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We associate with an algebra A = K[[f1

Introduction

Let K be a field and let f 1 , . . . , f s be nonzero elements of the ring F = K[[x 1 , . . . , x n ]] of formal power series in x 1 , . . . , x n over K. Let A = K[[f 1 , . . . , f s ]] be the K-algebra generated by f 1 , . . . , f s . Set U = R * + and let a ∈ U n . If a = (a 1 , . . . , a n ) then a defines a linear form on R n which maps α = (α 1 , . . . , α n ) ∈ R n to the inner product < a, α >= n i=1 a i α i of a with α. We denote abusively the linear form by a. Let x = (x 1 , . . . , x n ) and let f = c α x α be a nonzero element of F. We set Supp(f ) = {α|c α = 0} and we call it the support of f . We set ν(f, a) = min{< a, α > |α ∈ Supp(f )} and we call it the a-valuation of f ). We set by convention ν(0, a) = +∞. Let in(f, a) = α∈Supp(f )|<a,α>=ν(f,a) c α x α .

We call in(f, a) the a-initial form of f . Note that in(f, a) is a polynomial. This notion can also be defined this way: we associate with f its Newton polyhedron defined to be Γ + (f ) = the convex hull in R n + of α∈supp(f ) α + R n + . The set of compact faces of Γ + (f ) is finite. Let {△ 1 , . . . , △ t } be this set. Given i ∈ {1, . . . , t}. We set

f △ i = α∈Supp(f )∩△ i c α x α . Then {in(f, a) | a ∈ U n } = {f △ i | 1 ≤ i ≤ t}.
Let the notations be as above, and let ≺ be a well ordering on N n . We set exp(f, a) = max ≺ Supp (in(f, a)) and M(f ) = c exp(f,a) x exp(f,a) . We set in(A, a

) = K[[in(f, a)|f ∈ A \ {0}]]. We also set M(A) = K[[M(f, a), f ∈ A \ {0}]]. The set exp(A, a) = {exp(f, a) | f ∈ A \ {0}} is an affine subsemigroup of N n .
If a ∈ R n then in(f, a) may not be a polynomial, hence exp(f ) is not well defined. If a = (a 1 , . . . , a n ) with a i 1 = . . . = a i l = 0 then we can avoid this difficulty in completing by the tangent cone order on (x i 1 , . . . , x i l ). We shall however consider elements in U n in order to avoid technical definitions and results.

The aim of this paper is to study the stability of in(A, a) and M(A, a) when a varies in U n . Note that exp(A, a) is not necessarily finitely generated (see example 12). It becomes so If the length of F A is finite. Under this condition, our main results are the following:

Theorem The set {in(A, a)|a ∈ U n } is a finite set. The same holds for the set {M(A, a)|a ∈ U n }.

Theorem Let S be a finitely generated affine semigroup. The set E S = {a ∈ U n | exp(A, a) = S} is a union of convex polyhedral cones and the set of E S , S defines a fan of U n .

These results generalize those of [START_REF] Mora | The Gröbner fan of an ideal[END_REF] for ideals in K[x 1 , . . . , x n ] and [START_REF] Assi | The Grobner fan of an An-module[END_REF], [START_REF] Assi | The standard fan of a D-module[END_REF] for ideals in the ring of differential operators over K.

The paper is organized as follows. In Section 1. we recall the notion of canonical basis of A with respect to a ∈ U n , and we give an algorithm that computes an a-canonical basis starting with a set of generators of A (see [START_REF] Micale | Order bases of subalgebras of power series rings[END_REF] for the case a = (-1, . . . , -1)). In Section 2. we prove the finiteness theorem, and in Section 3. we prove the existence of a fan associated with A.

