the following conditions are equivalent:

(1) The set {f1, . . . , fs} is an a-canonical basis of A.
(2) For all i ∈ {1, . . . ,m}, Ra(Si, {f1, . . . , fs}) = 0.
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Proof. (1) implies (2) by Proposition 9.

(2) =⇒ (1): We shall prove that Ra(f, {f1, . . . , fs}) = 0 for all f ∈ A. Let f be a nonzero element
of A and let R = Ra(f, {f1, . . . , fs}). Then R ∈ A. If R 6= 0 then M(R, a) ∈ M(A, a). Write

R =
∑

θ

cθf
θ1
1 · · · f θs

s

and let α = infθ,cθ 6=0(exp(f
θ1
1 · · · f θs

s , a)). Since exp(R, a) /∈ exp(A) = 〈exp(f1, a), . . . , exp(fs, a)〉

then exp(R, a) >a α. Let {θ1, . . . , θl} be such that α = exp(f
θi
1

1 · · · f
θis
s , a) for all i ∈ {1, . . . , l} (such

a set is clearly finite). If
∑l

i=1 cθiM(f
θi
1

1 · · · f
θis
s , a) 6= 0, then exp(R, a) ∈ 〈exp(f1, a), . . . , exp(fs, a)〉,

which is a contradiction. Hence,
∑l

i=1 cθiM(f
θi
1

1 · · · f
θis
s , a) = 0, and consequently

∑l
i=1 cθiX

θi
1

1 · · ·X
θis
s

is an element of ker(φ). In particular

l
∑

i=1

cθiX
θi
1

1 · · ·Xθis
s =

m
∑

k=1

λkS̄k

with λk ∈ K[X1, . . . ,Xs] for all k ∈ {1, . . . ,m}. Whence

l
∑

i=1

cθif
θi
1

1 · · · f θis
s =

m
∑

k=1

λk(f1, . . . , fs)Sk.

From the hypothesis Ra(Sk, {f1, . . . , fs}) = 0 for all k ∈ {1, . . . ,m}. Hence there is an expres-

sion of Sk of the form Sk =
∑

βk cβkf
βk

1

1 · · · f
βk
s

s with exp(f
βk

1

1 · · · f
βk
s

s , a) >a exp(Sk, a). Replacing
∑l

i=1 cθif
θi
1

1 · · · f
θis
s by

∑m
k=1 λk(f1, . . . , fs)

∑

βk cβkf
βk
1

1 · · · f
βk
s

s in the expression of R, we can rewrite

R as

R =
∑

θ′

cθ′f
θ′
1

1 · · · f θ′s
s

with α1 = infθ′,c
θ′
6=0exp(f

θ′
1

1 · · · f
θ′s
s , a)) >a α. Then we restart with this representation. We con-

struct this way an infinite sequence exp(R, a) >a . . . >a α1 >a α, which contradicts Lemma 2. �

The characterization given in Proposition 11 suggests an algorithm that construct, starting with a
set of generators of A, an a-canonical basis of A. However, such a canonical basis can be infinite
as it is shown in the following example:

Example 12. (see [9]) Let A = K[[x + y, xy, xy2]] and let a = (2, 1). Then M(x + y, a) =
x,M(xy, a) = xy, and M(xy2, a) = xy2. The kernel of the map:

φ : K[X,Y,Z] 7−→ K[x, y], φ(X) = x, φ(Y ) = xy, φ(Z) = xy2

is generated by S̄1 = XZ−Y 2. Hence S = (x+ y)xy2−x2y2 = −xy3 = Ra(−xy3, {x+ y, xy, xy2}).
Then xy3 is a new element of the a-canonical basis of A. If we restart with the representation
A = K[[x+ y, xy, xy2, xy3]], then a new element, xy4, will be added to the a-canonical basis of A.
In fact, xyn is an element of the minimal reduced a-canonical basis of A for all n ≥ 1. In particular
the a-canonical basis of A is infinite.

In the following we shall assume that the length l(
F

A
) is finite. This guarantees the finiteness of a

canonical basis. Under this hypothesis, using the results above, we get the following algorithm:
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Algorithm. Let A = K[[f1, . . . , fs]] and let a ∈ Un
1 . Let {S̄1, . . . , S̄m} be a set of generators of the

map φ of Proposition 10 and let Si = S̄i(f1, . . . , fs) for all i ∈ {1, . . . ,m}.

(1) If Ra(Si, {f1, . . . , fs}) = 0 for all i ∈ {1, . . . ,m} then {f1, . . . , fs} is an a-canonical basis of
A.

(2) If R = Ra(Si, {f1, . . . , fs}) 6= 0 for some i ∈ {1, . . . ,m} then we set R = fs+1 and we
restart with {f1, . . . , fr, fr+1}. Note that in this case, we have 〈exp(f1, a), . . . , exp(fs, a)〉 ⊂

〈exp(f1, a), . . . , exp(fs, a), exp(fs+1, a)〉 ⊆ exp(A, a). By hypothesis, l(
F

A
) < +∞, hence,

after a finite number of operations, we get an a-canonical basis of A.

2. A finiteness Theorem

Let the notations be as in Section 1. In particular A = K[[f1, . . . , fs]] with {f1, . . . , fs} ⊆ F. We

shall assume that l(
F

A
) < +∞. The aim of this section is to prove that the set of in(A, a), a ∈ Un

is finite. We first recall this result when A = K[f ] then we prove some preliminary results which
will also be used later in the paper.

Lemma 13. Let f be a nonzero element of K[[x1, . . . , xn]]. The set {M(f, a), a ∈ Un} (resp.
{in(f, a), a ∈ Un}) is finite.

Proof. Write f =
∑

α cαx
α and let E = ∪α∈Supp(f)α+Nn. Then E+Nn ⊆ E, and consequently there

exists a finite set of E, say {α1, . . . , αr}, such that E = ∪r
i=1αi + Nn. By definition αi ∈ Supp(f)

for all i ∈ {1, . . . , r}. If we choose the αi’s such that αi /∈ ∪j 6=iαj +Nn, then {exp(A, a), a ∈ Un} =
{α1, . . . , αr}. This proves our assertion.

�

Lemma 14. Let a 6= b be two elements of Un. Let {g1, . . . , gr} be an a-reduced canonical basis of
A. If M(A, a) = M(A, b) then {g1, . . . , gr} is also a b-reduced canonical basis of A.

Proof. Let i ∈ {1, . . . , r} and write gi = M(gi, a) +
∑

cβx
β where for all β, if cβ 6= 0, then xβ /∈

M(A, a). Since M(A, a) = M(A, b) then for all β, if cβ 6= 0, then xβ /∈ M(A, a). This implies that
M(gi, a) = M(gi, b). Hence {g1, . . . , gr} is a b-canonical basis of A, and the same argument shows
that this basis is also reduced. �

Lemma 15. Let a 6= b be two elements of Un. If M(A, a) 6= M(A, b), then M(A, a) 6⊆ M(A, b).

Proof. Assume that M(A, a) ⊆ M(A, b) and let {g1, . . . , gr} be a b-reduced canonical basis of A. By
hypothesis, there is 1 ≤ i ≤ r such that M(gi, b) ∈ M(A, b)\M(A, a). Write gi = M(gi, b)+

∑

cβx
β.

For all β, if cβ 6= 0, then xβ /∈ M(A, b), hence xβ /∈ M(A, a), which implies that M(gi, a) /∈ M(A, a)
(M(A, a) ⊆ M(A, b)). This is a contradiction because gi ∈ A. �

Corollary 16. If a ∈ Un \ Un
1 then there exists b ∈ Un

1 such that M(A, a) = M(A, b).