Preliminary results

Let

A = K[[f 1 , . . . , f s ]
] be a subalgebra of F generated by {f 1 , . . . , f s } ⊆ F and let the notations be as above. In particular ≺ is a total well ordering on N n compatible with sums. Let a ∈ U n and consider the total ordering on N n defined by:

α < a α ′ ⇔    < a, α ><< a, α ′ > or < a, α >=< a, α ′ > and α ≺ α ′
The total ordering < a is compatible with sums in N n . We shall use sometimes the notations α ≻ β for β ≺ α and α > a β for β < a α. We have the following: Lemma 1. There doesn't exist infinite sequences (α k ) k≥0 such that

α 0 > a α 1 > a . . . > a α k . . . With < a, α 0 >=< a, α k > for all k ≥ 1.
Proof. This is a consequence of Dixon's Lemma, since such a sequence satisfies

α 0 ≻ α 1 ≻ . . . ≻ α k ≻ . . . Let a ∈ U n . Then a defines a filtration on F : F = d≥0 F d where F d is the K-vector space generated by x α , < a, α >= d. Let U 1 = Q * + . If a ∈ U n 1 then, given two indices d 1 < d 2 , the set of indices d such that d 1 < d < d 2 is
clearly finite. In particular we get the following:

Lemma 2. Let α, β ∈ U n
1 and assume that α > a β. There doesn't exist infinite sequences

(α k ) k≥0 such that α > a α 0 > a α 1 > a . . . > a β
Proof. The set of < a, γ >, < a, α >>< a, γ >>< a, β > is finite. Then the result is a consequence of Lemma 1 Definition 3. Let a ∈ U n and let f = c α x α be a nonzero element of F. We say that f is a-homogeneous if f ∈ F d for some d. This is equivalent to ν(α, a) = ν(f, a) for all α ∈ Supp(f ). Note that if a / ∈ U n 1 then f is a-homogeneous if and only if f is a monomial. Definition 4. Let a ∈ U n and let H be a subalgebra of F. We say that H is a-homogeneous if it can be generated by a-homogeneous elements of F.

Every nonzero element f = c α x α ∈ F decomposes as f = k≥d f k , with f d = in(f, a) and for all k > d, if f k = 0 then f k ∈ F k . Definition 5. Let a ∈ U n and let {g 1 , . . . , g r } ⊆ A. We say that {g 1 , . . . , g r } is an a-canonical basis of A if M(A, a) = K[[M(g 1 , a), . . . , M(g r , a)]].
Clearly {g 1 , . . . , g r } is an a-canonical basis of A if and only if exp(A, a) is generated by {exp(g 1 , a), . . . , exp(g r , a)}. In this case we write exp(A, a) = exp(g 1 , a), . . . , exp(g r , a)

An a-canonical basis {g 1 , . . . , g r } of A is said to be minimal if {M(g 1 , a), . . . , M(g r , a)} is a minimal set of generators of M(A, a). It is said to be reduced if the following conditions are satisfied:

i) {g 1 , . . . , g r } is minimal. ii) For all 1 ≤ i ≤ r, c exp(g i ,a) = 1. iii) For all 1 ≤ i ≤ r, if g i -M(g i , a) = 0 then x α / ∈ K[[M(g 1 , a), . . . , M(g r , a)]] for all α ∈ Supp(g i -M(g i , a)).
Lemma 6. If an a-reduced canonical basis exists, then it is unique.

Proof. Let F = {g 1 , . . . , g r } and G = {g ′ 1 , . . . , g ′ t } be two a-reduced canonical bases of A. Let i = 1. Since M(g 1 , a) ∈ K[[M(g ′ 1 , a), . . . , M(g ′ t , a)]], then M(g 1 , a) = M(g ′ 1 , a) l 1 • • • M(g ′ t , a) lt for some l 1 , . . . , l t ∈ N. Every M(g ′ i , a), i ∈ {1, . . . , t} is in K[M(g 1 , a), . . . , M(g r , a)]. Then the equation above is possible only if M(g 1 , a) = M(g ′ k 1 , a)
for some k 1 ∈ {1, . . . , t}. This gives an injective map from {M(g 1 , a), . . . , M(g r , a)} to {M(g ′ 1 , a), . . . , M(g ′ t , a)}. We construct in the same way an injective map from {M(g ′ 1 , a), . . . , M(g ′ t , a)} to {M(g 1 , a), . . . , M(g r , a)}. Hence r = t and both sets are equal. Suppose, without loss of generality that M(g i , a) = M(g ′ i , a) for all i ∈ {1, . . . , r}.