Proof. Let {g1, . . . , gr} be an a-reduced canonical basis of A. By hypothesis, there exists ǫ > 0 such
that for all i ∈ {1, . . . , r} and for all b ∈ B(a, ǫ), M(gi, a) = M(gi, b) (where B(a, ǫ) denotes the
ball of ray ǫ centered at a). Take b ∈ Un ∩ B(a, ǫ). We have M(A, a) ⊆ M(A, b). By Lemma 15,
M(A, a) = M(A, b) �

Corollary 17. Let a 6= b be two elements of Un. If in(A, a) 6= in(A, b), then in(A, a) 6⊆ in(A, b)

Proof. We shall prove that if in(A, a) ⊆ in(A, b) then in(A, a) = in(A, b). Let to this end
{g1, . . . , gr} be an a-reduced canonical basis of A and let i ∈ {1, . . . , r}. Write in(gi, a) = M1 +
. . . + Mt where Mj is b-homogeneous for all i ∈ {1, . . . , t}. By hypothesis in(gi, a) ∈ in(A, b),
hence Mj ∈ in(A, b) for all j ∈ {1, . . . , t}. Suppose that M(gi, a) is a monomial of M1. We have
M1 ∈ in(A, b). But M1 is also a-homogeneous. It follows that M(M1, b) = M(M1, a) = M(gi, a),



THE CANONICAL FAN OF A FORMAL K-ALGEBRA 7

in particular M(gi, a) ∈ M(A, b). This proves that M(A, a) ⊆ M(A, b). By Lemma 15 we have
M(A, a) = M(A, b) and {g1, . . . , gr} is also a b-reduced canonical basis of A. Finally in(A, a) is
generated by {in(g1, a), . . . , in(gs, a)} (resp. in(A, b) is generated by {in(g1, b), . . . , in(gr, b)}). Now
the argument above shows that for all i ∈ {1, . . . , r}, in(gi, a) = in(gi, b). This proves the equality.

�

Remark 18. 1. Let a 6= b be two elements of Un. The proof of Corollary 17 implies that if
in(A, a) = in(A, b) and if {g1, . . . , gr} is an a-reduced canonical basis of A then {g1, . . . , gr} is also
a b-reduced canonical basis of A.

2. Corollary 17 implies the following: if a ∈ Un \ Un
1 then there exists b ∈ Un

1 such that inA, a) =
M(A, a) = M(A, b) = in(A, b)..

We can now state and prove the following finiteness theorem:

Theorem 19. Let A = K[[f1, . . . , fs]] and let the notations be as above. The set M(A) = {M(A; a)|a ∈
Un} is finite. In particular the set I(A) = {in(A, a)|a ∈ Un} is finite.

Proof. We need only to prove that M(A) is a finite set. Assume that M is infinite. By Lemma
13 there is an infinite set U1 = {a1, a2, . . .} in Un such that for all 1 ≤ k ≤ s and for all a ∈ U1,
M(fk, a) = mk where mk is a nonzero monomial of fk. Let J1 = K[[m1, . . . ,ms]]: J1 ⊆ M(A, a)
for all a ∈ U1. Obviously J1 6= M(A, a1) (otherwise, M(A, a1) ⊂ M(A, a2), for example. This
contradicts Lemme 15). We claim that there is fs+1 ∈ A such that for all β ∈ Supp(fs+1), x

β /∈ J1.
Let to this end m ∈ M(A, a1) \ J1 and let f ∈ A such that M(f, a1) = m. Obviously m /∈ J1.
We set fs+1 = Ra1(f, {f1, . . . , fs}). By lemma 13, there is monomial ms+1 of fs+1 and an infinite
subset U2 ⊆ U1 such that for all a ∈ U2,M(fs+1, a) = ms+1.

Let J2 = K[[m1, . . . ,ms,ms+1]]: J1 ⊂ J2. The same process applied to {f1, . . . , fs+1}, J2 and U2 will
constructms+2 /∈ J2, fs+2 ∈ A, and an infinite subset U3 ⊆ U2 such that for all a ∈ U3,M(fs+2, a) =
ms+2. We get this way an infinite increasing sequence J1 ⊂ J2 ⊂ J3 ⊂ . . . and for all i, there is

ai ∈ Un such that Ji ⊆ M(A, ai). This is a contradiction because l(
F

A
) is finite. �

Definition 20. The set {g1, . . . , gr} of A which is an a- canonical basis of A for all a ∈ Un, is
called the universal canonical basis of A.

3. The Newton fan

Let A = K[[f1, . . . , fs]] and let the notations be as in Section 2. In this section we aim to study the
stabitily of exp(A, a) and in(A, a) when a very in Un. Let S be a finitely generated affine semigroup
of Nn. Let

ES = {a ∈ Un | exp(A, a) = S}

We have the following:

Theorem 21. There exists a partition P of Un into convex rational polyherdal cones such that for
all σ ∈ P, exp(A, a) and in(A, a) do not depend on a ∈ σ.

In order to prove Theorem 21 we start by fixing some notations. Let S be a finitely generated
affine semigroup of Nn and let a ∈ ES . Let {g1, . . . , gr} be the a-reduced canonical basis of A. By
Lemma 15, Lemma 17, and Remark 18, {g1, . . . , gr} is also the b-reduced canonical basis of A for
all b ∈ ES . Denote by ∼ the equivalence relation on Un defined from {g1, . . . , gr} by

a ∼ b ⇐⇒ in(gi, a) = in(gi, b) for all i ∈ {1, . . . , r},
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Proposition 22. ∼ defines on Un a finite partition into convex rational polyhedral cones and ES

is a union of a part of these cones.

Proof. Let c, d ∈ Un such that c ∼ d and let e in the segment [c, d], also let θ ∈ [0, 1] such that
e = θc + (1 − θ))d. Then a ∈ Un and in(gi, e) = in(gi, c) = in(gi, d) by an immediate verification.
Moreover, c ∼ t · c for all c ∈ Un and t > 0. Therefore the equivalence classes are convex rational
polyhedral cones (the rationality results from Corollary 16 and Remark 18). On the other hand, if
c ∼ d and c ∈ ES , then d ∈ ES . This proves that ES is a union of classes for ∼, the number of
classes being finite by Theorem 19 �

Proof of Theorem 21 We define P in the following way: for each S we consider the restriction
PS on ES of the above partition, and then P is the finite union of the PS ’s. On each cone of
the partition, in(A, a) and exp(A, a) are fixed. Conversely assume that in(A, a) is fixed and let
b such that in(A, a) = in(A, b). By Corollary 17 and Remark 18, an a-reduced canonical basis
{g1, . . . , gr} of A is also a b-reduced canonical basis of A. Moreover, in(gi, a) = in(gi, b) and
exp(A, a) = exp(A, b). This ends the proof of the theorem except for the convexity of ES proved
below.

Lemma 23. ES is a convex set: if a 6= b ∈ ES then [a, b] ⊆ ES

Proof. Let a, b ∈ ES and let λ ∈]0, 1[. Let {g1, . . . , gr} be an a (and then b) reduced canonical
basis of A. Let i ∈ {1, . . . , r} and set M = in(gi, a). Write M = M1 + . . . + Mt where Mk

is b-homogeneous for all k ∈ {1, . . . , t} and ν(M1, b) > ν(Mk, b) for all k ∈ {2, . . . , t}. We have
ν(gi, a) = ν(M1, a) = ν(Mk, a) and ν(M1, b) > ν(Mk, b) for all k ∈ {2, . . . , t}. This implies that
ν(gi, θa + (1 − θ)b) = ν(M1, θa + (1 − θ)b) > ν(Mk, θa + (1 − θ)b)) for all k ∈ {2, . . . , t}, hence
exp(gi, θa+ (1− θ)b) = exp(gi, a) = exp(gi, b). In particular exp(A, a) ⊆ exp(A, θa+ (1− θ)b). By
Lemma 15 we get the equality. This proves that exp(A, θa+ (1− θ)b) = S. �

In the following we shall give some precisions about the partition above. Obviously if S1 and S2 are
two distinct finitely generated affine semigroups and if a ∈ ES1

and b ∈ ES2
then in(A, a) 6= in(A, b)

and exp(A, a) 6= exp(A, b), hence, by Lemma 15 and Corollary 17, neither in(A, a) ⊆ in(A, b) nor
in(A, b) ⊆ in(A, a), and the same conclusion holds for exp(A, a) and exp(A, b).

Next we shall characterize open cones of the partition with maximal dimension. Let f be a nonzero
element of K[[x1, . . . , xn]] and let a ∈ Un. We say that in(f, a) is multihomogeneous if in(f, a) is
b-homogeneous for all b ∈ Un. This is equivalent to saying that in(f, a) is a monomial.