If g i = g ′ i then M(g i -g ′ i ) ∈ M(A, a) because g i -g ′ i ∈ A. This contradicts iii).
We now recall the division process in A (see [START_REF] Micale | Order bases of subalgebras of power series rings[END_REF] for the tangent cone order a = (-1, . . . , -1) and [START_REF] Assi | Bases of subalgebras of K[END_REF] for n = 1).

Theorem 7. Let a ∈ U n 1 and let {F 1 , . . . , F s } ⊆ K[[x]]. Let F be a nonzero element of K[[x]]. There exist H ∈ K[[F 1 , . . . , F s ]
] and R ∈ F such that the following conditions hold:

(1)

F = H + R (2) If R = β b β x β , then for all α ∈ Supp(R), x β / ∈ K[[M(F 1 , a), . . . , M(F s , a)]]. (3) Set H = α c α F α 1 1 . . . . .F αs s . If H = 0 then exp(F, a) = max <a {exp(F α 1 1 . . . . .F αs s , a), c α = 0}.
Proof. We define the sequences (F k ) k≥0 , (h k ) k≥0 , (r k ) k≥0 in F by F 0 = F, h 0 = r 0 = 0 and ∀k ≥ 0 :

(i) If M(F k , a) ∈ K[[M(F 1 , a), . . . , M(F s , a)]], write M(F k , a) = c α M(F 1 , a) α 1 • • • M(F s , a) αs . We set F k+1 = F k -c α F α 1 1 • • • F αs s , h k+1 = h k + c α F α 1 1 • • • F αs s , r k+1 = r k (ii) If M(F k , a) / ∈ K[[M(F 1 , a), . . . , M(F s , a)]],
we set

F k+1 = F k -M(F k+1 , a), h k+1 = h k , r k+1 = r k + M(F k , a
) in such a way that for all k ≥ 0, exp(F k , a) < a exp(F k+1 , a) and F = F k+1 + h k+1 + r k+1 . If F l = 0 for some l ≥ 1 then we set H = h l and R = r l . We then easily verify that H, R satisfy conditions (1) to [START_REF] Assi | The Frobenius vector of an affine semigroup[END_REF]. Suppose that {F k |k ≥ 0} is an infinite set. Note that, by Lemma 1, given k ≥ 1, if F k = 0 then there exists k 1 > k such that ν(F k , a) < ν(F k 1 , a). Hence, there exists a subsequence (F j l ) l≥1 such that ν(F j 1 , a) < ν(F j 2 , a) < • • • In particular, if we set G = lim k→+∞ F k , H = lim k→+∞ h k , and R = lim k→+∞ r k , then G = 0, F = H + R, and H, R satisfy conditions (1) to (3). This completes the proof. Definition 8. We call the polynomial R of Theorem 7 the a-remainder of the division of F with respect to {F 1 , . . . , F s } and we denote it by R = R a (F, {F 1 , . . . , F s }).

Suppose that {f 1 , . . . , f s } is an a-canonical basis of A. If M(f i , a) ∈ K[[(M(f j , a)|j = i)]]
for some 1 ≤ i ≤ s, then obviously {f j |j = i} is also an a-canonical basis of A, consequently we can get this way a minimal a-canonical basis of A. Assume that {f 1 , . . . , f s } is minimal and let

1 ≤ i ≤ s. If a ∈ U n 1 then, dividing f = f i -M(f i , a
) by {f 1 , . . . , f s }, and replacing f i by M(f i , a) + R a (f i -M(f i , a), {f 1 , . . . , f r }), we obtain an a-reduced canonical basis of A.

The next proposition gives a criterion for a finite set of A to be an a-canonical basis of A.

Proposition 9. Let a ∈ U n 1 . The set {f 1 , . . . , f s } ⊆ A is an a-canonical basis of A if and only if R a (f, {f 1 , . . . , f s }) = 0 for all f ∈ A. Proof. Suppose that {f 1 , . . . , f s } is an a-canonical basis of A and let f ∈ A. Let R = R a (f, {f 1 , . . . , f s }). If R = 0 then M(R, a) / ∈ M(A, a). This is a contradiction because R ∈ A. Conversely, sup- pose that R a (f, {f 1 , . . . , f s }) = 0 for all f ∈ A and let f ∈ A. If M(f, a) / ∈ K[[M(f 1 , a), . . . , M(f s , a)]] then M(f, a) is a monomial of R a (f, {f 1 , . . . , f s }), which is 0. This is a contradiction.
The criterion given in Proposition 9 is not effective since we have to divide infinitely many elements of F. In the following we shall see that it is enough to divide a finite number of elements.

Let φ : K[X 1 , . . . , X s ] -→ K[M(f 1 , a), . . . , M(f s , a)] be the morphism of rings defined by φ(X i ) = M(f i , a) for all 1 ≤ i ≤ s. We have the following Lemma 10. The ideal Ker(φ) is a binomial ideal, i.e., it can be generated by binomials. Proof. Suppose that f i is monic for all i ∈ {1, . . . , s} and write M(f i , a) = x

θ i 1 1 . . . x θ i n n = x θ i .
Let F be a polynomial of Ker(φ) and write F = M 1 + . . . + M p where M i is a monomial for all i ∈ {1, . . . , p}. We shall prove by induction on p, that F is a finite sum of binomials, each of them is in Ker(φ). Write M i = b i X

β i 1 1 • • • X β i s s . If p = 2 then F is a binomial. Suppose that p ≥ 3. We have φ(M 1 ) = b 1 M(f 1 , a) β 1 1 • • • M(f s , a) β 1 s , which is a monomial in x 1 , . . . , x n . Write φ(M 1 ) = b 1 x θ 1 1 . . . x θn n . Since φ(F ) = 0 then φ(M i ) = b i x θ 1 1 . . . x θn n for some i ∈ {1, . . . , p}. whence φ(M 1 - b 1 b i M i ) = 0. Write F = M 1 - b 1 b i M i + (b i + b 1 b i )M i + j =1,i M j If F 1 = (b i + b 1 b i )M i + j =1,i M j then the cardinality of monomials of F 1 is at most p -1. By
induction, F 1 is a sum of binomials, each of them is in Ker(φ). Consequently the same holds for F .

Let S1 , . . . , Sm be a system of generators of Ker(φ), and assume, by Lemma 10, that S1 , . . . , Sm are binomials in K[X 1 , . . . , X s ]. Assume that f 1 , . . . , f s are monic with respect to < a . For all

1 ≤ i ≤ m, we can write S i (X 1 , . . . , X s ) = X α i 1 1 . . . X α i s s -X β i 1 1 . . . X β i s s . Let S i = Si (f 1 , . . . , f s ). We have S i = f α 1 1 • • • f αs s -f β 1 1 • • • f βs s , and exp(S i ) > a exp(f α 1 1 • • • f αs s ) = exp(f β 1 1 • • • f βs s )
Proposition 11. Let a ∈ U n 1 . With the notations above, the following conditions are equivalent: (1) The set {f 1 , . . . , f s } is an a-canonical basis of A.

(2) For all i ∈ {1, . . . , m}, R a (S i , {f 1 , . . . , f s }) = 0.

Proof. (1) implies (2) by Proposition 9.

The characterization given in Proposition 11 suggests an algorithm that construct, starting with a set of generators of A, an a-canonical basis of A. However, such a canonical basis can be infinite as it is shown in the following example:

Example 12. (see [START_REF] Robbiano | Subalgebra bases[END_REF]) In fact, xy n is an element of the minimal reduced a-canonical basis of A for all n ≥ 1. In particular the a-canonical basis of A is infinite.