Definition 24. Let a ∈ Un. We say that in(A, a) is a multihomogeneous algebra if it is generated
by multihomogeneous elements. Note that in this case, If g ∈ in(A, a) then every monomial of g is
also in in(A, a).

Lemma 25. Let a ∈ Un and let {g1, . . . , gr} be an a-reduced canonical basis of A. Then in(A, a)
is a multihomogeneous algebra if and only if in(gi, a) is a monomial for all i ∈ {1, . . . , r}.

Proof. We only need to prove the if part. Let i ∈ {1, . . . , r} and write in(gi, a) = M1+ . . .+Mt with
exp(gi, a) = exp(M1, a). Assume that t > 1. Since in(A, a) is multihomogeneous then Mi ∈ in(A, a)
for all i ∈ {2, . . . , t}. But {g1, . . . , gr} is reduced. This is a contradiction. Hence t = 1 and in(gi, a)
is a monomial. �

Proposition 26. The set of a ∈ Un for which in(A, a) is multihomogeneous defines the open cones
of dimension n of P.

Proof. Let a ∈ Un and let {g1, . . . , gr} be an a-reduced canonical basis of A. For all i ∈ {1, . . . , r},
in(gi, a) is a monomial, hence there exists ǫ > 0 such that in(gi, b) = in(gi, a) for all b ∈ B(a, ǫ)
(where B(a, ǫ) is the ball centered at a of ray ǫ). This proves, by Lemma 15 and Corollary 17, that
{g1, . . . , gr} is also a b-reduced canonical basis of A for all b ∈ B(a, ǫ). Conversely, if a is in an open
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cone of ES for some S, then for all b in a neighbourhood, an a-reduced canonical basis {g1, . . . , gr}
of A is also a b-reduced canonical basis of A. This implies that in(gi, a) is a monomial. This proves
our assertion. �

Definition 27. P is called the standard fan of A.

Remark 28. (1) Although we do not have a proof for the existence of a fan for subalgebras A with

l(
F

A
) not necessarily finite, we think that this fan does exist. This is true of course if exp(A, a) is

finitely generated for all a ∈ Un, but it is not easy to verify this condition a priori.

(2) (see [4]) Suppose that n = 1, i.e. A = K[[f(t), . . . , fs(t)]] ⊆ K[[t]]. Then X1 = f1(t), . . . ,Xs =
Xs(t) represents the expansion of a curve in Ks near the origin. In tis case, in(A, a) does not depend

on a ∈ Un and if the parametrization is primitive then l(
K[[t]]

A
) < +∞. If s = 2 then in(A, a) is a

free numerical semigroup and the arithmetic of this semigroup contains a lot of information about
the singularity of the curve at the origin.

(3) (see also [5]) If A = K[f1, . . . , fs] is a subalgebra of P = K[x1, . . . , xn] then Theorem 19 and

Theorem 21 remain valid when we vary a ∈ Rn
+, under the assumption that l(

P

A
) < +∞ (note that

in this case, in(f, a) is a polynomial for all a ∈ Rn
+ and for all f ∈ P).

Example 29. Let f(X1, . . . ,Xn, Y ) ∈ K[[X1, . . . ,Xn]][Y ] and suppose that f has a parametrization
of the form X1 = te11 , . . . ,Xn = tenn , Y = Y (t1, . . . , tn) ∈ K[[t1, . . . , tn]] (for instance, this is true

if f is a quasi-ordinary polynomial, i.e. the discriminant of f is of the form XN1

1 · · ·XNs

s (c +

φ(X1, . . . ,Xs)) with c ∈ K∗ and φ(0, . . . , 0) = 0). Then
K[[X1, . . . ,Xn]][Y ]

f
≃ A = K[[te11 , . . . , tenn ,

Y (t1, . . . , tn)]]. In this case, (e1, 0, . . . , 0), . . . , (0, . . . , 0, en) belong to exp(A, a) for all a ∈ Un.
Moreover, exp(A, a) is is a free finitely generated affine semigroup in the sense of [3]. In this case,

l(
F

A
) need not to be finite, but results of Theorem 19 and Theorem 21 are valid.
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