Let A = K[[x + y,
φ : K[X, Y, Z] -→ K[x, y], φ(X) = x, φ(Y ) = xy, φ(Z) =
In the following we shall assume that the length l( F A ) is finite. This guarantees the finiteness of a canonical basis. Under this hypothesis, using the results above, we get the following algorithm: in particular M(g i , a) ∈ M(A, b). This proves that M(A, a) ⊆ M(A, b). By Lemma 15 we have M(A, a) = M(A, b) and {g 1 , . . . , g r } is also a b-reduced canonical basis of A. Finally in(A, a) is generated by {in(g 1 , a), . . . , in(g s , a)} (resp. in(A, b) is generated by {in(g 1 , b), . . . , in(g r , b)}). Now the argument above shows that for all i ∈ {1, . . . , r}, in(g i , a) = in(g i , b). This proves the equality.

Remark 18. 1. Let a = b be two elements of U n . The proof of Corollary 17 implies that if in(A, a) = in(A, b) and if {g 1 , . . . , g r } is an a-reduced canonical basis of A then {g 1 , . . . , g r } is also a b-reduced canonical basis of A.

Corollary 17 implies the following

: if a ∈ U n \ U n 1 then there exists b ∈ U n 1 such that inA, a) = M(A, a) = M(A, b) = in(A, b)..
We can now state and prove the following finiteness theorem:

Theorem 19. Let A = K[[f 1 , . . . , f s ]
] and let the notations be as above. The set M(A) = {M(A; a)|a ∈ U n } is finite. In particular the set I(A) = {in(A, a)|a ∈ U n } is finite.

Proof. We need only to prove that M(A) is a finite set. Assume that M is infinite. By Lemma 13 there is an infinite set U 1 = {a 1 , a 2 , . . .} in U n such that for all 1 ≤ k ≤ s and for all a

∈ U 1 , M(f k , a) = m k where m k is a nonzero monomial of f k . Let J 1 = K[[m 1 , . . . , m s ]]: J 1 ⊆ M(A, a)
for all a ∈ U 1 . Obviously J 1 = M(A, a 1 ) (otherwise, M(A, a 1 ) ⊂ M(A, a 2 ), for example. This contradicts Lemme 15). We claim that there is f s+1 ∈ A such that for all β ∈ Supp(f s+1 ), x β / ∈ J 1 . Let to this end m ∈ M(A, a 1 ) \ J 1 and let f ∈ A such that M(f, a 1 ) = m. Obviously m / ∈ J 1 . We set f s+1 = R a 1 (f, {f 1 , . . . , f s }). By lemma 13, there is monomial m s+1 of f s+1 and an infinite subset

U 2 ⊆ U 1 such that for all a ∈ U 2 , M(f s+1 , a) = m s+1 . Let J 2 = K[[m 1 , . . . , m s , m s+1 ]]: J 1 ⊂ J 2 .
The same process applied to {f 1 , . . . , f s+1 }, J 2 and U 2 will construct m s+2 / ∈ J 2 , f s+2 ∈ A, and an infinite subset U 3 ⊆ U 2 such that for all a ∈ U 3 , M(f s+2 , a) = m s+2 . We get this way an infinite increasing sequence J 1 ⊂ J 2 ⊂ J 3 ⊂ . . . and for all i, there is

a i ∈ U n such that J i ⊆ M(A, a i ). This is a contradiction because l( F A ) is finite.
Definition 20. The set {g 1 , . . . , g r } of A which is an a-canonical basis of A for all a ∈ U n , is called the universal canonical basis of A.

The Newton fan

Let A = K[[f 1 , . . . , f s ]] and let the notations be as in Section 2. In this section we aim to study the stabitily of exp(A, a) and in(A, a) when a very in U n . Let S be a finitely generated affine semigroup of N n . Let

E S = {a ∈ U n | exp(A, a) = S}
We have the following:

Theorem 21. There exists a partition P of U n into convex rational polyherdal cones such that for all σ ∈ P, exp(A, a) and in(A, a) do not depend on a ∈ σ.

In order to prove Theorem 21 we start by fixing some notations. Let S be a finitely generated affine semigroup of N n and let a ∈ E S . Let {g 1 , . . . , g r } be the a-reduced canonical basis of A. By Lemma 15, Lemma 17, and Remark 18, {g 1 , . . . , g r } is also the b-reduced canonical basis of A for all b ∈ E S . Denote by ∼ the equivalence relation on U n defined from {g 1 , . . . , g r } by

a ∼ b ⇐⇒ in(g i , a) = in(g i , b
) for all i ∈ {1, . . . , r}, cone of E S for some S, then for all b in a neighbourhood, an a-reduced canonical basis {g 1 , . . . , g r } of A is also a b-reduced canonical basis of A. This implies that in(g i , a) is a monomial. This proves our assertion.

Definition 27. P is called the standard fan of A.

Remark 28.

(1) Although we do not have a proof for the existence of a fan for subalgebras A with l( F A ) not necessarily finite, we think that this fan does exist. This is true of course if exp(A, a) is finitely generated for all a ∈ U n , but it is not easy to verify this condition a priori.

(2) (see [START_REF] Assi | Bases of subalgebras of K[END_REF]) Suppose that n = 1, i.e. A = K[[f ( t), . . . , f s (t)]] ⊆ K[[t]]. Then X 1 = f 1 (t), . . . , X s = X s (t) represents the expansion of a curve in K s near the origin. In tis case, in(A, a) does not depend on a ∈ U n and if the parametrization is primitive then l(

K[[t]]

A ) < +∞. If s = 2 then in(A, a) is a free numerical semigroup and the arithmetic of this semigroup contains a lot of information about the singularity of the curve at the origin.

(3) (see also [START_REF] Khan | Converting subalgebra basis with the Sagbi walk[END_REF]) If A = K[f 1 , . . . , f s ] is a subalgebra of P = K[x 1 , . . . , x n ] then Theorem 19 and Theorem 21 remain valid when we vary a ∈ R n + , under the assumption that l( P A ) < +∞ (note that in this case, in(f, a) is a polynomial for all a ∈ R n + and for all f ∈ P). Example 29. Let f (X 1 , . . . , X n , Y ) ∈ K[[X 1 , . . . , X n ]][Y ] and suppose that f has a parametrization of the form X 1 = t e 1 1 , . . . , X n = t en n , Y = Y (t 1 , . . . , t n ) ∈ K[[t 1 , . . . , t n ]] (for instance, this is true if f is a quasi-ordinary polynomial, i.e. the discriminant of f is of the form X N 1 1 • • • X Ns s (c + φ(X 1 , . . . , X s )) with c ∈ K * and φ(0, . . . , 0) = 0). Then

K[[X 1 , . . . , X n ]][Y ] f ≃ A = K[[t e 1
1 , . . . , t en n , Y (t 1 , . . . , t n )]]. In this case, (e 1 , 0, . . . , 0), . . . , (0, . . . , 0, e n ) belong to exp(A, a) for all a ∈ U n . Moreover, exp(A, a) is is a free finitely generated affine semigroup in the sense of [START_REF] Assi | The Frobenius vector of an affine semigroup[END_REF]. In this case, l( F A ) need not to be finite, but results of Theorem 19 and Theorem 21 are valid.

  xy, xy 2 ]] and let a = (2, 1). Then M(x + y, a) = x, M(xy, a) = xy, and M(xy 2 , a) = xy 2 . The kernel of the map:

xy 2 is

 2 generated by S1 = XZ -Y 2 . Hence S = (x + y)xy 2 -x 2 y 2 = -xy 3 = R a (-xy 3 , {x + y, xy, xy 2 }). Then xy 3 is a new element of the a-canonical basis of A. If we restart with the representation A = K[[x + y, xy, xy 2 , xy 3 ]], then a new element, xy 4 , will be added to the a-canonical basis of A.

 

Algorithm. Let A = K[[f 1 , . . . , f s ]] and let a ∈ U n 1 . Let { S1 , . . . , Sm } be a set of generators of the map φ of Proposition 10 and let S i = Si (f 1 , . . . , f s ) for all i ∈ {1, . . . , m}.

(1) If R a (S i , {f 1 , . . . , f s }) = 0 for all i ∈ {1, . . . , m} then {f 1 , . . . , f s } is an a-canonical basis of A.

(2) If R = R a (S i , {f 1 , . . . , f s }) = 0 for some i ∈ {1, . . . , m} then we set R = f s+1 and we restart with {f 1 , . . . , f r , f r+1 }. Note that in this case, we have exp(f 1 , a), . . . , exp(f s , a) ⊂ exp(f 1 , a), . . . , exp(f s , a), exp(f s+1 , a) ⊆ exp(A, a). By hypothesis, l( F A ) < +∞, hence, after a finite number of operations, we get an a-canonical basis of A.

A finiteness Theorem

Let the notations be as in Section 1. In particular

The aim of this section is to prove that the set of in(A, a), a ∈ U n is finite. We first recall this result when A = K[f ] then we prove some preliminary results which will also be used later in the paper.

Then E +N n ⊆ E, and consequently there exists a finite set of E, say {α 1 , . . . , α r }, such that E = ∪ r i=1 α i + N n . By definition α i ∈ Supp(f ) for all i ∈ {1, . . . , r}. If we choose the α i 's such that α i / ∈ ∪ j =i α j + N n , then {exp(A, a), a ∈ U n } = {α 1 , . . . , α r }. This proves our assertion.

Lemma 14. Let a = b be two elements of U n . Let {g 1 , . . . , g r } be an a-reduced canonical basis of A. If M(A, a) = M(A, b) then {g 1 , . . . , g r } is also a b-reduced canonical basis of A.

Proof. Let i ∈ {1, . . . , r} and write g i = M(g i , a) + c β x β where for all β, if c β = 0, then x β / ∈ M(A, a). Since M(A, a) = M(A, b) then for all β, if c β = 0, then x β / ∈ M(A, a). This implies that M(g i , a) = M(g i , b). Hence {g 1 , . . . , g r } is a b-canonical basis of A, and the same argument shows that this basis is also reduced. 

. By Lemma 15 we get the equality. This proves that exp(A, θa

In the following we shall give some precisions about the partition above. Obviously if S 1 and S 2 are two distinct finitely generated affine semigroups and if a ∈ E Next we shall characterize open cones of the partition with maximal dimension. Let f be a nonzero element of K[[x 1 , . . . , x n ]] and let a ∈ U n . We say that in(f, a) is multihomogeneous if in(f, a) is b-homogeneous for all b ∈ U n . This is equivalent to saying that in(f, a) is a monomial.

Definition 24. Let a ∈ U n . We say that in(A, a) is a multihomogeneous algebra if it is generated by multihomogeneous elements. Note that in this case, If g ∈ in(A, a) then every monomial of g is also in in(A, a).

Lemma 25. Let a ∈ U n and let {g 1 , . . . , g r } be an a-reduced canonical basis of A. Then in(A, a) is a multihomogeneous algebra if and only if in(g i , a) is a monomial for all i ∈ {1, . . . , r}.

Proof. We only need to prove the if part. Let i ∈ {1, . . . , r} and write in(g i , a) = M 1 + . . . + M t with exp(g i , a) = exp(M 1 , a). Assume that t > 1. Since in(A, a) is multihomogeneous then M i ∈ in(A, a) for all i ∈ {2, . . . , t}. But {g 1 , . . . , g r } is reduced. This is a contradiction. Hence t = 1 and in(g i , a) is a monomial. Proof. Let a ∈ U n and let {g 1 , . . . , g r } be an a-reduced canonical basis of A. For all i ∈ {1, . . . , r}, in(g i , a) is a monomial, hence there exists ǫ > 0 such that in(g i , b) = in(g i , a) for all b ∈ B(a, ǫ) (where B(a, ǫ) is the ball centered at a of ray ǫ). This proves, by Lemma 15 and Corollary 17, that {g 1 , . . . , g r } is also a b-reduced canonical basis of A for all b ∈ B(a, ǫ). Conversely, if a is in an open